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Abstract. In recent years coastal oceanographers have sug-
gested using the “Strouhal” number or its inverse, the
“Stokes” number, to describe the effect of bottom bound-
ary layer turbulence on the vertical structure of both density
and currents. These are defined as the ratios of the frictional
depth (δ) to the water column depth (h) or vice versa. Al-
though many researchers have mentioned that the effects of
the earth’s rotation should be important, they have tended to
omit it. Rotation may have an important influence on tidal
currents, as the frictional depth from a fully cyclonic to a
fully anticyclonic tidal ellipse can vary by up to an order of
magnitude at mid latitudes. The Stokes number might appear
smaller for cyclonic current ellipses (larger for anticyclonic)
than it is without rotation, resulting in frictional effects being
underestimated (overestimated). Here, a way to calculate a
Stokes number is proposed, in which the effect of the earth’s
rotation is taken into account. The standard Stokes and the
rotational Stokes numbers are used as predictors for the po-
sition of the tidal mixing fronts in the Irish Sea. Results show
that use of the rotational number improves the predictions of
fronts in shallow cyclonic areas of the eastern Irish Sea. This
suggests that the effect of rotation on the water column struc-
ture will be more important in shallow shelf seas and estuar-
ies with strong rotational currents.

1 Introduction

Stokes (1851) studied the flow over an oscillating plate (anal-
ogous to oscillatory flow over the bottom) and defined the
depth of frictional influence denoted by the parameterδ. The

ratio of δ to the total water column depth (h) is known as the
Stokes number:

Stk=
δ

h
. (1)

This is equivalent to the ratio of friction to local accelera-
tions in the momentum balance. If we define the oscillatory
boundary layer thickness following Lamb (1932),

δ =
C1U∗

ω
, (2)

whereω is the oscillatory frequency, e.g. the M2 semi-diurnal
frequency, andU∗is the frictional velocity (U∗ = Cd

1/2U),
whereU is the M2 velocity amplitude,Cd is the quadratic
drag coefficient, andc1 is a proportionality constant. The
Stokes number can be expressed as follows:

Stk=
c1U∗

ωh
=

δ

h
. (3)

The Strouhal number was originally defined by
Strouhal (1878) while experimenting with wires expe-
riencing vortex shedding and singing in the wind. This
number is now used mainly to explain vortex shedding. The
Strouhal number is defined as follows:

Str=
ωL

U
, (4)

whereω is the frequency of the vortex shedding,L is a char-
acteristic length andU is the velocity of the flow.

In recent years the Strouhal number has commonly been
used to assess the effect of friction in oscillatory flows and
has been defined as following:

Str=
ωh

c1U∗

=
h

δ
=

1

Stk
, (5)
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as in Baumert and Radach (1992) and Souza et al. (2013), or
simply

Str=
ωh

U
, (6)

e.g. as in Prandle (1982) or Burchard and Hetland (2011).
Although this analysis is dimensionally correct, the use of
the Strouhal number is dynamically incorrect as it is the ratio
of local to advective accelerations.

The aim of this paper is three-fold: (1) to establish the use
of the Stokes number as the correct number to be used when
considering the effects of friction over inertia, (2) to highlight
the effect of the earth’s rotation on frictional tidal processes,
and (3) To use the rotational Stokes number as a predictor of
tidal mixing fronts as a test of the influence Earth’s rotation.

2 Use of the Stokes number to describe tidal dynamics
in estuaries and Shelf Seas

Stokes (1851) explained this problem, in what has become
known as the Stokes “second problem” in fluid mechanics; it
has been published in several textbooks and it is applicable
to any oscillatory case (i.e. waves and tides).

The original problem was the flow due to an oscillating
plate, in which the governing equation is

∂u

∂t
= Nz

∂2u

∂z2
, (7)

with boundary conditionu(0, t)= U cosωt, and had a solu-
tion as follows:

u = Ue
−z
(

ω
2Nz

)1/2

cos

(
ωt − z

(
ω

2Nz

) 1
2
)

, (8)

whereNz is the eddy viscosity, andU andω are the ampli-
tude and frequency of the oscillating motion.

The height of frictional influence or Stokes depth is given
by following equation:

δ ∼

(
2Nz

ω

)1/2

∼
c1U∗

ω
(9)

in the case of oscillatory flow forced by a horizontal pressure
gradient due to the surface slope, as in the case of waves and
tides. The equations of motions are

∂u

∂t
= Nz

∂2u

∂z2
− g

∂η

∂χ
, (10)

whereη is the surface elevation andg is gravity. With the
pressure gradient given by the following equation,

−g
∂η

∂x
= Acos(ωt) , (11)

and boundary conditionsu = 0 at z = 0, and∂u/∂z = 0 at
z = h, we have the following solution:

u =
A

ω

(
sinωt − e

−z
δ sin

(
ωt −

z

δ

))
. (12)

We can assume that the velocity far away from the bound-
ary in the free stream will be given by

u∞ =
A

ω
sinωt. (13)

If u is normalised byA/ω and we substituteζ = z/h, the
solution becomes as follows:

U = sinωt − e−
ζ

Stk sin

(
ωt −

ζ

Stk

)
. (14)

This is a similar result to Ianniello (1977) and demon-
strates how the Stokes number determines the profiles and
residual currents in well-mixed tidal flow in closed estuaries.

Figure 1 shows the normalised velocity profile (U) for dif-
ferent Stokes numbers. As the Stokes number increases, the
height of penetration increases, so at small Stoke numbers
the bottom boundary layer (δ)is small, as would be the case
for wind waves or tides in the deep ocean (Stk= 0.01); as
the Stoke number approaches unity, the boundary layer will
cover the entire water column. Figure 2 shows the velocity
distribution at different Stokes numbers spanning four or-
ders of magnitude from 0.01 to 100. The top plot shows nor-
malised amplitude, and the bottom plot the phase lag.

Prandle (1982) and Prandle et al. (2011) found an anal-
ogous solution; they show how the amplitude and phase of
tidal currents vary as a function of what they called the
“Strouhal” number, but should really be the Stokes number,
similar to Fig. 2. They even defined a solution for the rota-
tional case, defining the clockwise and anticlockwise compo-
nents of the Strouhal number, and suggest that the behaviour
of each rotational component of velocity will behave follow-
ing their individual Strouhal number.

Baumert and Radach (1992) identified the Strouhal num-
ber, as a characteristic parameter for the mixing associated
with tidal flow. By demonstrating that, apart from bottom and
surface roughness lengths, Str is the only parameter defining
the dynamics of the well-mixed irrotational pressure gradient
driven tidal flow, they could show how the relative time lag of
turbulent parameters with respect to the bed stress increases
with Str, in a similar way to Simpson et al. (2000) and Souza
et al. (2004). Burchard (2009), Burchard and Hetland (2010)
and Souza et al. (2013) have used this idea to define the be-
haviour of tidal and oscillatory flows in shelf seas using tur-
bulent closure models. It needs to be mentioned that Pran-
dle (1982), Baumert and Radach (1992), Burchard (2009)
and Burchard and Hetland (2010) have defined the Strouhal
wrongly as its inverse.

Winant (2007) used the Stokes number (hisδ parameter)
to define the tidal behaviour on elongated rotating estuaries,

Ocean Sci., 9, 391–398, 2013 www.ocean-sci.net/9/391/2013/
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Fig. 1. Schematic showing the amplitude velocity profile for an os-
cillatory current with different Stokes number; blue, green red and
black have Stokes numbers of 0.01, 0.1, 0.25 and 1, respectively.
The elevation has been normalised by the total water depth and the
velocity by the free stream velocity. The position of the height of
frictional influence is depicted byδ.

while Winant (2008) and Huijts et al. (2011) used it to de-
scribe the transverse structure of residual flows in estuaries.
Although both authors suggest that the earth’s rotation is im-
portant, neither of them took it into account when defining
the Stokes number, i.e. the frictional depth.

3 The effect of the earth’s rotation on the Stokes
number

The Stokes number accounts for the relative dynamical im-
portance between the frictional and the local accelerations.
Due to the fact that any value larger than one would mean
that the frictional layer is greater than the water depth, in
practical terms it will be considered to cover the full water
column.

To explain the elliptical behaviour of tidal currents, it
is better to decompose the velocity vector into rotational
components (Thorade, 1928; Godin, 1972; Prandle, 1982):
one rotating cyclonically (R+ anticlockwise in the North-
ern Hemisphere) and another rotating anticyclonically (R−

clockwise).
Following Souza and Simpson (1996), the tidal ellipses’

semi-major (UM ), semi-minor (Um) and ellipticity (ε) are
given by

UM = R+ + R−, (15)

Um = R+ − R−, (16)

and

Fig. 2.Tidal current profile as a function of the Stokes number. Dis-
tribution of normalised amplitude velocities (top), and phase differ-
ence in pi radians (bottom).

ε =
Um

UM

. (17)

Each of these rotational velocity components has a char-
acteristic boundary layer thickness (Fig. 3) as explained in
Souza and Simpson (1996). By analogy with Eq. (3) the
boundary layer thickness, as given by Soulsby (1983), is

δ+ =
c2U∗

(ω + f )
(18)

for the cyclonic and

δ− =
c2U∗

(ω − f )
(19)

for the anticyclonic components, wheref is the Coriolis fre-
quency. In mid-latitudesf andω are close so thatδ− � δ+,
hence the anticyclonic component will cover more of the wa-
ter column (Fig. 3). In the case of mid-latitudes, the ratio of
the counter-rotational boundary layers is

δ−

δ+

=
ω − f

ω + f
∼ 10. (20)

www.ocean-sci.net/9/391/2013/ Ocean Sci., 9, 391–398, 2013
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Table 1.Frictional layer depth and stokes number for a 1 ms−1 tidal
current with different ellipticities at 54◦ N and 30 m water column
depth.

ε −1 −0.5 −0.3 0 0.3 0.5 1
δR 162 125 110 88 66 51 15
StkR 5.4 4.2 3.7 2.9 2.2 1.7 0.5

Soulsby (1983) suggested that the effective combined
boundary layer, which would be the planetary boundary layer
for tidal currents (Fig. 3), is a weighted mean boundary layer
δR made up of a combination ofδ+ andδ−:

δR =
R+δ+ + R−δ−

R+ + R−

, (21)

which is equivalent to

δR = C2

√
Cd

(
UMω − Umf

ω2 − f 2

)
. (22)

The value for c2 was taken to be 0.075 following
Soulsby (1983), who based it on observations of the
measured mixed layer thickness from Pingree and Grif-
fiths (1997).Cd is the drag coefficient, used here as a con-
stant of 2.5×10−3, although we know that this might change
due to bottom roughness (e.g. Burchard et al., 2011). So the
rotational Stokes number StkR will be as follows:

StkR =
δR

h
. (23)

4 Results

Let us assume that we are in a shelf sea of about 30 m
depth at latitude of 54◦ N, with a M2 tidal current that has
a semi-major axis amplitude 1 ms−1 and an ellipticity that
changes between−1 and 1. The results in Table 1 show that
the Stokes number varies between 0.5 forε = 1 and 5.4 for
ε = −1, with a value of 2.9 for the rectilinear currents.

In the northwest European Shelf Sea, it will be more com-
mon to find values of the ellipticity between−0.5 and 0.5.
To test the above ideas in a realistic scenario, simulations
from the operational model of the Irish Sea will be used
(http://cobs.noc.ac.uk/modl/polcoms/).

POLCOMS is a three-dimensional hydrostatic baroclinic
model that was designed to be particularly suited to mod-
elling shelf sea regions. A full description including the equa-
tions may be found in Holt and James (2001). The model grid
is formulated on the Arakawa B grid (Arakawa, 1972), us-
ing terrain-followingσ coordinates. It also uses a piecewise
parabolic method (PPM) advection scheme (James, 1996)
and aκ–ε turbulence closure scheme from the General Ocean
Turbulence Model (GOTM) as implemented by Holt and
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Fig. 3. Schematic of the rotational boundary layers showing the ro-
tational boundary layers: blue cyclonic, red anticyclonic and black
the resultant planetary boundary layer.

Umlauf (2008). Full details of the Irish Sea implementation
can be found in Holt and Proctor (2003).

The POLCOMS Irish Sea model covers an area from
7◦ W to 2.625◦ W and 51◦ N to 56◦ N. The resolution is
1/60◦ latitude and 1/40◦ longitude (or about 1.8 km), and has
30 vertical levels; the model bathymetry is shown in Fig. 4.
The data used for the analysis of tides and stratification cover
the period from March to September 2007. This is so that the
tidal analysis during these 6 months and the density values
used for calculating stratification are an average of half of
the year when the sea surface is being heated and tidal mix-
ing fronts develop.

The ellipticity in Fig. 5 shows maximum values of 0.5 in
northern Liverpool Bay, Cardigan Bay, at the centre of the
deep area west of the Isle of Man and in the Celtic Sea. There
is a minimum of about−0.3 in the southern Liverpool Bay
and has values closer to zero elsewhere. This difference in the
tidal ellipse rotation might result in a change of about 25 m
between the rotational and non-rotational bottom boundary
layer (1δ= δR − δ). Figure 6 shows that the largest changes
are in Liverpool Bay, Cardigan Bay and the Celtic Sea, where
the bottom boundary layer is overpredicted at> 25 m (re-
gions in red) and underpredicted by about 10 m (cyan areas)
when using the non-rotational formulation; as expected this
will be well correlated with the ellipticity.

We then calculate the Stokes number for the rotational and
non-rotational frictional depth (Fig. 7); the maximum value
is found when the frictional depth is the same as the water
column depth. We can observe again that the non-rotational
Stokes number overestimates the values in the shallow parts
of the eastern Irish Sea (i.e. Liverpool Bay and Cardigan Bay)
where StkR ∼ 1. This is also apparent in the Celtic Sea and

Ocean Sci., 9, 391–398, 2013 www.ocean-sci.net/9/391/2013/
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Fig. 4.Bathymetry of the Irish Sea used by POLCOMS.

in the deep area west of the Isle of Man, although here it is
less critical as StkR ∼ 0.

5 Prediction of tidal mixing fronts

Soulsby (1983) hypothesised that the boundary layer con-
straint predominates, the positions of tidal mixing fronts are
set by the outcropping of the tidal bottom boundary layer
at the surface and that we should really take into account
the earth’s rotation when we define the fictional depth. If the
boundary layer does not reach the surface, turbulent mixing
would not be able to reach the surface thermal stratification.
This hypothesis was also supported by results from Simp-
son and Sharples (1994) and Simpson and Tinker (2009).
For Soulsby’s hypothesis to hold, frontal positions will co-
incide with Stk∼ 1. Furthermore, better predictions will be
achieved when we use StkR instead of Stk. To test if this is
the case, Stk and StkR are compared with a measure of strati-
fication. The non-dimensional buoyancy frequency is defined
as follows:

N2∗
= N2

(
h2

Bs

)2/3

, (24)

Fig. 5.Ellipticity values in the Irish Sea: positive values are cyclonic
negative values are anticyclonic.

whereBs is the surface buoyancy flux due to solar heating
andN2 is the square of the buoyancy frequency. These have
been calculated using the mean values for the warming half
of the year (March to September).

The distribution ofN2∗ (Fig. 8) clearly shows the Irish Sea
front west of the Isle of Man, the Celtic Sea front and a ther-
mal front in Liverpool Bay. When we compare the values of
the Stokes numbers with the stratification, we can observe
that the Stokes number is a good predictor of the tidal mix-
ing front position. The improvement in the predictability of
the tidal mixing fronts is only obvious within Liverpool Bay
due to the fact that this is a shallow area of strong cyclonic
tidal currents. This is also true when the Stokes number is
compared with sea surface temperature (SST) from satellite
images (Fig. 9), although it should be mentioned that SST
does not tell the full story about fronts and stratification as it
only represents the surface signature and not any water col-
umn structure information, e.g. the strength of bottom fronts
and of stratification.

It needs to be noted that for most of the frontal areas where
N2∗ values are between 750 and 850, the tidal currents are
cyclonic. Figure 10 shows the distribution ofN2∗ against
Stk andε. Most of the currents are cyclonic; at high Stokes

www.ocean-sci.net/9/391/2013/ Ocean Sci., 9, 391–398, 2013
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Fig. 6.Difference between the rotational–oscillating and oscillating
bottom boundary layer in the Irish Sea. Negative values suggest that
the boundary layer is overpredicted by the non-rotational boundary
layer.

Fig. 7. Rotational(a) and non-rotational(b) Stokes number for the
Irish Sea.

Fig. 8.Non-dimensional stratification of the Irish Sea as defined by
the non-dimensional buoyancy frequency.

(Stk> 3) number the currents are almost rectilinear. Strati-
fication (N2∗ > 1000) is possible at all positive values ofε;
nevertheless, there is no significant stratification at ellipticity
values smaller than−0.1, and stratification also disappears at
Stk> 1.5.

6 Conclusions

Firstly, it is suggested that the Stokes number is the cor-
rect measure to be used concerning the ratio of the frictional
depth to total depth as it is the ratio of the frictional to local
accelerations.

The results presented here also suggest that the rotational
Stokes number should be used to describe shallow shelf seas
or estuaries, where the effect of the earth’s rotation is appre-
ciable. This could be important in places like Liverpool Bay,
where the frictional layer without considering rotation can be
overestimated (cyclonic rotation) or underestimated (anticy-
clonic rotation) by more than 10 m. This should be consid-
ered when classifying estuaries and ROFIs (regions of fresh-
water influence), like those proposed by Burchard (2009) and
Burchard and Hetland (2010). This is not unique to Liver-
pool Bay as there are other shelf seas that have shallow areas

Ocean Sci., 9, 391–398, 2013 www.ocean-sci.net/9/391/2013/
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Fig. 9. Sea surface temperature weekly composite image between
the 29 July and 4 August 2007. Image courtesy of NEODAAS, via
the NOC Coastal Observatory.

with strong cyclonic and anticyclonic currents, e.g. the En-
glish Channel and the southern North Sea.

The Stokes number is a good predictor of the position of
tidal mixing fronts, with the thermal front position occurring
at values between 0.8 and 1. The use of the rotational Stokes
number appears to improve the predictions of tidal mixing
front in shallow, strongly cyclonic regions. This is consistent
with results found by Simpson and Tinker (2009), although
here we highlight that it is even more important for shallow
areas such as Liverpool Bay, in contrast with the deep areas
of the Celtic Sea.

It is clear from Prandle (1982) and Soulsby (1983) that
we should take into account the earth’s rotation when de-
scribing the vertical distribution of tidal currents. This is ev-
ident when explaining the modification of tidal ellipses by
stratification, as described by Souza and Simpson (1996) and
Palmer (2011). For this process to be active, it appears to
be necessary for Stk− =

δ−

h
≥ 1 so that the anticyclonic fric-

tional layer reaches the surface; therefore, in the presence of
a pycnocline the surface layer will be decoupled.

Although we have shown that the Stokes number should be
used when evaluating the importance of frictional forces over
local acceleration, use of the Strouhal number is still valid
when assessing the importance of advection; as correctly ap-
plied by Huijts et al. (2011), this number is sometimes called
the unsteadiness number.
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