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Analytical determination of power-law index for the 
Chapman et al. sandpile (FSOC) analog for 
magnetospheric activity- a renormalization-group 
analysis 

Sunny W. Y. Tam, • Tom Chang, • S.C. Chapman, 2 and N. W. Watkins 3 

Abstract. Recent suggestion and experimental in- 
dications that the magnetotail dynamics exhibit self- 
organized critical behavior have re-motivated interest 
in sandpile (avalanche) models. Some examples of spe- 
cific interest for geomagnetic activity have the prop- 
erty that internal avalanches exhibit inverse power law 
statistics whereas systemwide avalanches have a well- 
defined mean. Here, we apply the concept of renormal- 
ization group to such a model. We demonstrate that 
invariant analysis based on the renormalization-group 
theory can explain the power law distribution of energy 
release by internal avalanches in the large-scale regime 
of these systems. 

1. Introduction 

It has been suggested that the Earth's magnetotail 
may be described by the stochastic behavior of a nonlin- 
ear dynamical system near forced and/or self-organized 
criticality (FSOC)[Chang, 1992, 1998, 1999]. There 
is increasing experimental evidence consistent with this 
idea. For example, FSOC provides a possible explana- 
tion for the intermittent turbulence recently observed in 
the magnetotail [Lui et al., 1988; Lui, 1998; Angelopou- 
los et al., 1996, 1999]. In-situ magnetic field power spec- 
tra in the magnetotail [Hoshino et al., 1994] showed a 
power law dependence, which is one of the characteristic 
of the scale-free FSOC behavior. Moreover, analysis of a 
"burst size" distribution based on AE data also revealed 

a power law. This may indicate the absence of a charac- 
teristic scale within the magnetospheric system [Con- 
solini, 1997], or result from FSOC-like scale-free behav- 
ior in the turbulent solar wind [Freeman et al., 2000]. 
Lui et al. [2000] used POLAR UVI data to compile 
a probability distribution for the sizes, and integrated 
intensities (energy released) of patches of brightness in 
the nightside aurora, ranging from the smallest scales 
to substorm breakups. They found that the substorm 
associated events had a characteristic mean, whereas all 
other events showed power law probability distributions 
with index close to -1. Crucially the slope of this index 
is unchanged by the level of magnetospheric activity. 
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The possibility of FSOC in magnetospheric dynamics 
has re-motivated interest in sandpile (avalanche) mod- 
els. In such models, the probability distributions of 
energy released by avalanches, and of avalanche length, 
should display scale-free, inverse power law statistics 
that are a characteristic of FSOC [Bak ½t al., 1987; see 
also, Jensen, 1998]. In contrast to the scale-free behav- 
ior exhibited in the internal dynamics of the magneto- 
sphere, substorms, the events of energy release of the 
magnetotail have well-defined characteristic scales in 
both intensity and time, a specific class of sandpile mod- 
els is of particular relevance to the magnetospheric dy- 
namics. This class of models exhibits two scale-free re- 

gions in the statistics of its internal avalanches, whereas 
systemwide events have a well-defined mean [Chap- 
man ½t al., 1998]. Chapman ½t al. [1999] focused on 
the statistics of the internal events for large systems, 
and showed that there is a characteristic broken inverse 

power law signature in the statistics for energy release. 
These authors have also established numerically that 
the two regimes of different power law index correspond 
to small and large avalanches respectively. 

In this study, we utilize the concepts of renormaliza- 
tion group (RG) to analytically determine the power 
law index for the large internal avalanches in this class 
of models. 

2. Sandpile Model 

The avalanche ("sandpile") numerical algorithm on 
which this study is based is described in more detail 
in Chapman et al. [1999, and references therein]. We 
review it briefly here. The sandpile is represented by a 
one-dimensional grid of N equally spaced cells one unit 
apart, each with sand at height hj and local gradient 
zj - hj- hj+l. The sandpile is assumed to have an 
"angle of repose" below which it is always stable. The 
heights hj and the gradients zj are measured relative to 
the values at the angle of repose. Each cell is assigned 
a critical gradient z•; if the local gradient exceeds this, 
the sand is redistributed to neighboring cells and it- 
eration produces an avalanche. The critical gradients 
on each of the N nodes are selected randomly from a 
top-hat probability distribution P(z•). 

The system considered here is edge-driven. Sand is 
added to cell I at a rate g, and the length and time are 
normalized to this loading rate such that unit volume 
of sand is added in unit time. As soon as the critical 

gradient at cell i is exceeded, the sand is redistributed. 
The redistribution is instantaneous, and it conserves the 
total volume of sand. Sand will propagate to cell 2, and 
if the local gradient exceeds the critical value there, to 
cell 3, and so on. Within an avalanche, the sand is in- 
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stantaneously "flattened" back to the angle of repose 
(the regime is of uniform gradient). The propagation of 
an ongoing avalanche from one cell, k, to the next, k+ 1, 
thus occurs if hk - hk+l > z•. This results in sand being 
deposited to cell k + 1 from cells 1 through k, such that 
the new heights hi, h2,.-., hk+• are all equal. If now 
the critical value of the gradient at cell k q- 1 is exceeded, 
the avalanche continues to k + 2, and so on. This iter- 
ative procedure is repeated until the avalanche reaches 
a cell where the gradient is below critical. The critical 
gradients within the post-avalanche region are then re- 
generated from P(z]). More sand is added at cell 1 until 
it again becomes unstable, triggering another avalanche. 
An avalanche may be entirely an internal arrangement 
of sand, or may continue until it spreads across all N 
cells of the pile in which case the entire sandpile is emp- 
tied and returns to the angle of repose. Note that the 
system size N has to be finite under these redistribu- 
tion rules. If N were infinite, we would have to allow for 
avalanches of infinite length. Such an avalanche would 
take an infinite amount of time to complete the slide, 
thereby violating the assumption of an instantaneous 
redistribution process. 

The total energy in the system of the sandpile is: 

N 

E-Eh j . (1) 
j----1 

The energy dissipated by an avalanche, AXE, is just the 
difference in E before and after the event. Internal 

avalanches can also be characterized by their length, 
that is, the number of cells involved in the event. Chap- 
man et al. [1999] focused on the statistics of large (5000 
cell) systems. Their results showed that for slow fueling 
rate (g << (z*)), the normalized probability Pro(AXE) ex- 
hibits two distinct regimes' PB cr (AXE) -ø'65 at small 
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Figure 1. The probability distribution of avalanche 
lengths for four runs, corresponding to top-hat distri- 
butions P(zj) with mean value i and different widths. 
Marked with symbols are cases with widths 0.01 ([2), 
0.1 (,) and 1 (o), and marked with bars is the analyt- 
ically soluble case where the critical gradient takes a 
single value. 

AXE, but proportional to (AXE) -• at large AXE, with 
transition at avalanches of size L • 64 cells. Both the 

power law indices and the location of the transition in 
Pz(AXE) were shown to be robust against the parame- 
ter values of the top-hat distribution P(z•). Of impor- 
tance to magnetospheric dynamics, the system was also 
examined under fast fueling g > (z*) and the power law 
regime for large events was robust under these condi- 
tions [Chapman et al., 1999; Watkins et al., 1999]. 

In this study, we have obtained the statistics of the 
avalanches based on their size, and found the normal- 
ized probability Pœ(L) for avalanches of size L. Fig- 
ure i shows Pœ(L) for the same data in Chapman et al. 
[1999]; we see that Pœ exhibits a power law with index 
-1 at large L. 

A special case of the model has been discussed by 
Helander et al. [1999]. These authors showed that 
the problem is exactly solvable analytically for the case 
P(z•) = 5(z• - zo). The system exhibits only one 
regime: Pz cr (AXE) -•. It can also be shown that 
AE cr L for L >> 1, although it was not mentioned 
in their paper. One can therefore infer that Pœ cr L -• 
also in their model. In the following, we shall apply an 
RG analysis to demonstrate that the Pœ cr L- 1 behav- 
ior at large L is universal to a certain class of sandpile 
models. 

3. Renormalization-group Analysis 
The concept of RG involves the search for invariance 

properties under continued coarse-graining and rescal- 
ing of the system [Wilson and Kogut, 1974; Chang 
et al., 1992]. When one coarse-grain the system, and 
change the rescaling parameter (e.g. the size of the sys- 
tem), transformations involving certain parameters may 
arise. These transformations may cause some parame- 
ters to evolve non-linearly. That would imply certain 
fixed points in the parameter space. To study the be- 
havior of these parameters near the fixed point, one may 
linearize the transformations. That would allow one 

to find power law relations between these parameters 
and the scaling parameter about the fixed points. Once 
these power law indices are obtained, the behavior of the 
system near these fixed points can be understood, and 
useful information about the system may be extracted, 
such as the probability distribution of avalanche sizes. 
Here, we shall demonstrate step-by-step how this pro- 
cedure can be applied to the sandpile system described 
above. 

Let us consider an ongoing avalanche propagating 
from cells k- 1 to k in the sandpile system. We shall 
define 0k to be the conditional probability that this 
avalanche stops at cell k, given that it has already 
propagated there. The probability for this avalanche 
to reach k + 1 is thus 1- 0k, and that for it to reach 
k+2 would be (1-- 0k)(1-- 0k+•). Now we coarse- 
grain the system by combining every pair of cells, and 
renumber the cells (i.e. cells 1 and :2 become 1', cells 3 
and 4 become 2', etc.). This process reduces the size 
of the system, and the length of the avalanches by half 
(L -+ L/2). The rearrangement, in particular, com- 
bines cells k and k + i into l', where the new label l' 
numerically equals (k + 1)/2. The probability for the 
same avalanche to propagate from l' to the next cell 
(which consists of the original cell k + 2) is then 1 - Qt, 
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by definition. We can see that if the Q's are to be sim- 
ilarly defined in the rescaled system, we must set 

Q•, - Q• + Q•+• - Q•Q•+•. 

Because Qk and Qk+• are associated with adjacent cells, 
we expect their values to be similar. We thus drop their 
subscripts, and make them equal. Equation (2) then 
leads to a transformation 

n(Q) = - 

which would make the system look the same after a 
level of renormalization. Note that we may renormalize 
the system again. Every subsequent level requires the 
rescaling L --> L/2, and the transformation Q --> R(Q), 
in order to make the system look the same. The trans- 
formation supports two fixed points: Qa - 0, and 
Qa = 1. The case Q = 1 means that an avalanche 
will always stop propagating once it reaches a partic- 
ular cell; this case is irrelevant to the sandpile system. 
The case Q = 0, on the other hand, corresponds to the 
situation where an avalanche will always go on to the 
next cell. We shall argue that this case is relevant to 
the sandpile system by showing that Q• is small as k 
becomes large. 

For an ongoing avalanche to propagate from cells j- 1 
to j, the average height of the sand from 1 to j- 1 must 
exceed hj + z;. Therefore, for an avalanche to reach k, 
the following conditions must be satisfied: 

n 

•-•jzj > nz•, n- 1,...,k- 1. (4) 
j=l 

For this avalanche to stop at k, it requires: 

k 

_< zZ. 
j=l 

(5) 

Condition (5) can be combined with the n = k- 1 case 
in (4) to determine the range of z• that would satisfy 
the inequalities: 

, 1 •'-• , k-1 
z• _< zk- •Ejzj < z• k 

j=l 

- •z•_,. (6) 

Note that the middle or the right-hand side of (6) may 
be negative, depending on the random choices of z• and 
z•_•. In that case, condition (6) can never be satisfied 
(because z• _> 0). Otherwise, we can take the ensem- 
ble average of the right-hand side of (6) to estimate an 
upper bound for the range of z• that satisfies the con- 
dition. This estimated upper bound is {z*l/k , where 
(z*) = (z•) = (z•_•). Thus, the range of z• that con- 
tributes to the probability Qk decreases as k becomes 
larger. We therefore conclude that Q• is small for large 
k. Based on this argument, we expect that if N is suf- 
ficiently large, there exists a cell K < N such that for 
k > K, Q• is in the regime governed by the fixed point 

Now we renormalize the system, and study the be- 
havior near Q = 0. For each step of transformation, L 
and Q evolve as: 

L'=L/2, and Q'=2Q-Q2. (7) 

Near Q = 0, the last term in (7) is small. Thus, one 
can show that under the transformation, 

Q -• 1/L + 0(1/L2). (8) 

Or QL is an invariant under the RG transformation for 
large L and small Q. Note that this result is true only 
for avalanches of large L, where Q is close to the fixed 
point. In this regime, the probability that an avalanche 
which has reached a cell k will go no further is inversely 
proportional to the length of the avalanche itself. Of 
course, if the avalanche stops at cell k, its !ength will be 
k. We can thus express the result as Q• cr k -• +O(k-2). 
Now let us consider not only those avalanches that reach 
k, but avalanches of all lengths. An arbitrary avalanche 
that stops at k > K must have propagated through 
K, K+i,..., k-1. Hence, for k > K, we can normalize 
PL by the factor (1- Q•)... (1- QK-•), and write: 

PL(L = k) cr (1 - QK)(1 - QK+•) . . . (1 - Q•_•)Qk 
+ O(Q 

oc k -• + O(k-2), (9) 

as all the Q's in Eq. (9) are much smaller than unity. 
This result is equivalent to 

PL(L) cr L-• + O(L-2). (10) 

Therefore, for small Q• (or large L, see Fig. 1), our RG 
analysis has reproduced to the leading order the scal- 
ing law obtained by large-scale avalanche model calcu- 
lations. 

The analysis above, however, has yet to explain the 
power law behavior for PE. Here we look for a rela- 
tionship between AE and L for large-scale avalanches, 
and then determine the power law between PE and AE 
based on the results above. We recognize that the en- 
ergy of the system, given by Eq. (1), scales as the system 
size N. When we renormalize, the length of the system 
is halved. One can thus write the renormalized energy 
as E' = El2. To find AE, we simply take the difference 
in total energy before and after the avalanche. Thus, 
AE' = (AE)/2. We recognize that AE and L are re- 
duced by the same factor under renormalization. Thus, 
we establish that AE cr L, or equivalently, the factor 
(AE)/L is an invariant in the regime of large L. With 
Eq. (10), we can conclude that there is a regime for 
large AE where 

P•(AS) cr (AE)-• + O((AE)-2). (11) 

We note that the analysis above is quite robust. Sup- 
pose we use a slightly different coarse-graining process: 
Instead of combining every 2 cells in the system, we may 
perform the procedure with every 3, 4,...or M cells. 
Provided M is not too large, such that the Q's are es- 
sentially the same, the renormalization transformation 
for Q is then: 

RM(Q) - i - (1 - Q)M. (12) 

There are M fixed points for the transformation RM: 
Q a = 0 and Q a = I are still fixed points, while the other 
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M- 2 do not lie within the real line between 0 and 
1. These other fixed points are thus irrelevant. Near 
Q = 0, the linear behavior discussed above is retained. 
One can show that now Q• = MQ and L • = L/M. 
Therefore, Q L is still an invariant under the RG trans- 
formations in the regime of large L and small Q. Sim- 
ilarly, E • = ElM under the renormalization, implying 
(AE)/L to be an invariant in this regime. Therefore, 
the power law behaviors that we found earlier can be 
obtained from a more general analysis based on the RG 
theory. 

We should emphasize that the RG analysis above is 
quite general. I[ applies not only to one particular sand- 
pile model. In fact, Eq. (10) is true for any finite model 
where Q << 1 near the edge. Hence, the analysis is also 
applicable to models of higher dimensions, as long as 
the property involving Q is satisfied. 

4. Conclusion 

We have demonstrated that the concept of RG can 
be applied to a class of sandpile (avalanche) models. 
The FSOC behavior demonstrated by this class of sys- 
tems is of particular interest in the study of the mag- 
netospheric dynamics; statistics of internal avalanches 
in the models exhibits two scale-free regions, whereas 
that of systemwide events has a well-defined mean. RG 
analysis has allowed us to explain the power-law rela- 
tions that characterize the large-scale regime of inter- 
nal avalanches in the sandpile systems. The analysis is 
quite general, and is applicable to other sandpile mod- 
els, or perhaps even more complicated avalanche sys- 
tems that exhibit FSOC. In more general applications, 
recursion equations such as (3) and (12)may include 
more than one parameter and more complex nonlinear- 
ity, leading to power-law relations other than -1. 
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