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[1] We propose a novel method to investigate the statistical
significance of trends of extreme values in serially correlated
time series based on quantile regression and surrogate data.
This method has the advantage over traditional extreme
value methods that it takes into account all data points from
the time series. We test this method on a temperature time
series from the Antarctic Peninsula (Faraday/Vernadsky
station), which is highly non-Gaussian and serially corre-
lated. We find evidence for a significant upward nonlinear
trend in the extreme cold temperatures (95th percentile) and
that most of the observed warming at Faraday/Vernadsky
is due to a reduction in cold extremes. Quantile regres-
sion can also be used for multivariate regression with
external factors. This multivariate regression analysis sug-
gests that CO2 emissions play a large role in the observed
trend at Faraday/Vernadsky while also the ozone hole
and solar fluctuations play some role. Citation: Franzke, C.
(2013), A novel method to test for significant trends in extreme
values in serially dependent time series, Geophys. Res. Lett., 40,
1391–1395, doi:10.1002/grl.50301.

1. Introduction
[2] Global climate change affects surface climate in many

different and nonlinear ways. Many studies show that first
order global warming mainly leads to an increase to mean
temperature and, to a lesser extent, to changes of the shape
of the distribution around this changing mean. However,
changes especially in the shape and extremes can have
serious effects on society and ecosystems.

[3] Previous studies have mainly concentrated on trends
in the mean and, to a lesser extent, on extremes. The lat-
ter is usually done using extreme value theory by fitting
a generalized extreme value (GEV) distribution with time
dependent parameters to annual maxima or by using a
threshold exceedance approach [Coles, 2001]. These two
approaches need to be adjusted when using serially cor-
related data [Coles, 2001], and most environmental time
series are serially correlated. Furthermore, it has also to
be demonstrated that the observed data indeed follow an
extreme value distribution. Here, we propose to use quan-
tile regression for trend identification in a given percentile
of a serially correlated time series, which does not make any
assumptions about the distribution of the data.

1British Antarctic Survey, Natural Environment Research Council,
Cambridge, UK.

Corresponding author: C. Franzke, British Antarctic Survey, Natural
Environment Research Council, High Cross, Madingley Road, Cambridge,
UK. (chan1@bas.ac.uk)

©2013. American Geophysical Union. All Rights Reserved.
0094-8276/13/10.1002/grl.50301

[4] The identification of trends in environmental data
is impeded because even very simple stationary stochastic
processes can exhibit apparent trends over rather long
periods of time; so-called stochastic trends [Fatichi
et al., 2009; Barbosa, 2011; Franzke, 2010, 2012]. In
climate research, one is mainly interested in the identifica-
tion of trends driven by external forcings like greenhouse
gas emissions or solar forcing. These trends are called deter-
ministic trends. In order to distinguish between those two
kinds of trends, one has to estimate how often a statis-
tical model for the intrinsic climate fluctuations is able
to produce trends, which are larger than the observed
trend. The autocorrelation function is one critical compo-
nent for the duration and amplitude of stochastic trends.
In order to test for the presence of deterministic trends,
we require statistical models, which capture very well the
observed autocorrelation function and amplitude distribu-
tion. Most trends in climate are being tested against an
autoregressive process null hypothesis, which is Gaussian
distributed and thus not suitable for testing for trends in
extreme values.

[5] Here, we will show evidence from a long tempera-
ture record from the Antarctic station Faraday/Vernadsky
[Turner et al., 2004, 2005] that global warming can affect
surface temperatures by mainly reducing cold temperature
extremes while not simultaneously increasing warm temper-
atures at the same rate. We do this by quantile regression of
the fifth, 50th and 95th percentiles. We propose to use a non-
parametric surrogate data method to assess the statistical
significance of the changes in the extremes whose surrogate
time series simultaneously conserve both the autocorrelation
function and distribution of the observed time series. We
demonstrate that our novel method finds significant trends
in cold extremes, which explains a large part of the observed
warming at this station. We also show that quantile regres-
sion can be used to identify likely external drivers of the
observed trends.

2. Data and Methods
[6] To study the changes in extremes, which we define

in this study as either the fifth or 95th percentile, we use
the well established method of quantile regression [Koenker
and Hallock, 2001; Yu et al., 2003; Hannachi, 2006;
Barbosa et al., 2011; Donner et al., 2012]. Quantile regres-
sion is a regression method, which approximates quantiles
of the response variable. Quantile regression is a problem in
linear programming, and the simplex algorithm can be used
to solve it [Koenker and Hallock, 2001]. For example, linear
quantile regression minimizes the functional

nX

i=1
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Figure 1. (a) Autocorrelation function and (b) probability
density function of the Faraday/Vernadsky station tempera-
ture (black line) and of 1000 surrogates (red lines).

where �p(u) = puI[0,1)(u) – (1 – p)uI(–1,0)(u) is the so-called
check function, IA(u) = 1 if u 2 A and otherwise 0 is the indi-
cator function, n is the length of the time series y, x = (1, x)T,
x is a vector of the time points, but can also contain external
factors, ˇ denotes the parameter vector to be estimated and p
the quantile (see Yu et al. [2003] for more details). Quantile

regression can also be used to fit higher order polynomial
functions [Koenker and Hallock, 2001].

[7] To test the statistical significance of the quantile
trends, we use the surrogate data generating method pro-
posed by Schreiber and Schmitz [1996]. This method gen-
erates surrogate time series with the same autocorrelation
function and the same probability density function (PDF).
This algorithm proceeds as follows: (i) sorted lists of the
time series values and the squared Fourier amplitudes are
stored, (ii) the time series is randomly shuffled without
replacement, (iii) the shuffled time series gets Fourier trans-
formed and then the squared amplitudes are replaced with
the ones from the original time series, (iv) after transform-
ing, the shuffled time series back into physical space, it is
rank ordered according to the original time series. This rank
ordering will affect the Fourier spectrum, so an iteration of
steps (iii) and (iv) is required. This iteration continues until
the discrepancy in both the Fourier amplitudes and rank
ordering becomes sufficiently small.

[8] We demonstrate our approach on daily temperature
data from the Faraday/Vernadsky station on the Antarctic
Peninsula for the period February 1947 through January
2011 from the Reference Antarctic Data for Environmental
Research (READER) data set ,which is quality controlled
[Turner et al., 2004, 2005]. This temperature time series is
highly non-Gaussian (Figure 1b), has a non-trivial decay of
its autocorrelation function (Figure 1a) and its cold extremes
follow an extreme value distribution, a generalized Pareto
distribution [Franzke, 2013].

[9] How well the surrogate time series fit the Faraday/
Vernadsky time series is displayed in Figure 1. For this
figure, we generated 1000 surrogate time series and, as
can be seen, the Faraday/Vernadsky time series is in the
center of the surrogate spread. This suggests that the sur-
rogate time series capture very well the characteristics of
the Faraday/Vernadsky time series, especially the highly
non-Gaussian PDF. Also, the two time scale decay of the
autocorrelation function is very well captured. First, the fast
initial decay and then the slower decay starting after about
a week. This slower decay is the imprint of the long-range
dependence property of the temperature time series reported
in Franzke [2010]. The distribution of the fifth, 50th and
95th percentiles regression trend ranges of these quantile
regression fits of the surrogate time series is as expected
centered around zero (Figure 2). The trend range is defined
as the difference between the end and start points of the
time series. This confirms that the phase randomization of
the original time series has effectively destroyed any trends.
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Figure 2. Probability density functions of the trends of (a) fifth percentile, (b) 95th percentile and (c) 50th percentile
derived from the 1000 surrogate time series based on the Faraday/Vernadsky station temperature time series.
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Figure 3. Faraday/Vernadsky station temperature time
series (black line), cubic quantile regression of the 50th
percentile (blue line), fifth and 95th percentiles (red lines)
and cubic linear least-squares regression line (green line).
(a) Annual, (b) Winter and (c) Summer. Dotted lines corre-
spond to the 5% and 95% confidence levels of the quantile
regression derived from a bootstrap approach.

Table 1. Quantile Regression Trend Rangea

5th Percentile 50th Percentile 95th Percentile

Annual 2.02(1.36) 0.28(0.33) 0.19(0.17)
Winter 2.25(1.34) 0.77(0.76) 0.11(0.35)
Summer 0.46(0.42) 0.17(0.15) 0.15(0.19)

aQuantile regression trend range in ıC/decade over the data period
(1947–2011); in parentheses, the corresponding 95th percentile quantile
regression trend range of a 1000 member surrogate time series ensemble.
Bold values are significant at the 95% level.

Table 2. Best Model Fit According to Akaike Information
Criteriona

5th Percentile 50th Percentile 95th Percentile

Annual CO2 + F10.7 OMD+F10.7 CO2 + OMD
Winter CO2 + F10.7 CO2 + OMD CO2 + OMD + F10.7
Summer CO2 + F10.7 CO2 + OMD + F10.7 CO2 + OMD

aBold values indicate cases where there is a significant trend present in
the Faraday/Vernadsky time series.

Thus, this surrogate method can be used to test for the pres-
ence of trends not only in the mean but also in extreme
percentiles.

[10] As external factors, we use the CO2 data from the
Mauna Loa station (available at http://www.esrl.noaa.gov/
gmd/ccgg/trends/), the Ozone mass deficit (OMD, which
is derived from Total Ozone Mapping Spectrometer
(TOMS) measurements, with seasonal, latitudinal and trend
corrections to fit the available Dobson measurements
[Roscoe and Haigh, 2007]), the F10.7 cm solar radio
flux (available at http://www.drao-ofr.hia-iha.nrc-cnrc.gc.ca
/icarus/www/sol%5Fhome.html) and Southern Hemispheric
Stratospheric Aerosol Optical Depth (SAOD; available at
http://data.giss.nasa.gov/modelforce/strataer/). We also used
solar irradiance, but because it is highly correlated with
F10.7 (correlation value is about 0.8) and does not change
the results qualitatively, we do not report those results.
Because the OMD data started in 1979, we use these exter-
nal factors only for the period 1979–2009. For this period,
we have an overlap of all used data. The external factors are
effectively independent from each other, so we do not have
to take account of any dependence structure in the regression
analysis.

3. Results
[11] Recent studies provide evidence that observed tem-

perature trends are well described by cubic polynomials
[Franzke, 2012]. Thus, we use cubic quantile regression in
this study. The cubic quantile regression of the Faraday/
Vernadsky temperature time series shows clear upward
trends of the quantile regression lines for the fifth (cold
extremes) and 50th percentiles (median) and only a slight
upward trend for the 95th percentile (warm extremes). This
is the case for the annual period (Figure 3) as well as
the summer (November through March) and winter (May
through September) seasons (Figure 3). Also the boot-
strapped confidence levels [Koenker and Hallock, 2001] of
the quantile regression are very tight providing confidence
in the robustness of the fits. Linear quantile regression trends
show similar upward trends (not shown).
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[12] In order to test if the observed upward trends in
the percentiles are unlikely to have arisen from intrinsic
climate fluctuations, we use a bootstrap approach using
surrogate data. We generate 1000 surrogate time series
realizations to represent intrinsic climate fluctuations and
ask how many times the observed trends are outside of
the distribution of trends in the surrogate data [Franzke,
2012]. We claim to have found evidence for a signifi-
cant warming trend when the observed trend is outside of
the 95th percentile of the distribution of the trends of the
surrogate data.

[13] This test shows that the upward trend of the 95th
percentile is unlikely to stem from intrinsic climate fluc-
tuations for the annual period as well as the summer and
winter seasons (Table 1). The 50th percentile upward trend
is significant in the summer and winter seasons while the
95th percentile trend is significant for the annual period
(Table 1). Thus, the reduction in extreme cold events (fifth
percentile) is very robust while the increases in the 50th and
95th percentiles are more seasonal dependent.

[14] Our results reveal that the fifth percentile of the
annual temperature has increased by about 14ıC over the
data period, which is about 2ıC per decade. This increase
occurred mainly in the winter season and to a lesser extent
during summer. This increase is largely responsible for
the observed warming at Faraday-Vernadsky [Turner et al.,
2005; Franzke, 2010]. The median and the 95th percentiles
have increased by much lesser amounts, by 1.8ıC and
1.23ıC over the data period, respectively.

[15] Next, we investigate whether external factors covary
with the increases in the fifth, 50th and 95th percentiles. If
external factors covary with the observed increases, then this
would be a first step in attributing these external factors to
have caused the increase. For this we computed multivari-
ate quantile regression fits for all possible combinations of
the above external factors and used the Akaike Information
Criterion (AIC; von Storch and Zwiers [1999]) to deter-
mine the most parsimonious regression model explaining
the observed changes in the Faraday/Vernadsky temperature
time series. This linear multivariate quantile regression anal-
ysis reveals that the best models according to the AIC
consist of external factor combinations, which include CO2
(Table 2). All significant percentile trends are related to
CO2. Also, external factor combinations including OMD
and F10.7 provide good model fits according to AIC and
thus these variables also played roles in the increases but not
as consistently as CO2. Our analysis shows no evidence for
SAOD playing a role in the increase of the amplitude of the
fifth percentile. The difference in AIC between the best fit
models and the second best is about 2 orders of magnitude.
Moreover, the difference in AIC between the best models
and the model without any external factors is about 3 orders
of magnitude. This provides strong evidence that the recent
observed temperature trends at Faraday/Vernadsky are due
to external factors.

[16] The most parsimonious external factor combination
explaining the quantile trend in the extreme cold temper-
atures (fifth percentile) is by the combination of CO2 and
F10.7 (Table 2). While for the significant median and the
95th percentile trends, the models always include the com-
bination of CO2 and OMD. In summer, the median trend is
best explained by the external factor combination of CO2,
OMD and F10.7.

[17] The observed increase of the cold extremes (fifth
percentile) is likely related to the observed changes and
the trend in the Southern Annular Mode (SAM; Marshall
[2003]; Franzke [2009]) and/or the observed change in the
non-annular atmospheric circulation [Turner et al., 2009].
Climate model simulations have attributed these changes to
stratospheric ozone loss and greenhouse gas emissions. The
Antarctic Peninsula is characterized by a North-South ori-
ented mountain range. The wind flows mainly parallel to this
range. The observed large-scale circulation changes have
likely led to a preference of poleward wind flow advection of
relative mild air from the Southern ocean and consequently
to a reduction of equatorward advection of cold air from the
Antarctic interior.

4. Summary
[18] We propose a novel method to test for trends in

extremes in serially correlated time series by using quantile
regression and a surrogate data approach, which produces
surrogate time series with the same autocorrelation struc-
ture and amplitude distribution. The major advantage of this
method is that it takes into account all data and not only val-
ues above a predefined threshold. While in this study, we
used both linear and cubic quantile regression; it can also be
used in a fully non-parametric way [Donner et al., 2012].

[19] Our results provide evidence that at Faraday/
Vernadsky, the observed warming is mainly associated with
a reduction in cold extremes. which is consistent with recent
findings [Hughes et al., 2007; Turner et al., 2012; Franzke,
2013]. The warm temperatures increase to a much lesser
extent, and this change is only significant when using data
throughout the year and not during the summer or winter
season.

[20] While a regression analysis does not provide strict
proof of causal relationships, our results nonetheless sug-
gests that the increase in CO2 plays a major role in the
reduction of cold extremes, while the ozone hole and solar
fluctuations (F10.7) also play some role. Our statistical attri-
bution results can be used as a baseline for attribution studies
with numerical climate models.
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