A decade of continuous NEE measurements at a Scottish peatland

<u>Carole Helfter</u>¹, Claire Campbell², Mhairi Coyle¹, Margaret Anderson¹, Julia Drewer¹, Peter Levy¹, Daniela Famulari¹, Marsailidh Twigg¹, Ute Skiba¹, Michael Billett¹, Kerry Dinsmore¹, Eiko Nemitz¹, and Mark Sutton¹.

¹ Centre for Ecology and Hydrology, Penicuik, UK.
 ² Scottish Environmental Protection Agency, Stirling, UK.

Big science questions

- Few long-term studies of net ecosystem exchange (NEE) in peatland systems.
- What is the carbon sequestration rate of peatlands?
- What is the year to year variability?
- What are the drivers of inter-seasonal and inter-annual variability?
- Can we predict changes?

Site description

- Auchencorth Moss (55° 47′ N, 03° 14′W) is a relatively flat, low-lying, ombrotrophic peatland in SE Scotland.
- The site was drained more than 100 years ago (drainage ditches now disused and overgrown).
- Land-use is primarily low intensity sheep grazing
- Peat depth ranges from <0.5 m to >5 m

Centre for

Ecology & Hydrology

TURAL ENVIRONMENT RESEARCH COUNCIL

- Vegetation consists of a patchy mix of grasses and sedges covering a primarily *Sphagnum* base layer on a typical peatland hummock/hollow microtopography.
- Mean water table depth is -12.5 cm, ranging from below -55 cm to +4.5 cm above the peat surface
- Auchencorth Moss is a CEH aquatic carbon catchment site (4 in the UK)

(Aquatic fluxes are presented session BG2.1, at PICO Spot 4, 8 April)

Site description: instrumentation

Eddy-covariance system (continuously since 2002):

Gill Windmaster Pro ultrasonic anemometer
Licor 7000 closed-path CO₂/H₂O analyser
Measurement height 3.4 m
Uniform fetch to North, West and South (several km)

Auchencorth Moss

Prevailing wind direction: S-W (ca. 70% of the time)

- Air and soil temperature
- Rainfall
- Radiation (total solar, PAR, net radiation)
 Water table depth

Image © 2013 Getmapping plc

Google earth

NATURAL ENVIRONMENT RESEARCH COUNCIL

Centre for Ecology & Hydrology Natural environment research council

100 m

Local climate - precipitation

Centre for

Ecology & Hydrology

ATURAL ENVIRONMENT RESEARCH COUNCIL

Overall upward trend despite large inter-annual variability

¹MIDAS station; 3.5 km North of measurement site

Local climate - temperature

¹MIDAS station; 3.5 km North of measurement site

Local climate – overall trends

2002-2012 climate compared to 50 yr mean

Difference in seasonal air temperature (50-year means - 2002 to 2012 means) [°C]

Seasonal Net Ecosytem Exchange (NEE)

Winter: January - March Spring: April - June Summer: July - September Autumn: October - December

Seasonal NEE, air temperature and rainfall

Largest CO₂ drawdown in summer (warmest and wettest season)

Ecosystem respiration (R

ATURAL ENVIRONMENT RESEARCH COUNCIL

Gross Primary Production (GPP)

"Hysteresis" of GPP during growing season (culminating around summer solstice)

Gross Primary Production (GPP)

GPP is strongly correlated to air temperature but there are two (temporal) growth regimes

CO₂ uptake

♦ Monthly NEE (uptake)

80

Air temperature is the best descriptor for NEE during the growing seasons (average length 247 days \pm 24 days).

Two separate temporal regimes (as for GPP).

Seasonal variability driven by photosynthesis.

RESEARCH COUNCIL

ATURAL ENVIRONMENT RESEARCH COUNCIL

Annual CO₂ budget

NEE: Inter-annual variability

ATURAL ENVIRONMENT RESEARCH COUNCIL

The annual NEE is closely linked to the length of the growing seasons

ESEARCH COUNCIL

Conclusions

- Auchencorth Moss is a net sink of CO₂ (average -69.1 33.6 g C-CO₂ m⁻² year⁻¹)
- This value is at the high end of other recent studies as is the inter-annual range of NEP (-31.4 to -135.9 g C-CO₂ m⁻²).
- Air temperature is a strong predictor for NEE, GPP (growing season) and R_{eco} on a monthly and seasonal basis.
- Inter-annual variations in NEE are strongly linked to the length of the growing seasons.

¹ UK Met Office - MIDAS Land and Marine Surface Station Data

² A decade of continuous NEE measurements at a Scottish peatland. Helfter et al. (in prep.)

³ Contemporary carbon balance and late Holocene carbon accumulation in a northern peatland. Roulet et al., GCB (2007).

⁴ How strong is the current carbon sequestration of an Atlantic blanket bog? Koehler et al., GCB (2011).

⁵ Contemporary carbon accumulation in a boreal oligotrophic minerogenic mire – a significant sink after accounting for all C-fluxes. Nilsson et al., GCB (2008).

