

FIXED ON NITROGEN

CASA Science Symposium on Nitrogen September 27 – 29, 2006 Fairmont Chateau Lake Louise Lake Louise, Alberta

Abstract

Nitrogen and Climate Change

Dr. Chris Evans

Since the 19th century, CO₂ from fossil fuel burning has been accumulating in the atmosphere, and is the major driver of anthropogenic climate change. Over a similar period, the production of man-made 'reactive nitrogen' has also increased hugely. potentially also influencing global climate. However the transportation, cycling and accumulation of reactive N in the atmosphere, terrestrial and aquatic ecosystems (the 'nitrogen cascade') is complex, and as a result N may impact on climate in a number of ways, some negative and some positive. In soils, particularly oxygen-poor areas such as wetlands, a proportion of N deposited from the atmosphere may be re-released as nitrous oxide, a greenhouse gas 296 times more powerful than CO2. On the other hand, because nitrogen is the limiting nutrient for growth in most terrestrial ecosystems, adding moderate amounts of man-made N to these systems can lead to an increase in productivity, potentially sequestering CO₂ from the atmosphere into plant and soil organic matter. In addition, higher CO2 in the atmosphere may itself lead to increased plant growth, but this can only occur where sufficient nitrogen is present. Finally, nitrogen oxides are a key precursor for ozone formation, and due to the detrimental effects of ozone on plant growth, this could act to reduce or even negate any beneficial effects of elevated N and CO2. Overall, therefore, the complexity of the nitrogen cycle is such that it is difficult to categorise the influence of nitrogen on climate as either 'good' or 'bad'. In reality nitrogen may well be 'good' (in terms of climate change) for some ecosystems, but 'bad' for others, and much work is required to quantify its overall role.

Nitrogen as a Contributor to Climate Change

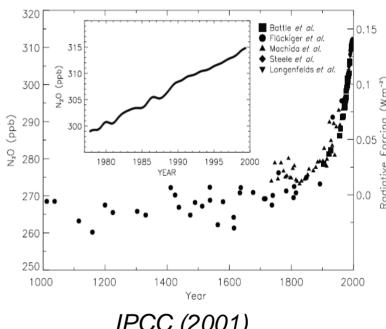
Nitrogen and Climate Change

Chris Evans

Centre for Ecology and Hydrology, Bangor, UK

With contributions gratefully received from:

Bridget Emmett, Gina Mills, Harry Harmens, Ute Skiba, Wim de Vries and Sally Power


Nitrogen and climate change

- Reactive N gets everywhere (the 'N cascade')
- As a result, the impact of N emissions on climate change are complex and involve:
 - One greenhouse gas that contains nitrogen (N₂O)
 - Three greenhouse gases that don't contain nitrogen (CO₂, CH₄ and O₃)
 - Three gases that contain nitrogen but aren't greenhouse gases (NO, NO₂ and NH₃)
- Some bits of this I know more about than others, so...

- N₂O is (with CO₂ and CH₄) one of the three main Greenhouse gases (GHGs)
- It has a long lifetime (~120 years) and a high global warming potential (296x CO₂ over 100 yrs)
- Fairly high background emissions (10.7 Tg N/yr)
- Anthropogenic source around 5.7 Tg N/yr)

1000 ice-core record and 20-year observed atmospheric N₂O

IPCC (2001)

- Direct anthropogenic emissions (e.g. nitric acid production, nylon production, fossil fuel burning) are relatively small
- Indirect anthropogenic emissions are larger, and occur due to N-enrichment of agricultural and natural ecosystems
- IPCC 2001: "enhanced N₂O emissions from agricultural and natural ecosystems are believed to be caused by increasing soil N availability driven by increased fertilizer use, agricultural nitrogen (N₂) fixation, and N deposition"

- N₂O produced by nitrification (in oxygen-limited conditions) and denitrificiation (in anaerobic conditions)
- Production rates controlled by supply of mineral N, labile C (for denitrification), temperature and moisture
- Mineral N supplied by:
 - Fertilisation (agricultural systems)
 - N deposition (semi-natural systems)
 - Disturbances (e.g. felling, burning)
 - Climatic fluctuations (e.g. freeze/thaw, dry/wet)

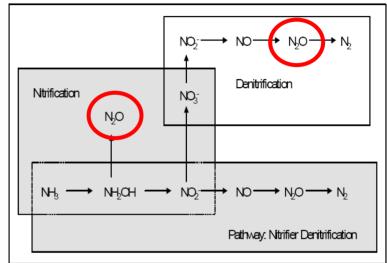


Figure 2 N₂O production by nitrifiers and denitrifiers (Wrage et al., 2001).

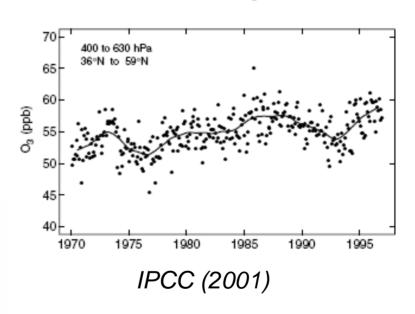
How much N_2O is emitted due to N inputs?

- IPCC:
 - 1.25% of N fertiliser
 - 1% of N deposition
- PnET-DNDC model, M. Kesik et al. (2005)
 - 1.8% of N deposition
- Field measurements, de Vries et al. (in press)
 - 1.4% of N deposition onto coniferous forests
 - 5.4% of N deposition onto deciduous forests
- Overall, de Vries et al. estimate that N₂O emissions from European forests have risen by 12-33% since 1960 due to N deposition

Nitrogen oxides

- NO and NO₂ (aka NO_x) are not GHGs
- However, the impact of NOx on atmospheric chemistry is complex, and it has important secondary impacts
- NO_x emissions (from fossil fuel burning, etc) are either stable (Europe, N America) or rising (Asia)

Nitrogen oxides and tropospheric ozone

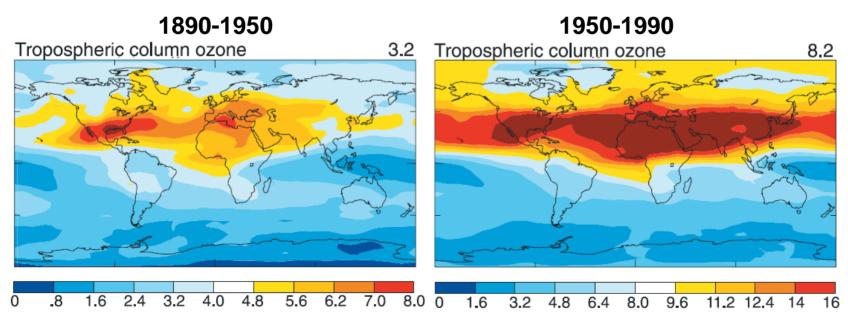

It's complicated....

Nitrogen oxides (NO and NO₂) catalyse the formation of tropospheric ozone:

$$\begin{array}{cccc} OH + CO + O_2 & \rightarrow & CO_2 + HO_2 \\ HO_2 + NO & \rightarrow & NO_2 + OH \\ NO_2 + h\nu & \rightarrow & NO + O(^3P) \\ O(^3P) + O_2 + M & \rightarrow & O_3 + M \end{array}$$

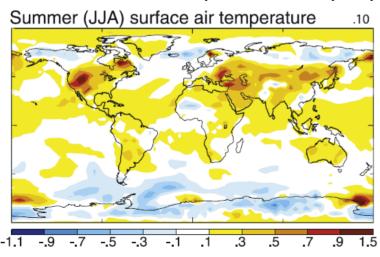
net: $CO + 2O_2 + hv \rightarrow CO_2 + O_3$

It's increasing....


...and the IPCC predicts a further 20-25% increase by 2050

Tropospheric ozone as a GHG

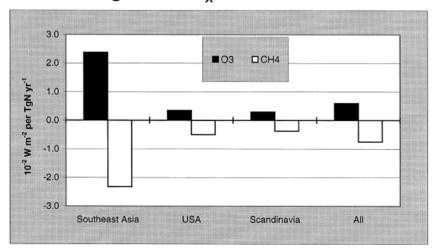
- Short-lived but powerful: IPCC 1750-2000 mean global radiative forcing by tropospheric O₃ = 0.35 W/m²
 (CO₂ = 1.46 W/m², CH₄ = 0.48 W/m², N₂O = 0.18 W/m²)
- Most of precursors emitted over land in the N Hemisphere, but transported hemispherically



Tropospheric ozone as a GHG

- Radiative forcing varies temporally and spatially:
 - Summer: high concentrations but short lifetime, so greatest impacts occur close to precursor sources (USA, Europe)
 - Winter: lower concentrations but longer lifetime, greater transport into and impact on the Arctic

Average 1900–2000 surface temperature trends (°C per century) in response to tropospheric ozone changes

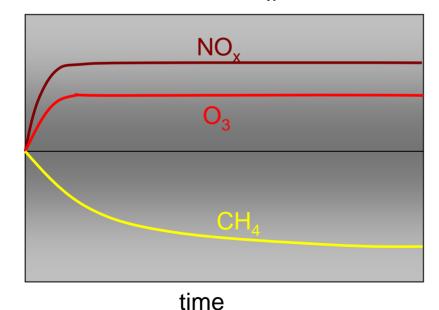


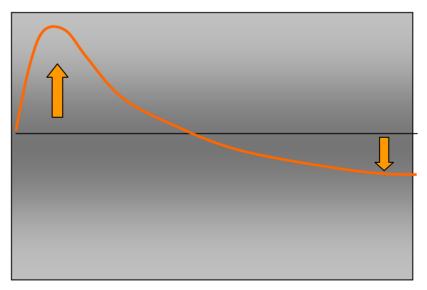
Nitrogen oxides and methane

- Nitrogen oxides generate OH radicals, which remove CH₄, CO₂ and other GHGs from the atmosphere
- This substantially offsets the negative climate impact of NOx on tropospheric O₃ formation

Modelled change in global annual radiative forcing from O_3 and CH_4 per unit change in NO_x emissions

J.S. Fuglestvedt et al, Atmos Env (1999)




Nitrogen oxides, O₃ and CH₄ What's the overall climate impact?

 May be positive, negative or zero, depending on a) location, b) time-frame

Change in O₃ and CH₄ resulting from a sustained NO₄ increase

Net climate forcing resulting from NO_x increase

time

After K.P. Shine et al., PNAS (2005)

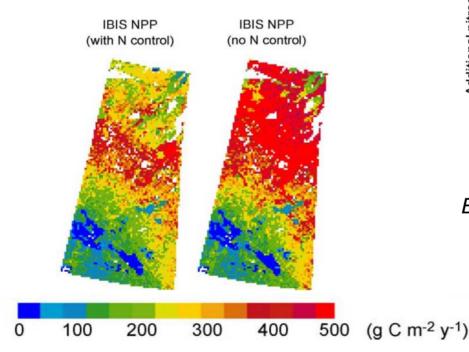
Ammonia

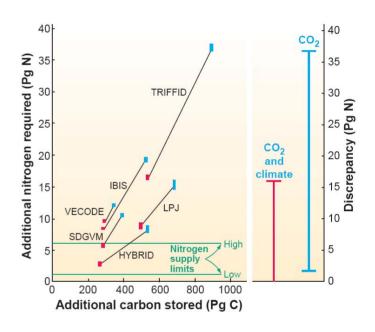
- NH₃ is not a GHG either
- No significant climate impacts in terms of atmospheric chemistry
- But it may affect the rate of methane removal in forest soils...

Ammonia and methane

- Wetlands are the major source of CH₄ from soils
- Dryer forest soils are generally CH₄ sinks
- Fertilised soils consume around 40% less CH₄ than undisturbed forest soils, possibly/partly due to inhibition of methanotrophic activity by NH₄
- However the effect appears small: de Vries et al. (in press) estimate that elevated NH₄ has reduced European forest CH₄ uptake by only 1.6% since 1960

Nitrogen and carbon dioxide


- The productivity of many temperate ecosystems is nitrogen limited
- Adding N via deposition has the potential to increase growth, and therefore to sequester CO₂ from the atmosphere.
- The long-term amount of CO₂ removal depends on the net effect of N on growth and decomposition



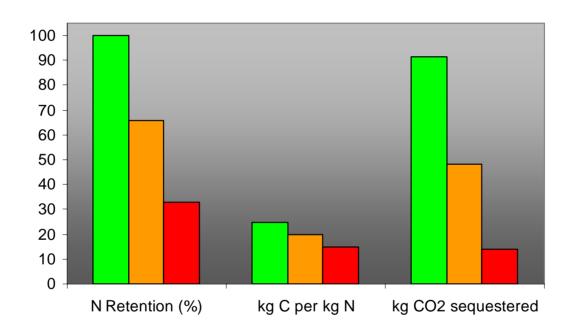
N and CO₂ sequestration

 Modelling studies which don't incorporate N-limitation may overestimate growth, e.g. due to CO₂ stimulation

B.A. Hungate et al., Science (2003)

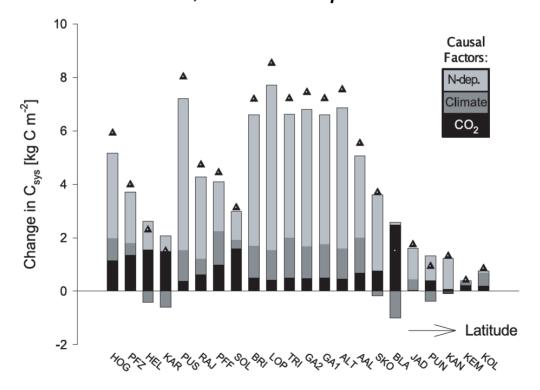
N and CO₂ sequestration Why C/N ratios matter

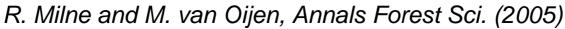
- Some studies have suggested very large (up to 2.0 Pg/yr) CO₂ sequestration due to N deposition
- These studies assumed that most (~80%) of the deposited N would be stored in woody biomass (C/N 250-500)
- Nadelhoffer et al. (1999) showed that most (~70%) of deposited N is actually stored in soils (C/N 10-30)
- Because of the different C/N ratios, a lot more N is required to lock up C in soils than in woody biomass
- As a result, Nadelhoffer et al. suggested that true level of CO₂ sequestration due to N deposition may only be around 0.25 Pg/yr


N and CO₂ sequestration Why N saturation matters

- Terrestrial ecosystems will only respond to elevated N inputs if they are N limited
- In P-limited (e.g. tropical) ecosystems N additions more likely to lead to N₂O production than CO₂ sequestration
- With increasing N-enrichment, soil and vegetation C/N will decline, and less C will be sequestered per unit N depostion
- If NO₃ is being leached to surface waters, this N is not contributing to CO₂ sequestration at all
- So, paradoxically, N deposition may be most effective at sequestering C in regions of low N deposition

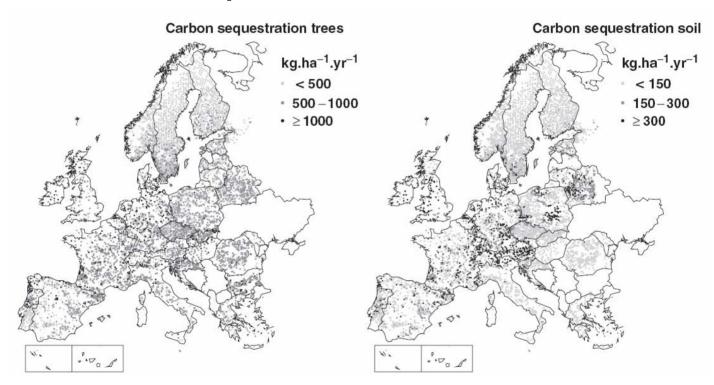
N and CO₂ sequestration Why N saturation matters


If all N is leached, no CO₂ will be sequestered



N and CO₂ sequestration Model assessments

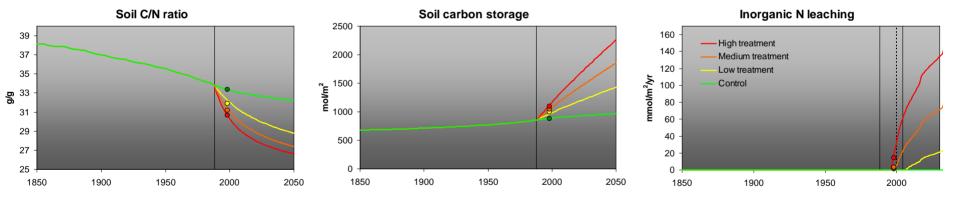
Modelled contribution of N deposition, climate and elevated CO₂ from 1920 to 2000, at 22 European forest sites



N and CO₂ sequestration Empirical assessment

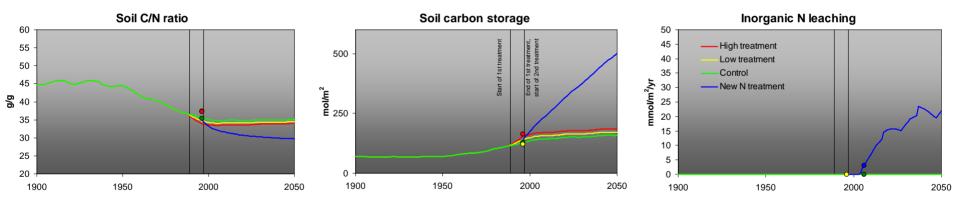
- C sequestration calculated from N immobilisation and soil C/N ratio
- Sequestration lowest in boreal forest (low N dep), higher in central/E Europe (high N dep)

W. De Vries et al., Global Change Biol. (2006)



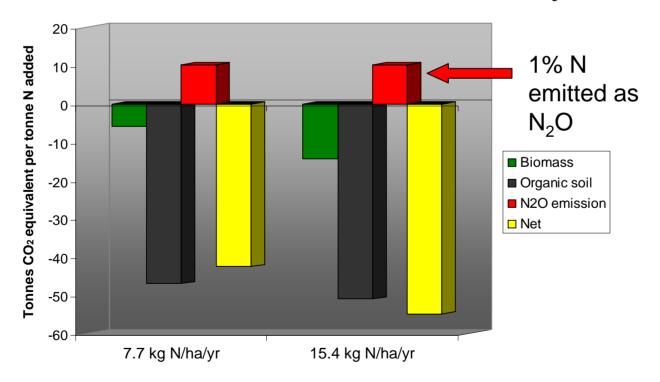
- Three long-term (>10 yr) UK heathland N-addition studies have been assessed in terms of C and N stock changes
- Consistent evidence that N addition led to:
 - Enhanced plant growth
 - Accumulation of C in litter/surface soils
 - Decreased C/N ratio in soils and vegetation
 - Increase/initiation of N leaching under largest N doses
- Experimental responses simulated using the MAGIC biogeochemical model

Simulated and observed C and N changes at the Ruabon N addition site, UK


Evans et al., Environmental Pollution (2006)

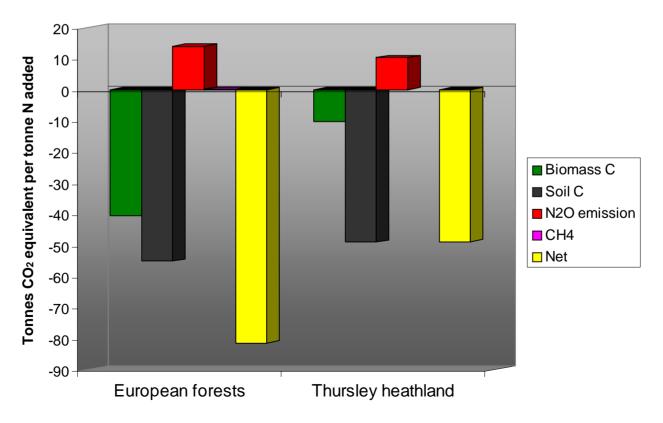
Site run by Manchester Metropolitan University (Simon Caporn)

Simulated and observed C and N changes at the Thursley Common N addition site, UK



C.D. Evans unpublished results, based on data provided by Sally Power, Imperial College

Net greenhouse gas budget (in CO₂ equivalents) per unit N added, for two levels of N addition, Thursley Common


Overall, N addition has led to a large net greenhouse gas sink

N and CO₂ sequestration Empirical assessment

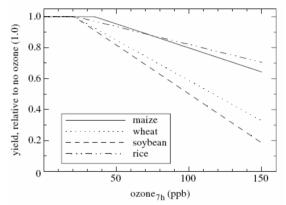
Comparison of net greenhouse gas budget (in CO₂ equivalents) per unit N added, European forests and Thursley Common

N and CO₂ sequestration How much C is sequestered per kg N added?

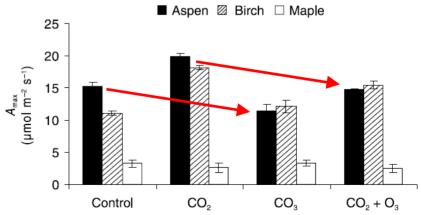
- Rehfuess et al. (1999)
 - Modelled 15-25 kgC/kgN
- De Vries et al (2006)
 - Estimated 25 kgC/kgN for European forests
- Ruabon (N-retaining site)
 - Simulated 28 kgC/kgN
 - Observed low N addition 33 kgC/kgN
 - Observed high N addition 21 kgC/kgN
- Thursley (N-retaining site)
 - Simulated 32 kgC/kgN
- Budworth (N-leaching site)
 - Simulated 21 kg/kg

N and CO₂ sequestration What happens to the C in the long-term?

- A short-term increase in ecosystem carbon stock may not translate into stable long-term storage
- The effects of N deposition on soil organic matter turnover is less clear than effects on production, but in general it may:
 - Increase decomposition rates in reactive soils/soil pools)
 - Decrease decomposition rates in unreactive soils/soil pools
- As a result, the greatest increases in C stock are likely in C-rich, N-poor systems
- But possibly not if N deposition triggers species change (e.g. replacement of sphagnum by higher plants, Berendse et al. Global Change Biol., 2001)



Ozone and carbon dioxide

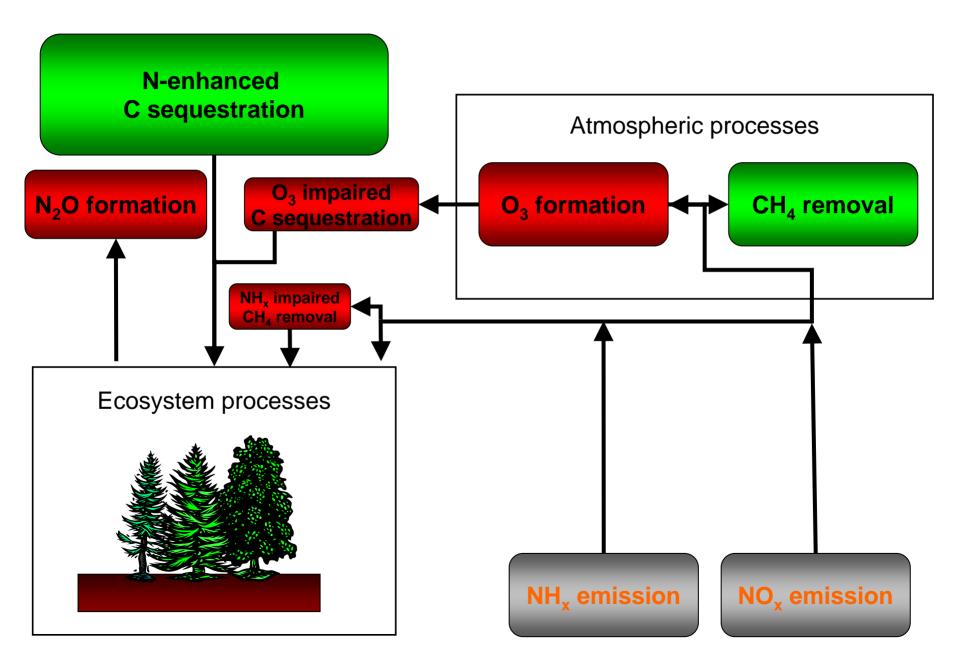

- Tropospheric O₃ damages plants
- Predictions for food crops show significant yield reductions under elevated O₃
- Similar productivity reductions observed in natural ecosystems under elevated O₃, e.g.:
 - 7-40% decrease in grassland biomass (ICP-Vegetation, 4 European experiments)
 - Decrease in aspen
 photosynthesis under elevated
 O₃, and reduction in CO₂ growth
 stimulation (*Karnosky et al.*)

Crop yield changes, elevated O₃

Long et al., Phil. Trans. R. Soc. B (2005)

Photosynthesis changes, elevated O₃ / CO₂

Karnosky et al., Functional Ecol. (2003)



Summary

- The effects of emitted N on climate change are many and varied
- The direct effects of NO_x on atmospheric O₃ and CH₄ may cancel out on average, but could be important at certain times/locations (e.g. O₃ in the Arctic in winter)
- N₂O emissions are enhanced by N deposition
- N-induced changes in CH₄ are probably minor
- Enhancement of CO₂ sequestration by N deposition appears (in N-limited systems) to be the dominant climate-related impact of N emissions
- Consequently, N emissions in temperate regions probably (to some extent, and with large uncertainties) act to ameliorate climate change

Can/should N be managed for climate change amelioration?

- Given the complex and uncertain net impacts, probably not.
- But it may be possible to maximise C sequestration and minimise N₂O emission, e.g. through:
 - Permitting some N deposition (but below the critical load)
 - Periodic biomass removal
 - Reduced disturbance, e.g. during felling
- Finally, climate impacts of N must not be considered in isolation – the mechanism through which N enhances CO₂ sequestration (increased growth) is the same one that leads to species change and biodiversity loss