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Abstract. Geomagnetically Induced Currents (GIC) can be damaging3

to high-voltage power transmission systems. GIC are driven by rapid changes4

in the strength of the magnetic field external to the Earth’s surface. Elec-5

tric fields are produced in the ground by the interaction between this chang-6

ing magnetic field, the sea and the conductivity structure of the Earth. Us-7

ing a technique known as the ‘thin-sheet approximation’ we can determine8

the electric field at the Earth’s surface, which in turn allows the calculation9

of GIC in the earthing connections of high-voltage transformers within a power10

grid. This paper describes two new developments in the modelling of GIC11

in the UK, though the results are applicable to GIC-related research in other12

regions. Firstly, we have created an updated model of the UK surface con-13

ductivity by combining a spatial database of the UK geological properties14

(i.e. rock type) with an estimate of the conductivity for specific formations.15

Secondly, we have developed and implemented a sophisticated and up-to-date16

model for the 400 kV and 275 kV electrical networks across the whole of Great17

Britain and, in addition, the 132 kV network in Scotland. We can thus de-18

duce the expected GIC at each transformer node in the system based on the19

network topology from an input surface electric field. We apply these devel-20

opments to study the theoretical response of the UK high-voltage power grid21

to modelled extreme 100- and 200-year space weather scenarios and to a scaled22

version of the October 2003 geomagnetic storm, approximating a 1 in 20023

year event.24
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1. Introduction

Large excess electric fields are generated in the ground during severe space weather25

events due to the (secondary) induction effects of a changing magnetic field within a26

conductive medium. During large geomagnetic storms, electric currents – termed Geo-27

magnetically Induced Currents (GIC) – can flow through the ground, usually harmlessly.28

However, high-voltage power systems can be vulnerable to GIC flow, particularly where29

they offer a low-resistance path for the current compared to the ground. In this paper we30

seek to simulate the flow of GIC in the UK high-voltage network using a state-of-the-art31

ground conductivity model and the most accurate and up-to-date representation of the32

grid characteristics and topology available.33

The key magnetic parameter in the ‘GIC problem’ is the time rate of change of the34

magnetic field, denoted dB/dt, and in particular its component in the horizontal plane,35

dH/dt [e.g. Viljanen et al., 2001]. Determining the expected peak rate of change of dH/dt36

for a region is important for GIC studies. Values of dH/dt can be readily extracted37

from digital archives, typically recorded at a cadence of one minute. Thomson et al.38

[2011] estimated likely 100- and 200-year maxima in dH/dt, using up to 30 years of39

minute-mean digital data from 28 European observatories. They showed that peak dH/dt40

increases with magnetic latitude, with a distinct ‘bump’ in the magnitude of dH/dt around41

55-60◦N (geomagnetic latitude), associated with an enhanced ionospheric current system42

known as the auroral electrojet. The UK is within this region of enhanced magnetic field43

activity and so experiences such enhancements during major geomagnetic storms.44
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Prior to 1983 in the UK, only analogue measurements recorded on paper exist, though45

these do extend back to the 1840s and contain major magnetic storms, such as the ‘Car-46

rington Event’ of September 1859 and the May 1921 storm [e.g. as discussed in Kappen-47

man, 2006]. In the digital era, severe magnetic storms occurred in March 1989, November48

1991 and October 2003. In the UK, the 1989 storm caused damage to two transformers49

[Smith, 1990; Erinmez et al., 2002].50

Detailed geophysical studies of these storms, such as McKay [2003] and Turnbull51

[2010, 2011], have modelled the impact on simplified versions of the high-voltage trans-52

mission system of the UK. Thomson et al. [2005] showed that the measured GIC for the53

2003 event was reasonably reproduced by the geophysical models of Beamish et al. [2002]54

and McKay [2003], which were constructed for the UK mainland, also known as Great55

Britain (GB) but most detailed in Scotland. Measured GIC in the UK during the Octo-56

ber 2003 event reached 42A [Thomson et al., 2005]. More recently, Pulkkinen et al. [2012]57

have developed scenarios of realistic electric field change for a 100-year extreme event,58

specifically to aid engineering and network planning. These were applied to the high-59

voltage network of Virginia in the USA and also to a relatively simple model of the GB60

high-voltage network to compute the expected GIC in the network. However, these were61

relatively uniform electric field models, and lacked the expected spatial variation of the62

magnetic and induced electric field. In this paper we attempt to produce a more realistic63

representation of the induced electric field in the UK during a severe space weather event64

and using an improved network model to compute the expected GIC for the GB power65

grid.66
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In Section 2, we describe our new conductivity model which is based on the geophysical67

properties of the geological structure of the UK. We then describe the methodology for68

creating the extreme variations of the magnetic field during 100- and 200-year extreme69

geomagnetic events using synthetic models of the auroral electojet and a scaled version of70

the October 2003 storm. In Section 3 we show the resulting GIC amplitudes and spatial71

patterns generated when applied with our new model of the high-voltage transmission net-72

work. Finally, we discuss the limitations and caveats with regards to modelling accuracy73

and validation.74

2. GIC Modelling

There are four main requirements for computing GIC within a electrical network: (a) a75

model of the conductivity structure of the region (b) a detailed set of spatial and temporal76

measurements and/or models of the magnetic field, (c) the computation of the electric77

field from the interaction of (a) and (b), and (d) a network model of the high-voltage78

power grid and transformers.79

Once the surface electric field has been computed, the voltages along electrical lines80

in a connected power grid are integrated and inverted using the network topology and81

characteristics to calculate GIC at each transformer. These steps are described in more82

detail in the following subsections.83

2.1. UK Ground Conductivity Model

The penetration of the magnetic field into the ground (i.e. skin depth) is highly depen-84

dent on the conductivity of the local region and the time period (frequency) over which85

the change of the magnetic field occurs. The vertical distribution of the resistivity within86
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the Earth’s crust, and the period considered, determine the rate of attenuation of the87

induced electric field. Deeper layers are more significant at long periods and the shallow88

layers produce stronger influences at short periods.89

The interaction of the external magnetic field with the conductive Earth is approximated90

in our code by ‘thin-sheet’ modelling; this determines the surface electric field arising at91

a particular frequency from layers of conductive material in the sub-surface. The chosen92

frequency (or period) of the rate of change of the magnetic field equates to its penetration93

depth.94

The thin-sheet modelling code used in this study is based upon the work of Vasseur and95

Weidelt. [1977]. Using a series of appropriate Green’s functions and integrals, the thin-96

sheet approximation can be used to model the likely influence of near surface conductivity97

contrasts in the context of regional induction. Hence, a thin-sheet model includes the effect98

that lateral conductivity variations have on redistributing regional or ‘normal’ currents99

induced elsewhere (e.g., oceans or shelf seas). However, a number of assumptions and100

approximations are made to ensure that the thin-sheet model remains valid.101

The new UK conductivity model is derived from the analysis of the conductivity prop-102

erties of the bedrock materials, based on the British Geological Survey (BGS) 1:625,000103

geological map of the UK and Northern Ireland. The model, described by Beamish [2012],104

uses the information obtained from recent airborne geophysical surveys across the UK.105

The results show that the effective resistivity mapped from remote sensing surveys can be106

used to estimate conductivity across most of the UK. The methodology (see also Beamish107

and White [2012]) provides a lithological and geostatistical assessment of the conductiv-108
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ities of all the UK bedrock formations. The central moments of the distributions were109

found to range from 8 to 3125 Ω m.110

Again, there are a number of assumptions in this method, not all of which are strictly111

true. For example, the assumption that surface bedrock extends to depth or that rock112

units (sandstone, limestone, basalt etc) have uniform and constant conductivities to a113

depth of 3 km are clearly incorrect in many locations. However, the approximations are114

useful in constructing a reasonably representative regional conductivity model.115

Onshore, the 1:625,000 ‘near-surface’ bedrock conductivities were used including North-116

ern Ireland but excluding the Republic of Ireland. For the offshore regions, the bathymetry117

and a uniform value of sea water conductivity (4 S/m) are used. This is a very thin layer118

(typically < 200 m) providing the conductance which equates to the conditions of a pre-119

vious existing thin-sheet model from prior work in 2002/3. Figure 1 shows the model,120

termed the BGS2012 Conductivity Model. At the 10 km cell size used, the model com-121

prises 4211 values of conductance, ranging from 2 to 11598 S.122

2.2. Regional Estimation of the Magnetic and Electric Fields

The temporal variation of the external magnetic field during a severe geomagnetic storm123

can be extremely rapid with a complex regional spatial variation. In the auroral regions,124

results from networks of magnetometers such as IMAGE [Viljanen and Häkkinen, 1997] or125

CARISMA [Mann et al., 2008] show rapid temporal fluctuations and spatial rearrangement126

of the magnetic field associated with auroral electrojets and field-aligned currents.127

In order to estimate the surface electric field, we must make assumptions about the128

configuration of the magnetic field during a large storm at the geomagnetic latitudes129

of the UK. We therefore assume that strong magnetic fields arise primarily from the130
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presence of a very strong auroral electrojet expanding southwards over the UK, driven131

by a major geomagnetic storm. We assume the auroral electrojet generates a rapidly132

changing external magnetic field observed on the ground. The core and crustal magnetic133

fields are essentially static on short time scales of seconds to days and we ignore the effect134

of the ring current as the electrojet is the largest signal at these latitudes during such135

events. The rapidly changing external part of the magnetic field induces an electric field136

in the Earth, and we use the horizontal, North (X) and East (Y), components to compute137

a regional surface electric field model.138

Two different scenarios for the spatial and temporal configuration of the magnetic field139

were synthesised: (a) a set of idealised models of a large-scale auroral electrojet and (b)140

a scaled version of the 2003 Halloween storm based on the interpolation of the magnetic141

field from observatory and variometer measurements around the UK.142

2.2.1. Electrojet Models143

We developed two electrojet model profiles: the first electrojet model has an amplitude144

profile akin to a ‘top-hat’ function, extending from 53◦ to 63◦N in geomagnetic latitude,145

while the second has a ‘tapered-cosine’ profile extending between 48◦ and 68◦N in geo-146

magnetic latitude. We use the two different models to examine if the amplitude gradient147

(slope) of the magnetic field strongly affects the GIC. The Top Hat model gives a very148

strong gradient across its edges while the Tapered Cosine model has a gentler gradient.149

Two orientations of the auroral electrojet were then computed; (a) geomagnetically east-150

west aligned across the UK and, in order to produce an orthogonal magnetic field direction,151

(b) a second set of profiles in a geomagnetic north-south alignment (which approximately152
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follow the central axis of the UK). Note that a north-south configuration is not realistic153

due to the configuration of the main magnetic field.154

The electrojet models were created as normalised values on a square grid in geomagnetic155

coordinates and then rotated 10◦ counter-clockwise to match the appropriate position over156

the UK in geographic coordinates. The electrojet grids were cropped and sub-sampled to157

1/12th of a degree to match the grid-spacing of the ground conductivity model.158

To scale the electrojet model magnetic fields to the correct amplitude for an extreme159

event, the results from the Thomson et al. [2011] study on the statistical predictions of160

extreme values in European magnetic observatory data were applied. Table 1 gives the161

predicted range in activity between 55–60◦N at 100-year and 200-year return periods.162

The largest measured digital (i.e. modern) dH/dt for the UK is around 1100 nT/min (in163

1991). Therefore we chose to use 1000 nT/min, 3000 nT/min and 5000 nT/min in this164

analysis to approximate the expected maximum in dH/dt for 30, 100 and 200 years.165

To convert the horizontal rate of change (dH/dt) to equivalent root-mean-square (RMS)

input horizontal field for use in the thin-sheet approximation code, we assumed the field

amplitude was changing sinusoidally over a period of length t. Hence the RMS input field

strength, H0, can be computed using the approximation:

dH/dt =
√
2πH0/T (1)

where H = H0sin(2πt/T ). H0 is the strength of the field from the electrojet and T is166

the period of electrojet variation (in minutes). If we assign T = 2 minutes, this leads167

to magnetic field input strengths H0 of approximately 450 nT, 1350 nT and 2250 nT168

for dH/dt = 1000 nT/min, 3000 nT/min and 5000 nT/min. The conductivity model169

responds differently at different periods (or frequencies) to these magnetic field changes.170
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For this study, the response of the electric field at periods of 2 minutes (120 seconds),171

10 minutes (600 seconds) and 30 minutes (1800 seconds) are chosen, though the spectral172

characteristics of the external magnetic field during storms are typically broadband in173

nature. Longer periods are regarded as insignificant for GIC hazard assessment.174

Thomson et al. [2011] suggest that in Europe the extremes in H are relatively unlikely175

to exceed 10,000 nT once every 200 years. We therefore use this as a maximum cut-off176

for the value of H0. For this reason, 3000 nT/min and 5000 nT/min changes are not177

considered to be physically reasonable as ‘worst cases’ for electrojets varying with periods178

longer than about 10 minutes. However, we do retain them for comparison purposes.179

We assume that the change in H is due either to the X or the Y component of the180

external magnetic field. Table 2 shows the computed values for the horizontal component181

of the main field corresponding to these time periods for the electrojet models.182

There are now up to twelve different magnetic field source scenarios for electric field183

computation per time period: (a) two electrojet profiles (Top Hat and Tapered Cosine);184

(b) two orientations (as geomagnetically E-W and N-S aligned electrojets) and; (c) two185

or three dH/dt scaling values (as per Table 2). The grid models were multiplied by the186

selected H0 values to scale them to the magnetic field strength before combining them187

with the conductivity model to calculate the electric field strength at each point across the188

UK mainland. Figure 2 shows an example of the magnetic field strength for the auroral189

electrojets models scaled to 1350 nT (a 1-in-100 year scenario). For convenience, we190

concentrate on the 120 second period for the remainder of the paper, though the models191

for all scenarios were computed.192

2.2.2. Scaled October 2003 storm193
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To generate a more ‘realistic’ representation of the spatial variation of the geomagnetic194

field during a large storm, a model of the magnetic field during the October 2003 event195

was constructed based upon the measurements from nine observatories and variometers196

around the United Kingdom and North Sea region. The observatory data were downloaded197

from the World Data Centre for Geomagnetism (Edinburgh), while the Faroes, York and198

Crooktree variometer data were provided by the Sub-Auroral Magnetometer Network199

(SAMNET) operated by Lancaster University.200

The spatial variation of the magnetic field was estimated using minute-mean data in-201

terpolated over a large region using the Spherical Elementary Current Systems method202

[Amm and Viljanen, 1999], as described in detail in McLay and Beggan [2010]. The mag-203

netic field values were multiplied by five to achieve a 200-year extreme event with a peak204

maximum rate of change of approximately 5,000 nT/min. Figure 3 illustrates the varia-205

tion at each observatory/variometer of the (scaled) horizontal components of the external206

magnetic field for the 30th October 2003. The magnetic field was most active during the207

period 19.00–22.00 UT. Figure 4 shows the spatial change of the strength of the horizontal208

field components for four snapshots, including 21.20 UT, the peak of the 2003 Halloween209

storm, as recorded in the UK.210

2.3. UK High-voltage Network Model

National Grid UK is responsible for the operation of the high-voltage 400 kV, 275 kV and211

132 kV transmission network across Great Britain (i.e. the mainland of the UK). The212

transmission network consists of hundreds of step-up and step-down transformers that213

transfer power generated typically at 22.5 kV from the source to the local distribution214

networks for industrial, business and household consumers. The most efficient method for215
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transferring power over long distances is to step the voltage up to reduce the resistance216

(and hence the Ohmic heating) in the connecting transmission lines. However, if the217

ground resistance is sufficiently high, the low-resistance wires of the network provide an218

easier route for GIC to pass through the earth neutral of the connecting transformers.219

In conjunction with National Grid UK, a full description of the UK high-voltage power

network was developed. The data consists of latitude, longitude and electrical charac-

teristics (earthing, transformer and line resistance) of each transformer node in the high-

voltage network. These parameters are used to calculate GIC (in Amperes) along power

transmission lines from the matrix equation in Lehtinen and Pirjola [1985]:

I = (Y + Z)−1J (2)

where J is the geo-voltage computed between nodes, Z is the impedance matrix, Y is220

the network admittance matrix and I is the vector containing the estimated GIC at each221

node. The input data from the network parameters are used to calculate Y and Z. The222

geo-voltage J is calculated by interpolating the electric field grid value onto the power223

transmission lines and integrating along the line. The GIC at each node on the grid is224

then computed. The GIC are calculated from both the North and East components of225

the surface electric field. Note that when modelling real-world data, to compute the total226

GIC at each node, all periods should be integrated. In this study, however, we use three227

discrete periods (120, 600 and 1800 seconds) only to approximate the full spectrum.228

The 2012 model of the UK network consists of 701 transformers and 1153 connections.229

Some connections are very short, for example, between two transformers on the same site,230

while the longest is 189 km. The median line length is 10 km (mean: 17 km). Figure 5231

shows the UK 400 kV and 275 kV network and the 132 kV network in Scotland.232
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3. Results of Electric field and GIC computation

Using the ‘thin-sheet’ approximation, the excess electric field is estimated for a large233

area around the UK from -12◦ to +2◦ longitude and from 50◦ to 60◦ latitude i.e. the area234

is 14◦ x 10◦ in size. This large area includes the shallow sea and deeper ocean, though235

excludes effects from mainland Europe. In addition to the surface layer, the model also236

includes an 11 layer 1-D model of the lower crust and mantle, adding a third dimension.237

The model has a resolution of 1/12th of a degree in latitude and longitude (approximately238

10 km cell size). This gives an electric field model for each magnetic field configuration239

for a given period (e.g. 120 seconds).240

The thin-sheet modelling code was run with the BGS2012 conductivity model using the241

auroral electrojet model configurations for the three different response frequencies (where242

applicable). Note, that an East-West aligned magnetic field (i.e. the X component)243

generates the North-South aligned (i.e. Y component) electric field. We concentrate on244

results from the shortest period events (120 seconds) as these generate the largest GIC245

from our modelling technique.246

Figure 6 shows the output of the thin-sheet modelling for assumed 30, 100 and 200-year247

extreme events based on the idealised auroral electrojets. The modelled electric fields248

induced in the surface by a period of 120 seconds are for H0 fields of 450, 1350 and 2250249

nT from various auroral electrojet configurations are plotted. The largest field changes250

induce the largest surface electric fields, reaching up to 15.1 V/km in Figure 6 (lower right251

panel).252

In Figure 7 the results of the thin-sheet modelling for four snapshot times from the253

1-in-200 year storm event are shown. The modelled electric fields induced in the surface254
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by a period of 120 seconds for H0 fields of 3918, 4454, 9420 and 1454 nT, respectively.255

The figure shows the largest field changes induced reach up to 8.1, 10, 27.9 and 6.9 V/km256

in Figure 7. These electric fields are similar to those modelled in Pulkkinen et al. [2012].257

From the computed surface electric fields, GIC were obtained for each of the 701 trans-258

formers in the network for each extreme scenario. Figure 8 illustrates the GIC generated259

for a 100-year scenario for the 120 second period for the four configurations of the auroral260

electrojet. The GIC entering the grid are shown in blue (positive), while GIC exiting into261

the ground are in red (negative). Note, the sign of the GIC (positive or negative) is not262

important in terms of its impact on a transformer, as it is the absolute DC bias in the263

transformer that affects its performance.264

Figure 9 shows the modelled GIC generated for a 200-year scenario for the 120 second265

period from the four snapshots of the extreme storm of section 2.2.2 . The values are larger266

than those in Figure 8 which is to be expected as the magnetic field values are larger.267

Due to the spatial complexity of the magnetic field, the locations of large magnitude GIC268

differ from the hypothetical electrojet model.269

The results of the ten largest GIC at the nodes are tabulated in Tables 3 (Tapered-270

Cosine profile) and 4 (Top-Hat profile). The tables show the output of the GIC model271

for each expected return period, depending on the orientation of the electrojet. (For272

commercial reasons the identity of the nodes are not given.) Note that different nodes273

have the largest value of GIC, depending on the orientation of the electrojet and that the274

values from the Top-Hat profile are, on average, larger.275

The largest GIC occur in the north of the UK, and in the ‘corner’ nodes of system276

(e.g., southwest Wales and England) or in isolated regions (Scottish Borders). Where277

D R A F T March 15, 2013, 3:35pm D R A F T



BEGGAN ET AL.: PREDICTION OF EXTREME GIC IN THE UK X - 15

nodes lie close together, especially in the southern UK, there is a tendency for smaller278

GIC (e.g., London/southeast England), though this is not necessarily the case in other279

clusters of transformers (e.g., northeast England). Also, due to the different transformer280

characteristics (e.g. from age, type, connectivity) even nodes on the same site display281

different GIC susceptibility, indicating that the problem of understanding GIC even at a282

single site can be subtle.283

Although higher voltage power lines are most affected by GIC, we have found that284

including lower voltage lines significantly modifies the electrical topology of the grid and285

hence the paths of least-resistance for excess current. To illustrate this, we modelled the286

GIC in the 400 kV and 275 kV lines only and compared it to the GIC computed at the287

same transformers when the 132 kV grid in the northern UK is included. Figure 10 shows288

the differences at the common nodes using a Tapered Cosine profile during a 100 year289

event for a 120 second period (i.e. the electric field from Figure 6). The largest differences290

for the East-West alignment of the electrojet (Figure 10 (a)) are located in the north of291

the UK, vanishing in more southerly nodes. When the electrojet is north-south aligned292

(Figure 10 (b)) the largest differences are up to about 8% of the total GIC at any given293

site. The number of nodes affected across the region also increases slightly, with nodes294

much further south of the 132 kV grid showing differences. This result suggests that any295

unmodelled connectivity of the high-voltage grid to lower voltage lines will have a modest296

effect on the size of GIC computed.297

4. Discussion

We attempt to determine the flow of GIC in the UK power grid during the worst-case298

scenarios of space weather that can be expected in a 200-year period. The use of idealised299
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electrojet models allows us to investigate the hypothetical response of the grid while a300

scaled version of the 2003 Halloween storm gives a more nuanced spatial magnetic field301

model.302

From a comparison of the magnetic field configurations in Figures 2 and 4 it can be seen303

that the Tapered Cosine electrojet east-west alignment (Figure 2 (upper left)) is arguably304

a more physically realistic distribution of electrical current in the ionosphere. However,305

the tapered cosine electrojet results in typically lower GIC than the Top Hat electrojet306

(in Figure 8 (lower panels)).307

Although model outputs are described in terms of both east-west (‘X’) and north-308

south (‘Y’) scenarios, the dominant electrojet orientation is in the east-west (geomagnetic)309

direction, particularly over prolonged periods, though over shorter intervals there can be310

a strong north-south component. Any North-South component to the electrojet over the311

UK (e.g. during a westward travelling surge) will on average increase the GIC flowing in312

transformer earths. In places, this GIC can be an order of magnitude greater than that313

for an East-West oriented electrojet. Longer period variations with significant magnitude314

(e.g. > 3000nT/min) are physically less realistic, as noted in section 2.2.1, but could315

produce large GIC if realised.316

Analysis of the spatial distribution of the magnetic field strength during large storms317

(e.g. October 2003) suggests that a single electrojet model is often not correct. For318

example, Figure 4 shows a complex magnetic field distribution for 21:20 during the peak319

of the storm. As well as a large variation in strength, the spatial variation gives rise to the320

largest GIC occurring in the central parts of the UK (Figure 9), rather than in northern321

regions (as occur in Figure 8).322
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One of the more interesting aspects is that the largest GIC are positive (i.e. as the323

current enters the grid). This is due to the topology of the grid and the location of the324

nodes, as the current tends to flow from north to south. Due to the larger number of325

nodes in close proximity in the southern UK (where the population is densest), it appears326

the current flowing out is divided amongst a greater number of nodes.327

However, there are several limitations to this approach; for example, the geophysical328

model of the auroral electrojet is idealised, as it is assumed that the periodic variations in329

the auroral electrojet are concentrated into a discrete frequencies. This is unphysical but330

makes the problem manageable. We also assume that the electrojet parameters (location,331

width, strength) from the analysis of 30 years of data [Thomson et al., 2011] are reasonably332

representative during extreme events over longer time scales.333

The thin-sheet modelling approach has various physical constraints. Short period vari-334

ations of less than 30 seconds cannot be correctly modelled using the thin-sheet method335

[McKay , 2003], as the assumptions for deriving skin-depth breaks the approximation be-336

tween conductivity and the period of the electromagnetic wave. In reality, very rapid337

changes of the magnetic field do not penetrate deeply into the ground.338

The power grid itself changes over time and even the model here is simplified with339

respect to the contemporary network. However it should provide a good indication of grid340

response and our modelling does show that the same locations are consistently at risk from341

particularly large GIC. This can be used to inform network engineers of potential issues342

to monitor and allows planning and preparation to be made in the case of an extreme343

space weather event. During an actual event, measurement of the external magnetic field344
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from local magnetic observatories can be used to provide near real-time estimates of GIC345

from simulations based on the conductivity and network models used in this study.346

5. Conclusions

We have investigated the generation of GIC in the high-voltage power network in the347

UK in response to 100- and 200-year extreme geomagnetic storm scenarios. We have348

shown how a detailed model of the UK conductivity, based on the BGS 1:625000 geological349

database, can be used to generate surface electric field models from magnetic field changes350

induced by idealised auroral electrojet models.351

The GIC obtained show the theoretical response of the UK power system to an extreme352

space weather event. This will help transmission network engineers plan for and protect353

the grid from extreme events. Future improvements to the theoretical modelling will354

require validation of the outputs against real GIC measurements in the network during355

storm conditions.356
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Table 1. Estimated 100 and 200 year maxima in dH/dt and H between 55◦ and 60◦ geomag-

netic north summarised from Figures 5 and 6 of Thomson et al. [2011].

dH/dt (nT/min) H (nT)
100 Year Return 1000–4000 2000–5000
200 Year Return 1000–6000 3000–6500

Table 2. Static input fields to the conductivity model. (H0 of 6825 nT and 11375 nT are

regarded as relatively unlikely physical scenarios but are included for completeness.)

Return Period (Years) dH/dt (nT/min) 1/Frequency (min) Electrojet Field Strength H0 (nT)

30 1000 2 450
30 1000 10 2275
30 1000 30 3820
100 3000 2 1350
100 3000 10 (6825)
200 5000 2 2250
200 5000 10 (11375)

Vasseur, G., and P. Weidelt. (1977), Bimodal electromagnetic induction in non-uniform409

thin sheets with an application to the northern Pyrenean induction anomaly, Geophys.410

J. R. Astr. Soc., 51, 669–690.411

Viljanen, A., and L. Häkkinen (1997), Image Magnetometer Network, p. 111, ESA Publi-412

cations.413

Viljanen, A., H. Nevanlinna, K. Pajunpää, and A. Pulkkinen (2001), Time derivative414

of the horizontal geomagnetic field as an activity indicator, Annales Geophysicae, 19,415

1107–1118.416
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Table 3. Largest ten modelled GIC in the GB grid for a Tapered Cosine electrojet profile for

a given return period and orientation. X = North; Y = East. (Units: Amperes)

Return Period (Years) 30 100 200

X Y X Y X Y
1 91.9 77.0 275.6 230.9 459.3 384.8
2 72.6 68.8 217.9 206.5 363.1 344.1
3 53.1 56.5 159.2 169.5 265.4 282.6
4 40.5 43.8 121.4 131.5 202.3 219.1
5 39.6 38.3 118.8 115.0 198.0 191.7
6 37.6 31.7 112.7 -68.1 187.8 158.5
7 34.4 26.3 103.3 -74.3 172.1 131.7
8 33.2 -29.5 99.7 -88.6 -168.9 -147.7
9 -35.5 -43.8 -106.5 -131.5 -177.4 -219.1
10 -45.2 -55.5 -135.6 -166.5 -226.0 -277.5

Table 4. Largest ten modelled GIC in the GB grid for a Top Hat electrojet profile for a given

return period and orientation. (Units: Amperes)

Return Period (Years) 30 100 200
X Y X Y X Y

1 93.8 114.7 281.3 344.2 468.9 573.7
2 78.8 105.1 236.3 315.2 393.9 525.3
3 67.4 73.2 202.3 219.7 337.2 366.2
4 43.8 61.4 131.5 184.1 219.2 306.8
5 42.4 55.3 127.3 165.9 212.1 276.4
6 40.4 48.9 121.3 146.7 202.2 244.5
7 40.4 39.9 121.2 119.8 201.9 199.7
8 -37.1 -39.3 120.6 -117.9 200.9 -196.5
9 -42.4 -55.3 -127.3 -165.9 -212.1 -276.4
10 -55.7 -97.9 -167.2 -293.7 -278.7 -489.5
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Figure 1. Conductance model (in S, 10 km resolution) of the UK based on the inferred

conductivity of rock units in the British Geological Survey 1:625,000 geological database. Axis

coordinates are in British National Grid (Units: m). Image uses shaded-relief (from NE) to

emphasize gradients.
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Figure 2. The horizontal components of the magnetic field from an extreme electrojet config-

uration.
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Figure 3. Time series of the 5×-scaled horizontal components of the external magnetic field

from the Halloween storm of 30th October 2003 geomagnetic storm. The data come from the

following observatories and variometers in the region. CRK: Crooktree, DOB: Dombres, ESK:

Eskdalemuir, FAR: Faroes, HAD: Hartland, LER: Lerwick, WNG: Wingst, YOR: York, VAL:

Valentia.
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Figure 4. Snapshot of the horizontal components of the magnetic field from an extreme

(approximately ×5) version of the Halloween storm of 30th October 2003 geomagnetic storm.

The columns show the X component (left) and the Y component (right). Nominal times in UT.
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Figure 5. Network map of the National Grid GB high-voltage power grid containing 1317

transformers (dots) and 1178 connections (lines). Blue: 400 kV; red: 275 kV; green: 132 kV

(Scotland only). Note, many sites host multiple transformers and connecting power lines run in

parallel.

D R A F T March 15, 2013, 3:35pm D R A F T



X - 28 BEGGAN ET AL.: PREDICTION OF EXTREME GIC IN THE UK

1000 nT/min 3000 nT/min 5000 nT/min
T
o

p
H

a
t 

X
T
a

p
C

o
s
 X

T
o

p
H

a
t
Y

T
a

p
C

o
s

Y

−12 −10 −8 −6 −4 −2 0 2

50

51

52

53

54

55

56

57

58

59

60

0 1 2 3 4 5 6 7 8 9 10

Electric field (V/km)

−12 −10 −8 −6 −4 −2 0 2

50

51

52

53

54

55

56

57

58

59

60

−12 −10 −8 −6 −4 −2 0 2

50

51

52

53

54

55

56

57

58

59

60

−12 −10 −8 −6 −4 −2 0 2

50

51

52

53

54

55

56

57

58

59

60

−12 −10 −8 −6 −4 −2 0 2

50

51

52

53

54

55

56

57

58

59

60

−12 −10 −8 −6 −4 −2 0 2

50

51

52

53

54

55

56

57

58

59

60

−12 −10 −8 −6 −4 −2 0 2

50

51

52

53

54

55

56

57

58

59

60

−12 −10 −8 −6 −4 −2 0 2

50

51

52

53

54

55

56

57

58

59

60

−12 −10 −8 −6 −4 −2 0 2

50

51

52

53

54

55

56

57

58

59

60

−12 −10 −8 −6 −4 −2 0 2

50

51

52

53

54

55

56

57

58

59

60

−12 −10 −8 −6 −4 −2 0 2

50

51

52

53

54

55

56

57

58

59

60

−12 −10 −8 −6 −4 −2 0 2

50

51

52

53

54

55

56

57

58

59

60

Figure 6. Electric field induced in the surface for a period of 120 seconds due to an H0 field

of 450, 1350 and 2250 nT (left to right) from an auroral electrojet model with a Tapered Cosine

or Top Hat function in an East-West (X) or North-South (Y) aligned configuration.
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Figure 7. Electric field induced in the surface for period of 120 seconds due to magnetic fields

from an extreme version of the 30th October 2003 geomagnetic storm. The columns show the

Y component (left) and the X component (right). Nominal times (in UT) are illustrative, taken

frm the time profile of the October 2003 storm.
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Figure 8. GIC in the National Grid GB high-voltage network due to a 100-year extreme

scenario (120 second period) from an auroral electrojet with the following configurations: (a)

Tapered Cosine East-West aligned; (b) Tapered Cosine North-South aligned; (c) Top Hat East-

West aligned; (d) Top Hat North-South aligned. Blue indicates GIC directed into the grid, red

indicates GIC into the ground. Circle size represents size (relative to scale). Note, many sites

have multiple transformers present.
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Figure 9. Snapshots of GIC in the National Grid GB high-voltage network due to an extreme

storm scenario (approximately a factor of 5×) of the 30th October 2003 geomagnetic storm (due

to an electric field with a period of 120 seconds). (a) Time: 19.30hrs; (b) Time: 20.50hrs; (c)

Time: 21.20hrs; (d) Time: 22.50hrs; (see Figure 4). Blue indicated GIC directed into the grid,

red indicates GIC into the ground. Circle size represents size (relative to scale).
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Figure 10. Differences in GIC in the 400 and 275 kV network when the 132 kV network is

not included. GIC are due to a 100-year extreme scenario (120 second period) from an auroral

electrojet with a Tapered Cosine profile (c.f. Figure 8 (a) and (b)): (a) East-West alignment;

(b) North-South alignment; Circle size represents size (relative to scale).
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