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The response of tropical forests to climate change is a key unknown in climate projections 

for the 21st Century1,2. Coupled climate-carbon cycle models generally agree that carbon 

storage on land will increase as a result of direct CO2 effects on plant photosynthesis and 

water-use efficiency, but decrease due to climate change3. The balance between these 

effects varies markedly between models, leading to a range in projected change in carbon 

stored on tropical land of 330GtC by 2100. Explanations for this large uncertainty, range 

from differences in the predicted change in rainfall in Amazonia4,5, to variation in the 

responses of alternative vegetation models to warming6. Here we identify an emergent 

linear relationship across the ensemble of models7 between the sensitivity of tropical land-

carbon storage to warming and the sensitivity of the annual growth-rate in atmospheric 

CO2 to tropical temperature anomalies8. Combined with contemporary observations of 

atmospheric CO2 concentration and tropical temperature, this relationship provides a 

tight constraint on the sensitivity of tropical land carbon to climate change. We estimate a 

loss of tropical land carbon of 53+/-17 GtC per Kelvin of warming in the tropics (30oN-

30oS). Compared to the unconstrained ensemble of climate-carbon cycle projections, this 

indicates a much lower risk of Amazon forest dieback under CO2-induced climate9. 

However with no balancing CO2-fertilisation, this gives greater certainty that carbon 

would be lost from the tropical land under warming associated with non-CO2 climate 

forcing factors10,11. 

We utilise results from the Coupled Climate-Carbon Cycle Model Intercomparison Project3 

(C4MIP) focussing on changes in tropical land carbon storage in the latitudinal band from 30oN 

to 30oS. Although C4MIP included General Circulation Models (GCMs) and Earth System 

Models of Intermediate Complexity (EMICS), we limit our analysis to the GCMs since our 

emergent constraint requires models that generate interannual variability. The C4MIP 

experimental design3 forced models by the SRES A2 scenario12 of anthropogenic CO2 emissions 
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(including those due to land-use change). For each model an “uncoupled” simulation was 

carried-out in which the land and ocean carbon cycles were made insensitive to the climate 

change caused by the increase in atmospheric CO2. Comparison between the coupled and 

uncoupled simulations allows the direct impacts of CO2 on land and ocean carbon sinks to be 

separated from the impacts of climate change3,13. We test the emergent constraint derived from 

the C4MIP GCMs against results from the recent HadCM3 land carbon cycle ensemble14. 

Our emergent constraint could also be tested against the recent CMIP5 climate-carbon cycle 

models, which will appear in the IPCC 5th Assessment Report (AR5), However, the AR5 

models typically use prescribed concentrations of atmospheric CO215. This makes direct 

comparison to the observed interannual variability in the atmospheric CO2 concentration 

difficult. As such, the emergent constraint we present here is conditional on the simplistic 

representations of the carbon cycle in the C4MIP models.  

Table 1 summarises results from six C4MIP GCMs (A to F; Table 1) for 1960 to 2099.  For all 

models the impact of climate change on the carbon cycle results in a larger increase in 

atmospheric CO2 in the coupled versus uncoupled simulation. This amplification varies by an 

order of magnitude across the model ensemble (from an extra 18ppmv in model D to an extra 

212ppmv in model A). A large part of this uncertainty arises from differing responses of tropical 

land carbon to projected climate changes in each model. All models produce a significant 

increase in tropical land carbon storage in the uncoupled simulations due to the direct effects of 

CO2 on photosynthesis and water-use efficiency (+263 GtC in model F to +413 GtC in model 

C). The neglect of carbon-nitrogen interactions in this first generation of climate-carbon models 

is arguably a major limitation in the mid and high-latitudes16, but is much less problematic in 

tropical forests which are not typically nitrogen-limited17. Forest inventories are also consistent 

with a significant CO2 fertilization in the tropics18,19. Despite the reasonable agreement amongst 

models on the impact of CO2 fertilization, the fully coupled simulations produce very different 

changes in tropical land carbon storage from 1960 to 2099 (-11 GtC for model A to +319 GtC 

for model D). .  

Figure 1(a) represents the evolution of tropical land carbon storage in the C4MIP models, with 

the upper and lower estimates shown for both the coupled and uncoupled simulations. The 

lower estimate in the coupled simulation comes from the HadCM3LC model that projects 

Amazon forest dieback under CO2 induced climate change1,9,10. In this model tropical land 

carbon storage increases due to direct CO2 effects until around 2050, but then declines abruptly 

due to warming and drying in Amazonia9. This projection, along with recent extreme droughts 



  3 

in Amazonia20,21,22, suggests tropical forest dieback could be a high-impact tipping element in 

the Earth’s climate system23.  

To separate direct impacts of CO2 from impacts of climate change, we follow previous 

analyses3,13  in writing the change in tropical land carbon storage, CLT, in terms of the change in 

atmospheric CO2, Ca, and the change in tropical mean temperature, TT:  

 

where LT (GtC/ppmv) and LT (GtC/K) are the sensitivity of tropical land carbon storage to 

direct CO2 effects and climate change respectively. The uncoupled simulations  are used to 

estimate LT for each model, and then these values are used to isolate LT from the coupled 

simulations3,13 by subtracting off the direct CO2 effect.  Figure 1(b) is a scatter plot of {LT , LT} 

for each C4MIP model and the three HadCM3 ensemble members. Whereas the LT values span 

a factor of two from about 0.5 to 1 GtC/ppmv, the LT values range over a factor of more than 

four from -29 GtC/K (model F) to -133 GtC/K (model A), with a C4MIP mean of -69 GtC/K and 

a standard deviation of 39 GtC/K. This range is even larger if the HadCM3 ensemble members 

are included. We therefore focus on reducing the larger uncertainty in LT.  

Our inspiration for deriving a multi-model emergent constraint comes from a recent study which 

showed a strong relationship between the contemporary temperature sensitivity of seasonal 

snow-cover and the magnitude of the snow-albedo feedback, across more than twenty GCMs7. 

Since the seasonal cycle of snow-cover can be estimated from observations, this model-derived 

relationship converts the contemporary observations to a constraint on the size of the snow-

albedo feedback in the real climate system, for which there is no direct reliable measurement.  

Emergent constraints of this type utilise the often bewildering spread amongst Earth System 

model projections to reduce uncertainties in the sensitivities of the real Earth System to 

anthropogenic forcing. They are distinct and complementary to bottom-up constraints arising 

from process-based studies. 

It made sense a priori to look for an emergent constraint linking the sensitivity of tropical land 

carbon to interannual variability (IAV) in the growth-rate of atmospheric CO2. Tropical land 

carbon changes in response to climate through changes in the net land-atmosphere CO2 flux 

moving in and out of this carbon store. Critically, the sensitivity of this net tropical CO2 flux is 

revealed by the IAV of the CO2 growth-rate, as this is known to be dominated by the response 
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of the tropical land carbon cycle to climatic anomalies (Supplementary Material, Figure S1a) 

such as the El Nino Southern Oscillation8,24,25. Hence, some relationship between IAV of CO2 

and the longer-term sensitivity of tropical land carbon storage to climate change (LT) is to be 

expected, so long as processes which are not evident in the short-term variation of the CO2 

fluxes (e.g. forest dynamics or changes in long-lived soil carbon pools) do not dominate the 

long-term response. This is our working hypothesis to be tested against the C4MIP models 

which include a range of representations of slow vegetation and soil processes3. 

Figure 2(a) compares the observed IAV of the growth-rate of global atmospheric CO226,27 to the 

IAV of the annual mean tropical temperature28. In both cases we have chosen observational 

variables (global mean atmospheric CO2 and mean land plus ocean temperature between 30oN 

and 30oS) for consistency with the variables available from the C4MIP models. Aside from the 

years immediately after the volcanic eruptions24 of Mt Agung, El Chichon, and Pinatubo, IAV 

in the growth-rate of atmospheric CO2 is linearly correlated with the IAV of the tropical 

temperature (r=0.65, p<0.0001) (Figure 2b), with a best-fit “IAV sensitivity” of 5.1+/-0.9 

GtC/yr/K. Excluding these volcano-affected years has a less than 5% impact on the best-fit 

sensitivity, but avoids the complication of diffuse-light fertilization of plant growth29 which is 

not included in any of the C4MIP models.We also find a similar sensitivity regardless of which 

tropical temperature reconstruction we use. There is a greater sensitivity to the choice of the 

global atmospheric CO2 dataset, but this does not affect our overall conclusions (Supplementary 

Material, Table S1). 

A similar calculation is made for each of the coupled climate-carbon cycle models, to derive the 

sensitivity of the CO2 growth-rate to tropical temperature for the period 1960-2010. Compared 

to the observational data, models tend to overestimate the IAV of the tropical temperature by up 

to a factor of two, and overestimate the IAV of the CO2 growth-rate by up to a factor of three. 

The correlation between these variables is underestimated in some models (model F, B and D) 

and over-estimated in others (model A, E and C). Hence, IAV sensitivity varies  across the 

C4MIP model ensemble from 2.9+/-1.4 GtC/yr/K (model F) to 9.7+/-0.7 GtC/yr/K (model A), 

with most of this range being due to differences in the sensitivity of heterotrophic respiration to 

climate (see Supplementary Material, Figure S1b). The three HadCM3 ensemble members, 

which were produced by perturbing only parameters in the land carbon cycle component of the 

model13, span an even larger range (5.6 to 14.4 GtC/yr/K) - suggesting that uncertainties in the 

modelling of the tropical land carbon cycle are critical. 
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Most importantly, these differing IAV sensitivities are strongly-correlated (r=0.98, p=0.0005) 

with variations in LT across C4MIP models (black letters; Figure 3(a)). The dashed red line in 

Figure 3(a) shows the best-fit straight-line relating these variables for the six C4MIP GCMs 

(although in principle a well-defined non-linear function would also yield an emergent 

constraint). Red letters in Figure 3(a) show how well this relationship would have predicted the 

variation in LT for the three HadCM3 ensemble members given the IAV sensitivity of each.  

Note that two of the HadCM3 variants have LT values beyond the range of the C4MIP models, 

and yet the extrapolated straight-line is able to fit these outliers. The dotted vertical black lines 

in Figure 3(a) show the IAV sensitivity (plus and minus one standard deviation), as previously 

estimated from the contemporary observations, from which we derive tighter bounds on LT.  

With the model-derived relationship between LT and the IAV sensitivity, we can use the 

observational constraint to estimate a probability density function (PDF) for LT (Methods). 

Figure 3(b) compares this to the PDF arising from assuming all C4MIP models are equally 

likely to be true and come from an underlying Gaussian distribution (red line). The emergent 

constraint from the IAV sensitivity of the CO2 growth-rate sharpens the PDF of LT and moves 

its peak to a less negative value   (53+/-17 as opposed to 69 +/-39 GtC/yr/K). The application of 

the IAV constraint reduces the estimated probability of LT values more negative than -100 

GtC/K, typically associated with models that project CO2-induced tropical forest dieback, by 

almost two orders of magnitude from 21% to 0.24%.  

The IAV constraint also implies greater confidence that tropical land carbon is vulnerable to 

warming caused by non-CO2 forcing factors11. Remaining uncertainties for tropical land 

climate-carbon cycle feedbacks are therefore the magnitude of long-term CO2-fertilization 

effects in the tropics, and the extent to which future climate change will be caused by non-CO2 

factors. 

Methods Summary  

We used results from six of the eleven models that took part in the Coupled Climate-Carbon 

Cycle Model Intercomparison Project (C4MIP)3. The excluded five models consisted of four 

Earth System Models of Intermediate Complexity (EMICs) – which do not typically generate 

internal variability as required to define the interannual sensitivity of the CO2 growth-rate to 

tropical temperature anomalies, and one GCM (LLNL) - which reported zonal mean land 

temperatures rather than zonal mean (land and ocean) temperatures. Outputs from the remaining 

six models were reported as annual means for each 30o latitudinal band (available via: 
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https://c4mip.lsce.ipsl.fr/diagnostics_phase2.html ). We combined the outputs from the 30oN-

0oN and 0oS-30oS bands to define the projected changes for the 30oN-30oS “tropical” band.  

Models G, H and I in this study, which are used to test the emergent constraint derived from the 

C4MIP models, come from a land carbon cycle ensemble carried out with the HadCM3C 

model14. HadCM3C is similar to C4MIP model A (HadCM3LC) but includes a higher resolution 

ocean model (1.25o x 1.25o rather than 2.5o x 3.75o) and also interactive atmospheric sulphur 

cycle chemistry. Seventeen HadCM3C ensemble members were defined by perturbations to key 

land-surface parameters including leaf nitrogen concentrations and the temperature sensitivities 

of photosynthesis and soil respiration14.  All ensemble members were driven by the SRES A1B 

emissions scenarios, including changes in non-CO2 forcing factors (most notably changes in 

anthropogenic sulphate aerosols10). Uncoupled simulations were only carried-out for the 

standard parameter values (HadCM3-st), and the ensembles members leading to the lowest 

(HadCM3-a) and highest (HadCM3-h) global carbon cycle feedbacks. We therefore focussed on 

these three variants of HadCM3C for this study. 

The analysis of the model outputs and observational data, and the statistical methods employed 

are outlined in the online “Methods”. 

 

References 
1. Cox, P.M., Betts, R.A., Jones, C.D., Spall, S.A. & Totterdell, I.J.. Acceleration of global 

warming due to carbon cycle feedbacks in a coupled climate model. Nature, 408, 184-187 

(2000). 

2. Malhi, Y., et al. Climate change, deforestation, and the fate of the Amazon. Science, 319, 

169-172 (2008). 

3. Friedlingstein, P. et al.  Climate-carbon cycle feedback analysis: Results from the C4MIP 

model intercomparison. J. Climate, 19, 3337-3353 (2006).  

4. Jupp, T.E., et al. Development of probability density functions for future Amazonian 

rainfall. New Phytologist, 18,  682-693 (2010).  

5. Rammig, A., et al. Estimating the risk of Amazonian forest dieback. New Phytologist, 187, 

694-706 (2010). Galbraith, D., et al.  

6. Galbraith, D., et al. Multiple mechanisms of Amazonian forest biomass losses in three 

dynamic global vegetation models under climate change.  New Phytologist, 187, 647-665 

(2010).  

7. Hall, A. and Qu, X. Using the current seasonal cycle to constrain snow albedo feedback in 

future climate change. Geophysical Research Letters, 33, L03502 (2006). 

8. Bacastow, R.. Modulation of atmospheric carbon dioxide by the Southern Oscillation. 

Nature, 261, 116-118 (1976). 

https://c4mip.lsce.ipsl.fr/diagnostics_phase2.html
http://www.nature.com/cgi-taf/DynaPage.taf?file=/nature/journal/v408/n6809/full/408184a0_fs.html


  7 

9. Cox, P.M. et al. Amazon dieback under climate-carbon cycle projections for the 21st 

century. Theoretical and Applied Climatology, 78, 137-156 (2004). 

10. Cox, P.M., et al. Increasing risk of Amazonian drought due to decreasing aerosol pollution. 

Nature, 453, 212-216 (2008).   

11. Huntingford, C., et al. Highly contrasting effects of different climate forcing agents on 

ecosystem services. Phil. Trans. Roy. Soc. A., 369, 2026-2037 (2011).  

12. Nakicenovic, N. et al.. Special Report on Emissions Scenarios, Summary for Policy Makers, 

Intergovernmental Panel on Climate Change, Geneva, Switzerland (2000).  

13. Friedlingstein, P., Defresne J.-L., Cox P.M. & Rayner P. How positive is the feedback 

between climate change and the carbon cycle? Tellus , 55B , 692-700 (2003).  

14. Booth, B.B.B., et al.  High sensitivity of future global warming to land carbon cycle 

processes. Environmental Research Letters (in press). 

15. Moss, R.H., et al. The next generation of scenarios for climate change research and 

assessment. Nature, 463, 747-756 (2010). 

16. Hungate, B.A., et al. Nitrogen and climate change. Science, 302, 1512-1513 (2003). 

17. Zaehle, S., Friedlingstein, P. & Friend, A.D. Terrestrial nitrogen feedbacks may accelerate 

future climate change. Geophysical Research Letters, 37, L01401 (2010). 

18. Baker, T.R., et al. Increasing biomass in Amazonian forest plots. Phil. Trans. Roy. Soc. B, 

359, 353-363 (2004). 

19. Lewis, S.L., et al. Increasing carbon storage in intact African tropical forest. Nature, 457, 

1003-U3 (2009). 

20. Marengo, J.A., et al.The drought of Amazonia in 2005. Journal of Climate, 21, 495-516 

(2008).  

21. Marengo, J.A., et al. The drought of 2010 in the context of historical droughts in the 

Amazon region, Geophys. Res. Lett., 38, L12703, doi:10.1029/2011GL047436 (2011).  

22. Phillips, O., et al. Drought Sensitivity of the Amazon Rainforest. Science, 323, 1344-1347 

(2009).  

23. Lenton, T.M., et al. Tipping elements in the Earth’s climate system. Proc. Nat. Acad. Sci., 

105, 786-793 (2008).  

24. Jones, C. D., & Cox, P.M. On the significance of atmospheric CO2 growth rate anomalies in 

2002–2003.Geophys. Res. Lett., 32, L14816, doi:10.1029/2005GL023027 (2005). 

25. Denman, K.L., Brasseur, G., et al. Couplings between changes in the climate system and 

biogeochemistry. In: Climate Change 2007: The Physical Science Basis. Contribution of 

Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on 

Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, 



  8 

M.Tignor and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, United 

Kingdom and New York, NY, USA (2007).  

26. Masarie, K.A. & Tans, P.P. Extension and integration of atmospheric carbon dioxide data 

into a globally consistent measurement record.  J. Geophys. Res., 100, 11593-11610 (1995). 

27. M. Meinshausen, et al. The RCP greenhouse gas concentrations and their extension from 

1765 to 2500. Climatic Change, 109, 213-241 (2011).   

28. Smith, T.M., et al. Improvements to NOAA's historical merged land-ocean surface 

temperature analysis (1880-2006). J. Climate, 21, 2283-2296 (2008). 

29. Mercado, L.M., et al., 2009. Impact of changes in diffuse radiation on the global land 

carbon sink. Nature, 458, 1014-1018. 



  9 

 

 

Supplementary Information is linked to the online version of the paper at 

www.nature.com/nature. 

Acknowledgements. The authors acknowledge funding from the NERC NCEO programme 

(P.M.C. and C.M.L.);  the EU Greencycles II project  (P.M.C. and P.F.);  the EU FP7 

“CARBONES” project (D.P. and C.D.J.); the Joint DECC/Defra Met Office 

Hadley Centre Climate Programme (GA01101)  (D.P., B.B.B.B and C.J.); the CEH Science 

Budget (C.H.) and the Newton Institute programme on “Mathematical and Statistical 

Approaches to Climate Modelling and Prediction”  during which this research was first 

formulated (P.M.C., B.B.B.B. and C.H.). We also acknowledge the modelling groups that 

provided results to the Coupled Climate Carbon Cycle Model Intercomparison Project (C4MIP). 

Author Contributions.  P.M.C. led the study and drafted the manuscript. D.P. assisted with the 

statistical analysis, especially the estimation of the observationally-constrained PDF in Figure 

3(b). P.F. provided data and guidance on the C4MIP model ensemble, and B.B.B.B. did likewise 

for the HadCM3 carbon cycle ensemble. C.H. processed observational climate datasets to 

produce time-series of tropical-mean temperature anomalies. C.J., P.F. and C.H. have been 

central to discussions over many years concerning the relationship between the interannual 

variability and the long-term sensitivity of the land carbon cycle to climate change – on which 

this study is based. C.M.L. provided invaluable insights on the interpretation of the regression 

line in Figure 3(a). All co-authors commented-on and provided edits to the original manuscript. 

Author Information. Reprints and permissions information is available at 

www.nature.com/reprints. The authors have no competing financial interests. Correspondence 

and requests for materials should be addressed to P.M.C. (p.m.cox@exeter.ac.uk)  

 

 

 

 

 

 

 



  10 

 

Table and Figure Captions 

Table 1: Changes in atmospheric CO2, tropical land carbon and tropical near-surface air 

temperature (30oN-30oS), as simulated by the 9 climate-carbon GCMs analysed in this study. 

Models A to F are from the C4MIP study3, which prescribed the SRES A1B CO2 emissions 

scenario. For these models the changes are calculated over the period 1960 to 2099. Models G 

to I are from a land carbon cycle parameter ensemble carried-out with the HadCM3 model14 

These latter runs were only out to 2080, so differences here are for 1960 to 2080. In all cases 

model runs were carried-out both including and excluding climate effects on the carbon cycle 

(“Coupled” and “Uncoup.” respectively), so that the impacts of climate-carbon cycle feedbacks 

could be diagnosed. 

Figure 1: Projected changes in land carbon storage in the tropics from coupled climate-carbon 

cycle models. (a) upper and lower estimates from the C4MIP models3 (A-F in table 1) for 

uncoupled (black lines) and coupled simulations (red lines); (b) impact of changes in tropical 

temperature versus impact of changes in atmospheric CO2, for the C4MIP models (black letters) 

and three variants of the HadCM3C model14  (red letters). The black dashed horizontal lines 

represent the new constraint presented in this study. 

Figure 2: Observed relationship between interannual variations in the growth-rate of 

atmospheric CO2 and inter-annual variations in the annual mean tropical temperature (30oN-

30oS).  (a)  annual anomalies in CO2 growth-rate (black) and tropical temperature (red) versus 

year; (b) sensitivity of CO2 growth-rate to tropical temperature, with numbers representing the 

individual years in panel (a) and the red dashed-line showing the best-fit straight-line which has 

a gradient of 5.1 +/- 0.9 GtC/yr/K .  The years in red were not included in this fit as these years 

directly followed major volcanic perturbations to the climate. 

Figure 3: Emergent constraint on the sensitivity of tropical land carbon to climate change. (a) 

Climate sensitivity of tropical land-carbon (LT) versus the sensitivity of the CO2 growth-rate to 

tropical temperature, for each of the models shown in Table 1. The red-dotted line shows the 

best-fit straight-line across the C4MIP models (black letters). The red letters represent a test of 

this relationship against the three HadCM3C ensemble members. The vertical dot-dashed line 

indicates the constraint on the observed IAV of the CO2 growth-rate derived from Figure 2(b). 

(b) Probability density function (PDF) for the climate sensitivity of tropical land-carbon (LT). 

The black line was derived by applying the IAV constraint to the across-model relationship 

shown in panel (a).  The red line shows the “prior” PDF that arises from assuming that all of the 

C4MIP models are equally likely to be correct and that they come from a Gaussian distribution. 
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Methods 

1 Choice of Models and Variables 

In order to make use of the observed interannual variation in atmospheric CO2 as a constraint, 

we need climate-carbon cycle simulations that model CO2 as a “free” fully prognostic variable. 

We therefore make use of the C4MIP simulations3 which used prescribed SRES A1B CO2 

emissions but calculated the global mean atmospheric CO2 concentration interactively. We have 

augmented the C4MIP results with free CO2 runs from a carbon cycle parameter ensemble with 

carried-out with HadCM314. These HadCM3 runs allow the emergent constraint derived from 

the C4MIP models to be tested over a wide range of possible future carbon losses from tropical 

land. 

In order to derive an emergent constraint it is of paramount importance that equivalent variables 

are compared from the models and observations. Therefore since the C4MIP models reported 

global mean atmospheric CO2, and mean land plus ocean near-surface temperatures, we 

compute the same diagnostics from the observational datasets (see point 3. below).  

2 Diagnosis of LT 

The sensitivity of tropical land carbon storage to temperature, LT, is calculated as in previous 

studies3,13. Firstly, the sensitivity of tropical land carbon storage to direct CO2 effects, as given 

by the parameter LT, is diagnosed from the uncoupled simulation for each model: 

 

where  is the change in tropical land carbon storage (in GtC), and 

 is the change in global atmospheric CO2 concentration in (ppmv), in 

both cases between time  and time  for the uncoupled simulation (denoted by the superscript 

“u”). 

This value of LT is then used to isolate from the coupled simulation of each model, using 

the equation: 

 

where  is the change in tropical land carbon storage (in GtC), 

 is the change in global atmospheric CO2 concentration in (ppmv),  and 
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  is the change in mean tropical (30oN-30oS) temperature (in K), in all 

cases between time  and time  for the coupled simulation (denoted by the superscript “c”). 

We define the changes relative to 1960 in all cases (i.e.  = 1960), and use the longest possible 

common simulation periods over which to diagnose and for the C4MIP models (  = 

2099) and the HadCM3C ensemble members (  = 2080), respectively. 

 

3 Sensitivity of CO2 Growth-Rate Anomaly to Tropical Temperature Anomaly 

The sensitivity of the atmospheric CO2 growth-rate to tropical temperature is calculated over the 

period 1960 to 2010 inclusive, for the observations and all models. However, for the 

observational data, and the HadCM3C simulations - which included volcanoes, we exclude the 

years (1963, 1964, 1982, 1983, 1991, 1992) which were heavily-influenced by the volcanic 

eruptions24 of Mt Agung (in 1963), El Chichon (in 1982), and Pinatubo (in 1991). There were 

two reasons to remove volcanoes. Firstly, not all the models in our ensembles include the 

climatic effects of volcanic eruptions. Secondly, volcanoes are believed to impact on the land 

carbon sink through the effects of diffuse radiation fertilization29, but these effects are not 

included in the generation of models considered here. We therefore removed “volcano years” 

from the observations to maximise consistency between models and observations. 

For comparability with the outputs available from the C4MIP models we also use the global CO2 

concentration, and the mean tropical temperature (30oN - 30oS) including both land and ocean 

points.  

As in previous studies24, the annual CO2 growth-rate for the nth year, , is defined as 

the difference between the annual mean CO2 concentrations for the nth and (n-1)th years: 

 

 

The CO2 growth-rate is therefore centred in time at the beginning of year n.  In order to align the 

tropical temperature anomalies we take the associated tropical mean temperature, , to be 

the mean of the annual mean tropical temperatures for year n and year n-1: 
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For all model and observational time-series, the annual CO2 growth-rate, , and the 

associated mean tropical temperature, , were de-trended using an 11-year running mean, with 

the residuals defining the annual anomalies (see Supplementary Material, Figure S2). In each 

case a least-squares linear regression was found between these anomalies in the CO2 growth-rate 

and the anomalies in the tropical temperature, with the gradient of the best-fit defining the IAV 

Sensitivity (see point 5. below). 

The IAV sensitivity was calculated for a range of datasets of tropical temperature and 

atmospheric CO2 (see point 4. below), so as to explore the uncertainty in the estimate of the 

IAV sensitivity arising from uncertainties in the observational data. These different estimates 

are listed in Supplementary Material, Table S1.  

In order to isolate the separate contributions of the tropical Net Primary Productivity (NPP) and 

Soil Respiration, similar regressions against tropical temperature anomalies were carried out 

separately for each of these fluxes as diagnosed from the C4MIP models (see Suppl. Mat., 

Figure S1). This showed that the IAV sensitivity across the model ensemble is correlated with 

the response of tropical Soil Respiration (Figure S1(b)), rather than NPP (Figure S1(c)). By 

contrast, the wide-range of longer-term projections of changes in land carbon storage is known 

to be in large part due to the different responses of NPP to climate change3. 

 

4 Observational Data 

Observed annual global CO2 concentration26 for 1980 to 2010 was downloaded from the NOAA 

website (http://www.esrl.noaa.gov/gmd/ccgg/trends/global.html#global_data).  

Since this dataset only covers the period from 1980, global CO2 concentrations for 1960 to 1979 

were taken from the historical datasets derived for use with the RCP scenarios27  

(http://www.pik-potsdam.de/~mmalte/rcps/index.htm#). 

Tropical (30oN-30oS) annual mean temperatures were calculated from NCDC data28 

(http://www.ncdc.noaa.gov/ghcnm/maps.php), and also from the CRU/Met Office HadCRU3 

dataset (http://www.metoffice.gov.uk/hadobs/hadcrut3/ ), and the GISS dataset  

(http://data.giss.nasa.gov/gistemp/). 

 

5 Least Squares Linear Regression 

Least Squares linear regressions were calculated based on well-established formulae (see for 

example http://mathworld.wolfram.com/LeastSquaresFitting.html). The linear regression, , 

http://www.esrl.noaa.gov/gmd/ccgg/trends/global.html#global_data
http://www.pik-potsdam.de/~mmalte/rcps/index.htm
https://legacy.exeter.ac.uk/owa/redir.aspx?C=b09e4e582cdd49e5bea2278a3a834847&URL=http%3a%2f%2fwww.ncdc.noaa.gov%2fghcnm%2fmaps.php
https://legacy.exeter.ac.uk/owa/pmc205@isad.isadroot.ex.ac.uk/redir.aspx?C=373db1fc4ab7411eab43e0e6f7942ae1&URL=http%3a%2f%2fwww.metoffice.gov.uk%2fhadobs%2fhadcrut3%2f
http://data.giss.nasa.gov/gistemp/
http://mathworld.wolfram.com/LeastSquaresFitting.html
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between a time-series given by and a time-series given by  is defined by a gradient  and 

intercept : 

 

Minimising the least squares error for   involves minimising: 

 

where  is the number of data points in each time-series. In this case the best-fit gradient is 

given by: 

 

Here = is the variance of  and =  is the 

covariance of the  time-series - with means of  and  respectively. 

The standard error of  is given by: 

 

which defines a Gaussian Probability Density for : 

 

Finally the “Prediction Error” of the regression is the following function of : 

 

This expression defines contours of equal probability density around the best-fit linear 

regression, that represent the probability density of  given : 

 

where  , as above. 

6 Calculation of Probability Density Function for LT 
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The emergent constraint derived in this study is a linear regression across the C4MIP GCMs 

between the temperature sensitivity of land carbon storage in the tropics, LT, and the sensitivity 

of the annual growth-rate in atmospheric CO2 to the annual tropical temperature anomaly, which 

we label here as CO2. In the context of the least squares linear regression presented above, LT is 

equivalent to , and CO2 is equivalent to .  

The linear regression therefore provides an equation for the probability of LT given CO2 (i.e. the 

equation for  above). Figure S3 (Supplementary Material) shows the best-fit straight-line 

(thick dashed red line), and the plus and minus prediction error contours (as thin dashed red 

lines) on the same scales as Figure 3a. 

In addition, the linear regression between the observed annual anomalies in the atmospheric 

CO2 growth-rate25,26 and the tropical mean temperature27 provides an observation-based PDF for 

CO2 (via the equation for  above). The best-fit CO2 from these observations is shown by the 

thick dashed vertical line in Figure S3, and the uncertainty in this fit is shown by the thin dashed 

vertical lines representing plus and minus one standard error about this most likely value. 

Given these two PDFs,   and , the PDF for LT is : 

 

The integrand  is shown by the continuous black contours in Figure S3, 

and the integral is the basis for the black PDF for shown in Figure 3b. 

 



 

 

  Change in  
Global Atmospheric 

CO2 
(ppmv) 

Change in  
Tropical Land Carbon 

(GtC) 

Change in 
Tropical 

Temperature 
(K) 

 Model Coupled Uncoup. Coupled Uncoup.  

A HadCM3LC 689 477 -11 354 3.93 

B IPSL 453 381 177 365 2.70 

C MPI 524 443 242 413 4.36 
D CCSM1 483 465 319 364 1.53 
E FRCGC 589 465 118 271 3.61 

F LOOP 489 460 185 263 3.30 

G HadCM3C-st 599 331 -148 317 4.41 
H HadCM3C-a 445 333 -6 168 3.76 

I HadCM3C-h 589 246 -165 251 4.08 
 

Table 1: Changes in atmospheric CO2, tropical land carbon and tropical near-surface air 

temperature (30oN-30oS), as simulated by the 9 climate-carbon GCMs analysed in this study. 

Models A to F are from the C4MIP study3, which prescribed the SRES A2 CO2 emissions 

scenario. For these models the changes are calculated over the period 1960 to 2099. Models G 

to I are from a land carbon cycle parameter ensemble carried-out with the HadCM3 model14. 

These latter runs were only out to 2080, so differences here are for 1960 to 2080. In all cases 

model runs were carried-out both including and excluding climate effects on the carbon cycle 

(“Coupled” and “Uncoup.” respectively), so that the impacts of climate-carbon cycle feedbacks 

could be diagnosed. 
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