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 16 

Abstract 17 

1.  Parasites are a key driver of evolutionary processes in wild animal populations. However, 18 

assessing host endoparasite burdens non-destructively is problematic. Collection of faecal 19 

samples can be difficult, and faecal egg counts may not always be a reliable indicator of 20 

infection intensity. 21 

2. Here we report on endoscopy as a method for assessing natural burdens of nematode parasites 22 

Contracaecum rudolphii in a wild seabird, the European shag (Phalacrocorax aristotelis, L.). 23 

We aimed to measure natural individual parasite burdens and repeatability of burdens over 24 

time, and verify that treatment with ivermectin removed parasites.  25 

3. Endoscopy was rapid, averaging 6 minutes (n=159), with no obvious adverse effects on 26 

behaviour or breeding success compared to non-endoscoped birds. 27 

4. Nematode burdens in the oesophagus and proventriculus of conscious shags were counted and 28 

classified as absent, low, medium or high using a flexible gastroscope with a camera 29 

attachment that recorded video footage. 30 

5. Re-assessment of worm burdens was highly accurate, with 94% of randomly selected videos 31 

(n=50) giving identical categorical scores, and 70% of worm counts (n=40) giving the same 32 

total or differing by only one worm.  33 

6. All birds were parasitized by C. rudolphii. Natural burdens were significantly higher in males 34 

and in late breeders. 35 

7. Individuals had highly repeatable categorical parasite scores over time with 65% of control 36 

birds sampled more than once (n=17; mean interval between assessments= 10.8 days) 37 

showing no change in scores. However, although the rank ordering of bird’s based on 38 

categorical scores remained constant, more finely resolved quantification indicated a slight 39 

seasonal decline in worm counts within individuals.  40 

8. Treatment with ivermectin (4mg/kg of bird weight) resulted in complete removal of parasites. 41 

There was some evidence of temporal declines in worm counts with lower doses of 42 
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ivermectin, including a dose (0.7mg/kg) previously shown to impact chick survival and 43 

growth.  44 

9. Endoscopy has considerable potential for investigating individual variation and temporal 45 

changes in endoparasite burdens and drug efficacy. Applicability and limitations of this 46 

method for other host-parasite systems are discussed. 47 

Keywords   48 

Nematode; gastroscope; faecal egg count; worm; gastrointestinal; macroparasite 49 

 50 

Introduction 51 

Parasites are ubiquitous in wild animal populations and considered to be a key driver of 52 

evolutionary processes (Sheldon & Verhulst 1996). There is much theoretical evidence that parasites 53 

can regulate and destabilise host population dynamics (Anderson & May 1978; Dobson & Hudson 54 

1992) and a wealth of empirical evidence indicating that they impact the mass, body condition and 55 

fecundity of domestic animals (e.g. Dimander et al. 2000; Nieuwhof & Bishop 2005). However, 56 

parasites comprise an overlooked but important component of ecological communities with relatively 57 

few studies having considered the impact of parasites on wild animals (see Tompkins et al. (2011) for 58 

a recent review) . This is despite the fact that substantial individual heterogeneity in parasite burdens 59 

can occur (Shaw & Dobson 1995), which can lead to adaptive phenotypic evolution if related to both 60 

phenotype and fitness (Wilson & Nussey 2010).  61 

Host-parasite studies are severely impeded by difficulties associated with detecting and 62 

measuring endoparasite burdens in wild hosts.  Faecal egg counts are often the only available method 63 

for quantifying individual parasite burdens without destructive sampling, and have been used in a 64 

variety of different species (e.g. Gulland & Fox 1992; Irvine et al. 2001). However, such counts may 65 

be an unreliable index of worm burdens, due to density dependent worm fecundity (Anderson & 66 

Schad 1985; Tompkins & Hudson 1999), temporal variation in egg shedding rates (Shaw & Moss 67 

1989), lack of egg shedding by larval parasite stages, or poor sensitivity at low worm burdens 68 
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(Levecke et al. 2009). Moreover, faeces may be difficult to sample in the field. Destructive sampling 69 

of the host to quantify parasite burdens cannot be undertaken if the host is of conservation importance 70 

or longitudinal data are of interest. Manipulation of parasite burdens experimentally using anti-71 

parasite drugs has limitations since the impacts of treatment may vary depending on initial worm 72 

burdens and evaluation of drug efficacy may not be possible without destructive sampling of hosts. 73 

Development of a non-destructive method for assessing parasite burdens is therefore crucially 74 

important in advancing our understanding of host parasite systems. 75 

The use of endoscopy to diagnose endoparasite infections is routinely used in human and 76 

veterinary medicine (e.g. Croese & Speare 2006; Sum & Ward 2009) but to our knowledge, only one 77 

published study reports utilisation of this technique in the wild. Jackson and Cooper (1988) used a 78 

gastroscope to measure prey digestion rates in sooty albatrosses (Phoebetria fusca), and suggested 79 

that this also had potential for assessing parasite burdens. Here we report on the first use of this 80 

technique to measure natural endoparasite burdens and drug efficacy in a wild animal host, the 81 

European shag. Shags are a useful model species for testing endoscopy because parasite prevalence is 82 

high (Abollo, Gestal & Pascual 2001; Reed et al. 2008) due to their fish prey being heavily parasitized 83 

(Groenewold, Berghahn & Zander 1996). In addition, adults at our study colony can be repeatedly 84 

caught during the breeding season and diet studies on conscious birds involving stomach flushing 85 

with c15mm diameter tubes have already been undertaken without any discernible adverse effects 86 

(Wanless, Harris & Russell 1993; Daunt et al. 2007). Finally, there is experimental evidence that 87 

parasites have a detrimental effect in this population, with late breeding adults treated with ivermectin 88 

having higher survival of male offspring (Reed et al. 2008) and treated last-hatched chicks having 89 

faster growth rates than controls (Reed et al. 2012). However, measurement of parasite burdens and 90 

treatment efficacy was not possible and hence the mechanisms behind the observed sex and 91 

phenology differences could not be elucidated.  92 

This study had three main aims: to (i) use endoscopy to quantify individual endoparasite 93 

burdens and assess variation in burdens between hosts; (ii) measure repeatability of individual host 94 

parasite burdens over time and (iii) demonstrate that treatment with a suitable dose of ivermectin 95 

removed parasite burdens.   96 
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 97 

Materials and Methods 98 

Study area and species  99 

Fieldwork was undertaken in 2010 and 2011 on the Isle of May, Scotland (56
º
11′N, 2

 
100 

º
33′W). As part of a long-term population study, individual shags were uniquely marked with 101 

one metal (British Trust for Ornithology) and one plastic darvic ring. Adults are sexually 102 

dimorphic, with males being 22% larger than females (Wanless & Harris 1997), and are 103 

sexed by vocalizations (Snow 1960). The breeding season is protracted, with an average of 104 

4.2 weeks per year between first and median laying date (unpublished data; estimated from 105 

weekly checks of ca. 100 pairs at monitoring plots throughout the Isle of May between 1984 106 

and 2008). Laying dates for birds used in the study were estimated from daily checks. 107 

Shags are infected with the anisakid nematode Contracaecum rudolphii Hartwich, 108 

1964, which attaches to the lining of the proventriculus and lower oesophagus (Abollo, 109 

Gestal & Pascual 2001; Reed et al. 2008). Post-mortem examination of archived carcasses of 110 

7 adults and 2 chicks from the Isle of May confirmed infection with C. rudolphii in the 111 

proventriculus and lower oesophagus (J. Chantrey & D. Kowalek unpublished data). Shags 112 

become infected with third stage larvae via their fish diet, which is predominantly lesser 113 

sandeels (Ammodytes marinus) and butterfish (Pholis gunnellus) during the breeding season 114 

(Wanless et al. 1993; Daunt et al. 2007). Larval worms moult to become sexually mature 115 

adults in the final seabird host (Anderson 1992; Moravec 2009).  116 

 117 

Ethical Considerations 118 

Endoscopy is a licensed procedure and was undertaken under Home Office Project 119 

Licence PPL60/4001 and conducted by trained personnel (S. Burthe) holding a personal 120 

Licence (PIL40/6722). The work had full ethical approval from the University of Edinburgh 121 
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and CEH’s Ethics Committees and the Home Office. Furthermore, as this was a novel 122 

technique that is usually undertaken in a clinical setting, the work was initially carried out 123 

under full independent veterinary supervision, first on anaesthetised and then on conscious 124 

birds. Anaesthesia was induced via a face mask with isofluorane and then delivered via a 125 

3.5mm endotracheal tube. Our decision to endoscope conscious birds thereafter was made in 126 

conjunction with the veterinarian to improve bird welfare, by minimising the overall length of 127 

the procedure and significantly reducing (from several hours to <5 minutes) the time taken 128 

for the animal to return to normal behaviour, which was considered of primary importance 129 

since the birds were breeding. The veterinarian’s overall assessment of the procedure 130 

confirmed it as being ‘mild’, the lowest severity banding for animal research undertaken in 131 

the UK. Discomfort to the birds was deemed to be at an acceptable level given the short 132 

duration of the procedure and the ease of entry of the endoscope to the proventriculus due to 133 

the anatomy of the species, and the method of feeding offspring, whereby food is regurgitated 134 

whilst the chick’s head and neck are full inserted inside the parent’s throat.  135 

Endoscopy 136 

Endoscopy of adult shags was undertaken from late incubation to mid chick-rearing 137 

(when the chicks were approximately 25 days old) using a 103cm long, 9mm diameter 138 

Olympus GIF-PQ20 gastroscope with a 2.8mm channel for air and water, a 100º field of view 139 

and a 150 Watt halogen light source (VES) with inbuilt air and water pump, powered by a 140 

portable EU10i generator (Honda). The gastroscope tip was flexible through 210/90º 141 

vertically and 100/100º horizontally. A compact camera (Xion) connected to the endoscope 142 

was used to view and record video images on a laptop using XION DiVASMini image 143 

software (Xion Medical, Berlin).  144 

In 2010, endoscopy was carried out on four anaesthetised adult shags and this 145 

confirmed that parasites could be quantified in the proventriculus. Due to the ease of 146 
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endoscope insertion in this species and in order to minimise the time birds were absent from 147 

their nests, endoscopy was then undertaken on 37 conscious birds in 2010. We established: i) 148 

the best time of day for the procedure;) ii) that this methodology caused no adverse effects on 149 

breeding behaviour and success; and iii) the degree of observable variation in endoparasite 150 

burdens so that categorical scores could be established. As 2010 was a pilot study we only 151 

analysed data from 68 conscious shags endoscoped during the 2011 breeding season. 152 

To ensure that birds had empty stomachs, endoscopy was undertaken between 03:30-153 

07:30, before shags left for their first foraging trip of the day. An assistant placed a cloth over 154 

the bird’s eyes to reduce stress and held the neck stretched out on a cushion to prevent 155 

movement, with the beak open approximately 2cm. The endoscope was lubricated with KY 156 

jelly (Johnson & Johnson) and gently inserted down the oesophagus into the stomach up to a 157 

length of 50cm (the base of the proventriculus) from the tip of the beak (measured using 158 

gradations on the endoscope). Slight inflation with air helped introduce the endoscope into 159 

the stomach and facilitated effective examination. Once a clear view was obtained on the 160 

laptop, video recording was started and the scope was pulled out slowly and steadily, 161 

enabling worms to be counted, and a categorical burden to be scored as: (i) absent- no live 162 

worms seen; (ii) low- 1-10 worms; (iii) medium- 11-25 worms; or (iv) high- >25 worms 163 

(Figure 1). Exact counts of worms were only possible for burdens of <40worms, due to 164 

worms preventing good views. Counts of worms greater than this were recorded as >40. To 165 

ensure that scores were not affected by viewing conditions we noted the presence of any food 166 

and whether the view was satisfactory (visibility scored as 1-5, with 1 being a very poor view 167 

with little confidence in the assessment, and 5 a clear view of the stomach with high 168 

confidence). The endoscope was cleaned and disinfected between birds using a high-level 169 

disinfectant TriGene wipe. The channels were cleaned with a soft brush and flushed with 170 

diluted sterilising fluid (Milton) followed by deionised water. At the end of each session 171 
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(average 6.5 birds per session) the endoscope was soaked and cleaned with MedEzyme 172 

cleaner and MedDis disinfectant (Medichem) followed by deionised water. Ideally in a 173 

clinical setting, the endoscope would be soaked for 20-45 minutes in enzymatic cleaner and 174 

disinfectant between patients. However, this approach was not practical in the field and hence 175 

we adopted a procedure based on veterinary advice that reduced the risk of disease 176 

transmission to an acceptable level given the non-sterile, challenging field conditions. 177 

 178 

Experimental Treatment and ivermectin efficacy 179 

Adult shags were weighed and injected intramuscularly into the pectoral muscle with 180 

either saline solution (controls) or an anti-parasite drug treatment (ivermectin 1% w/v, 181 

Panomec, Merial Animal Health ltd., Harlow, UK) following endoscopy at first capture. 182 

Ivermectin is considered to be a safe drug for use in birds (Oksanen & Nikander 1989). 183 

Effective safe dose levels vary between bird species and parasites, for example doses of  184 

4mg/kg in falcons and 50mg/kg in pheasants and chickens have been used without side 185 

effects (see review in Lierz (2001)). Shags were endoscoped repeatedly following treatment 186 

to investigate drug efficacy, with the aim being to find the minimum dose which removed 187 

worms from the proventriculus. Doses equivalent to 0.7 mg/kg of the birds weight had been 188 

used in previous experimental manipulations of adult birds (Reed et al. 2008) and found to 189 

have detectable effects on chick growth rates and survival; hence this dose was used initially. 190 

Subsequently a range of ivermectin doses were trialled (0.7; 1.0; 2.0; 3.0 and 4.0 mg/kg) with 191 

doses increased sequentially (one treatment dose per bird) to establish the dose where worm 192 

removal was complete.  193 

 194 

Validation of observer repeatability  195 
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Fifty video recordings were randomly selected and rescored six months post sampling 196 

by the same observer (S. Burthe) to evaluate whether categorical scores of parasite burdens 197 

were repeatable. Forty randomly selected videos were also rescored for worm counts. Owing 198 

to difficulties in counting high burdens, these videos were from a subset excluding those 199 

originally scored with a high burden.  200 

 201 

Statistical Analysis 202 

 To evaluate whether endoscopy or treatment affected breeding success, a generalised 203 

linear model with Poisson error structure of the number of chicks fledged per nest was fitted 204 

for a subset of nests (n=147) that included the area where the endoscopy experiment was 205 

undertaken plus surrounding areas which formed part of another dosing experiment but 206 

without endoscopy. We fitted the experimental status of each individual bird in terms of 207 

whether or not endoscopy had been undertaken. Treatment status was also fitted: whether the 208 

individual had been dosed with ivermectin (low/medium (0.7-3.0mg/kg) or high (4.0mg/kg) 209 

dose), was a saline treated control or a completely unmanipulated control.   210 

Initial categorical worm scores per individual prior to treatment were analysed using 211 

an ordinal logistic model. Previous experimental work on adult birds found variation in the 212 

effects of drug treatment between the sexes and with phenology (early or late breeders; Reed 213 

et al. (2008)), so we considered sex and phenology as potential explanatory variables. 214 

Phenology was quantified using a binary variable (“earlylate”) indicating whether the 215 

individual laid earlier or later than the median laying date in 2011. As parasite burdens might 216 

be expected to increase with exposure (age), and to investigate whether breeding success was 217 

correlated with parasitism, we also considered minimum age (known age if first ringed as 218 

chicks; assumed to be age 3 at ringing if first ringed as adults) and the number of chicks 219 

fledged as potential explanatory variables. Finally, we also considered Julian date of 220 
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endoscopy, in order to check that patterns were not associated with seasonal changes in 221 

parasite burdens. Phenology and breeding success are highly correlated and hence not fitted 222 

together in the same model. We considered two-way interactions between sex and either age, 223 

breeding success or phenology.  224 

To investigate dose efficacy, worm counts were analyzed using a generalised linear 225 

mixed effects model with Poisson error structure. As it was not possible to count worm 226 

burdens in the high category that were >40 worms, these were assigned a value of 40 worms 227 

(n=14). This could potentially introduce a degree of bias, so we checked for this by fitting the 228 

same candidate model set to categorical repeated measures data (see supplementary 229 

information). Bird ID was fitted as a random effect in both cases. We included variables that 230 

were found to be important from the analysis of the natural parasite burdens, along with 231 

Julian date, treatment group and time since treatment, as potential fixed effects. The 232 

interaction between treatment group and time since treatment was also considered, and is the 233 

key variable of interest. Treatment group was either specified as a categorical variable with 234 

four groups (control, low (0.7-1mg/kg), medium (2.0-3.0mg/kg) or high (4.0mg/kg) doses), 235 

or as aggregations of adjacent dose groups (e.g. by combining the “low dose” and “medium 236 

dose” groups). Comparing the performance of different aggregations of dose groups allowed 237 

us to identify, approximately, the threshold beyond which ‘dose’ begins to have a substantial 238 

impact upon the parasite burden. 239 

Analyses were undertaken in program R (“MASS” package (Venables & Ripley 240 

2002); lme4 package (Bates et al. 2011); ordinal package (Christensen 2012); R 241 

Development Core Team, 2009). Models were compared using Akaike’s Information 242 

Criterion (AIC; Burnham and Anderson (2002)), calculating the difference (ΔAIC) between 243 

the AIC of alternative models relative to the “best” model with the lowest AIC. Poisson 244 

GLMMs were fitted using the Laplace approximation when performing model selection (the 245 
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glmer function in the lme4 package), but, to account for overdispersion, the final model was 246 

re-fitted using PQL (the glmmPQL function in the MASS package) to obtain parameter 247 

estimates and standard errors. 248 

 249 

Results 250 

Endoscopy 251 

Parasite burdens were assessed in 68 shags (25 control and 43 ivermectin treated), 43 252 

of which were repeat sampled on 2-6 occasions. Shags responded calmly to insertion of the 253 

endoscope, remained calm throughout the procedure with no evidence of rapid breathing, and 254 

returned to the nest within five minutes after release, unless their mate had assumed nest 255 

duties. The time taken to endoscope each bird averaged 6 minutes (n=159). Occasionally the 256 

endoscope became blocked during the procedure and had to be removed and cleaned before 257 

re-insertion, resulting in processing time increasing up to a maximum of 12 minutes (n=8 258 

assessments >8 minutes). Views of the stomach were generally excellent (83% of 259 

assessments scored 4 or 5 for visibility, only 4% scored <3). There was no evidence of an 260 

adverse effect on breeding success of endoscopy (mean number of chicks fledged: no 261 

endoscopy 1.58 (n=80); endoscopy 1.95 (n=40)) or dosing (Table 1).  262 

 263 

Validation of observer repeatability   264 

The same categorical score was assigned to 47 (94%) of the videos that were re-265 

assessed. Of the three that were scored differently (originally scored as medium, medium and 266 

high and rescored as high, low and medium respectively), the category only differed by one. 267 

Twenty-eight (70%) videos that were rescored for worm counts were within 1 of the original 268 

count (mean difference = 1.43; max difference= 8 worms).  269 
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  270 

Patterns of worm prevalence 271 

All birds were infected with worms (100% natural prevalence). Twenty-seven 272 

individuals (40%) had low scores, 18 medium (26%) and 23 high (34%), with counts ranging 273 

from 2 to >40 worms. The best model of natural parasite burdens included sex and phenology 274 

(early or late), such that late males had the highest parasite burdens and early females the 275 

lowest (Tables 2, 3, Figure 2). Models which included the parameters Julian date, age or 276 

breeding success were less well supported (see supplementary information).  277 

Of the 25 control birds, 17 were endoscoped more than once (total of 65 assessments). 278 

The mean interval between repeat assessments was 10.8 days (range 3-33 days, n=40). 279 

Categorical scores for individual birds were highly repeatable over time (Figure 3). However, 280 

although the overall rank order of birds remained the same over the breeding season based on 281 

categorical data, for the more finely resolved count data there was some evidence of a slight 282 

decline in worm counts within individuals over time (see Figure 5). 283 

 284 

Assessment of ivermectin efficacy 285 

Forty-three shags were dosed with ivermectin, with 27 birds endoscoped more than 286 

once (total of 94 endoscopy assessments). Repeat scoping occurred 1-18 days post dosing 287 

(mean 6.3 days, n=50). Complete absence of worms was only observed after dosing with the 288 

high (4mg/kg) dose (Figure 4) but there was evidence of a consistent decline in worm counts 289 

for lower doses. Birds treated with ivermectin remained worm free for at least 18 days. 290 

However, assessment of efficacy beyond this was not possible because shags at this colony 291 

become uncatchable late in the season.  292 
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The best supported models of the repeated count data included a significant 293 

interaction between treatment group and time from dose, with additive sex and phenology 294 

(“earlylate”; Tables 4 & 5; Figure 5; see supplementary information for categorical model 295 

results). Models that allowed the interaction with time from dose for the high dose group to 296 

differ from that of the other treatment groups had strong support (ΔAIC < 8; see Table S3c 297 

supplementary information), whilst models where the high dose group was amalgamated with 298 

other treatment groups had very poor support (ΔAIC >50). Therefore there is strong evidence 299 

that the high dose treatment group is significantly different from the other treatment groups.  300 

There was modest support for the suggestion that low and medium dose treatments 301 

were significantly different from controls (difference in AIC of 5.8 between a model with low 302 

and medium identical to controls, relative to a model with low and medium separate from 303 

controls).   304 

Discussion 305 

Endoscopy proved to be a rapid and reliable method for quantifying endoparasite 306 

burdens in shags, and to our knowledge this is the first time the technique has been used for 307 

this purpose in the wild. This represents a significant methodological advance in systems 308 

where destructive sampling of the host is not possible, faecal samples are difficult to collect 309 

or faecal egg counts are unreliable indicators of parasite burdens.  310 

Endoscopy enabled repeated quantification of natural individual parasite burdens. In 311 

contrast, destructive sampling can only provide single estimates, while in the faecal egg count 312 

method there may be intermittent or seasonal changes in egg shedding through the sexual 313 

life-cycle of the parasites. However, adopting endoscopy requires full consideration of ethical 314 

implications. Endoscopy on conscious birds significantly reduced the time taken for birds to 315 

return to normal breeding behaviour in this study. Other studies have also endoscoped 316 
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conscious animals, for example the upper respiratory tract and oesophagus in small ruminants 317 

(Stierschneider, Franz & Baumgartner 2007), suggesting that adaptation of this technique to 318 

wild mammals may be possible. As in our study, Jackson and Cooper (1988) successfully 319 

endoscoped sooty albatross and rock-hopper penguins (Eudyptes chrysocome), in the field 320 

without anaesthetic. 321 

However, hosts may require anaesthesia if endoscopy is overtly stressful, causes 322 

significant discomfort, or if effective restraint is not possible. Crucially, a full cost-benefit 323 

analysis should be undertaken before endoscoping conscious birds, based on the species’ 324 

biology and likely responses to endoscopy with and without anaesthesia. We recommend that 325 

anaesthesia should be undertaken initially to ensure that the endoscope is appropriate for the 326 

species in question, and that parasites can be viewed in the proventriculus. Endoscopy may be 327 

of more limited use if the parasites of interest are too small in size to be effectively viewed or 328 

are located lower down in the gastrointestinal tract. Although not possible in our study, post-329 

mortem analysis of host burdens would provide unequivocal validation of the endoscope 330 

method for quantifying parasites and would be possible in some systems. 331 

Natural parasite categorical scores were highly consistent within individuals, 332 

suggesting that a single observation using the endoscope, at least in this species, is sufficient 333 

to classify individual parasite burdens into broad categories. More detailed assessment of 334 

worm counts indicated temporal declines in burdens over the chick rearing period. This 335 

general consistency in scores between endoscope sessions, coupled with the re-analysis of 336 

video records, provides confidence in the ability of the endoscope to accurately determine 337 

parasite burdens in the host. The ability to record and archive videos is clearly of great 338 

benefit. Although not undertaken here, potentially the endoscope can be used to collect 339 

parasite samples from the gut using retrieval baskets or biopsy forceps (see Jones (1990) for 340 
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details). This would facilitate parasite identification in host systems where parasite 341 

communities are not well characterised. 342 

Endoscopy was also used for evaluating drug efficacy, with the complete removal of 343 

worms in shags post-treatment with a 4.0mg/kg ivermectin dose. There was also some 344 

suggestion that birds treated with lower doses showed steeper declines in seasonal worm 345 

burden counts compared to controls. Evaluating drug efficacy is crucial if impacts of 346 

parasites on the host are to be fully understood. Previous experimental work on shags at this 347 

colony found that adults treated with equivalent low doses of ivermectin were significantly 348 

more successful at rearing sons than controls, but this difference was only found in late 349 

breeders (Reed et al. 2008). The impact of parasites in shags may therefore be even greater 350 

than suggested by this experiment, as lower doses would not have completely removed 351 

worms. Moreover, endoscopy in 2011 indicated that late breeding birds had significantly 352 

higher parasite burdens than early breeders, thus elucidating potential mechanisms for these 353 

observed differences in treatment effects. 354 

Given our experiences we propose that endoscopy would be applicable in the field to 355 

many host endoparasite systems, including reptile, mammal and bird hosts. Endoscopy is a 356 

standard tool in veterinary medicine, routinely used on animals including: tortoise (Pizzi et 357 

al. 2005); cats (Kubiak et al. 2002); dogs (Le Sueur, Bour & Schaper 2010); rabbits 358 

(Johnson, Drazenovich & Hawkins 2007); rats (Silverman et al. 1980); sheep and goats 359 

(Stierschneider, Franz & Baumgartner 2007); cattle (Franz 2011); horses (Raphel 1982); and 360 

seals (reported in Jackson and Cooper (1988)). Endoscopy has been particularly well utilised 361 

as a technique in avian medicine (Hernandez-Divers (2005); Gancz (2006)), including species 362 

such as cockatoo (Oglesbee & Steinohrt 2001); falcons (Jekl et al. 2006); and seabirds 363 

(Jackson & Cooper 1988; Quesada et al. 2011). Dietary studies involving stomach flushing of 364 

conscious birds using tubes inserted via the oesophagus into the stomach have been 365 
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successfully undertaken in birds ranging in size from small shore-birds (<50g in mass; 366 

Tsipoura and Burger (1999) through to albatross (Cooper, Henley & Klages 1992). 367 

Endoscope tubes that are capable of being flushed with air/water are available as small as 368 

4mm in diameter (Taylor & Murray 1999), opening up opportunities for a number of species. 369 

Endoscopy potentially opens up many avenues of research into the impact of parasites 370 

on host life-history strategies and fitness. There is a wealth of long-term demographic studies 371 

across a wide range of species many of which focus on the extrinsic and intrinsic drivers of 372 

variation in individual survival and breeding success. However, the role of parasites has been 373 

largely ignored. Being able to monitor temporal changes and quantify individual 374 

heterogeneity in parasite burdens represents a major step forward for ecological research in 375 

this field. In conclusion, once a full assessment of the ethical considerations has been 376 

undertaken, endoscopy can potentially provide a rapid, reliable and repeatable method for 377 

assessing natural individual variation in hosts. 378 

 379 
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S1: Video explaining the rationale for developing endoscopy as a method for assessing 393 

parasite burdens of wild shags. 394 

S2: Four video clips showing the variation in parasite burdens encountered in the wild shags, 395 

ranging from an individual that has no worms present (“absent”) following treatment with a 396 
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 515 

Table 1: Parameter estimates for the analysis of number of chicks fledged per nest fitting treatment 516 

group (unmanipulated, control, low or high ivermectin dose) and whether endoscopy was undertaken. 517 

Parameter Estimate S.E. z value P 

Intercept 0.467 0.092 5.069 <0.01 

Control -0.078 0.393 -0.197 0.844 

Low dose -0.234 0.375 -0.623 0.533 

High dose 0.176 0.523 0.336 0.737 

Endoscopy 0.338 0.374 0.906 0.365 
 518 

 519 

Table 2: The 12 best supported models of natural categorical parasite scores based on endoscopy at 520 

initial capture (n=69; see supplementary online information for full tables). “Earlylate” refers to 521 

whether a bird laid before or after the median laying date in 2011.  522 

 523 

Model parameters df ΔAIC 

earlylate + sex 4 0.000 

earlylate * sex  5 1.826 

earlylate + sex + Julian date 5 1.869 

earlylate + sex + age 5 1.993 

earlylate + sex * age  6 2.279 

earlylate * sex + sex * age 7 3.501 

earlylate * sex + Julian date 6 3.666 

sex 3 3.755 

earlylate * sex  + age 6 3.824 

earlylate + sex + age + Julian date 6 3.865 

earlylate + sex * age  + Julian date 7 4.099 

No. chicks fledged * sex  5 4.225 

 524 

Table 3: Parameter estimates for the analysis of natural categorical parasite scores based on the best 525 

supported model (by AIC) which included sex and “earlylate” (whether a bird laid before or after the 526 

median laying date in 2011).  527 

Model parameter Estimate Std. Error t value 

Sex (male) 1.726 0.521 3.312 

Earlylate (late) 1.173 0.501 2.343 

 528 

 529 

 530 

 531 
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Table 4: The twelve best supported models for the analysis of repeated worm counts (n=159; see 532 

supplementary information for full tables). Bird ID was fitted as a random effect in all cases. Sex and 533 

“Earlylate” (whether a bird laid before or after the median laying date in 2011) were found to be 534 

important from modelling of control data and included in all models. “Time” indicates time from 535 

dose. Models were fitted with different classifications of the treatment groups: “C” is the control 536 

group; “L” is low dose (0.7-1.0mg/kg); “M” is medium dose (2.0-3.0mg/kg) and “H” is high 537 

dose (4.0mg/kg). Separation of groups is shown by a fullstop (e.g. Group (CL.M.H) would be 538 

grouped control and low, with separate medium and high dose groups). Main effects with 539 

interactions are denoted by an asterisk and interactions without main effects by a colon. 540 

Model parameters Main treatment effect Interaction df ΔAIC 

Sex + Earlylate + Time  + Group(C.L.M.H) + 
Time:Group(C.LM.H)   

low, medium and high doses High has separate 
effect from low & 
medium 

10 0.000 

Sex + Earlylate + Time*Group(C.LM.H)              low, medium and high doses High has separate 
effect from low & 
medium 

9 0.731 

Sex + Earlylate + Time*Group(C.L.M.H)              low, medium and high doses All three doses have 
separate effects 

11 1.323 

Sex + Earlylate + Julian date + Time + Group(C.L.M.H) + 
Time:Group(C.LM.H)   

low, medium and high doses High has separate 
effect from low & 
medium 

11 1.740 

Sex + Earlylate + Julian date + Time*Group(C.LM.H)              low, medium and high doses High has separate 
effect from low & 
medium 

10 2.593 

Sex + Earlylate + Julian date + Time*Group(C.L.M.H)   low, medium and high doses All three doses have 
separate effects 

12 3.028 

Sex + Earlylate + Time*Group(CL.M.H)              medium and high doses Separate effects for 
medium and high 
doses 

9 3.347 

Sex + Earlylate + Time  + Group(CL.M.H) + Time:Group 
(CLM.H)    

Only at high dose  8 3.835 

Sex + Earlylate + Time + Group(C.L.M.H) + 
Time:Group(CL.M.H)   

medium and high doses Separate effects for 
medium and high 
doses 

10 4.695 

Sex + Earlylate + Julian date + Time*Group(CL.M.H)              medium and high doses Separate effects for 
medium and high 
doses 

10 4.925 

Sex + Earlylate + Time + Group(C.L.M.H) + 
Time:Group(CLM.H)    

Only at high dose  9 5.194 

Sex + Earlylate + Time + Group(C.LM.H) +  
Time:Group (CLM.H)    

Only at high dose  8 5.528 

 541 

Table 5: Parameter estimates for analysis of worm counts based on the best supported (by AIC) 542 

model that included sex, “earlylate” (whether a bird laid before or after the median laying date in 543 

2011), additive terms for treatment group and time from dose, and an interaction between treatment 544 

group and time from dose (high dose group separate from the other treatment groups). Model 545 

estimates were obtained using the “glmmPQL” function in R in order to account for overdispersion.  546 

Model parameters Estimate S.E. df t-value p-value 

Intercept 2.311 0.197 86 11.735 0.000 

Sex (male) 0.676 0.165 62 4.095 0.000 

Earlylate (late) 0.460 0.172 62 2.681 0.009 
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Time from dose -0.007 0.004 86 -1.668 0.099 

Treatment group (low dose) -0.099 0.200 62 -0.495 0.622 

Treatment group (medium dose) -0.574 0.281 62 -2.043 0.045 

Treatment group (high dose) 0.009 0.265 62 0.033 0.973 

time from dose:treatment group (low/medium dose) -0.024 0.014 86 -1.647 0.103 

time from dose: treatment group (high dose) -0.316 0.058 86 -5.411 0.000 
 547 

 548 

  549 

 550 

 551 

552 
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 553 

Figure 1: Images of the proventriculus of adult shags obtained from videos of birds exhibiting a range 554 

of C. rudolphi burdens: a) absent; b) low c) medium and d) high. 555 

 556 

Figure 2: Predicted probabilities (with 95% confidence limits) of control individuals of different sex 557 

and phenology (early or late denoting whether a bird laid before or after the median laying date in 558 

2011) having low, medium or high parasite burdens based on the best supported model by AIC which 559 

included additive sex and phenology terms.  560 

 561 

Figure 3: Categorical scores of natural parasite burdens in adult shags assessed with an endoscope. 562 

Parasite scores have been offset slightly to facilitate identification of individuals. 563 

 564 

Figure 4: Changes in parasite scores (categorical variable from absent to high) following initial 565 

treatment with ivermectin (day 0) for individual birds. Scores have been offset slightly to assist 566 

identification of individuals. 567 

 568 

Figure 5: Predicted worm counts following treatment with ivermectin or controls for the best 569 

supported model by AIC that included sex, “earlylate” and an interaction between treatment group 570 

and time from dose. Points indicate raw worm counts. Controls are shown in pale grey; low dose (0.7-571 

3.0 mg/kg) in dark grey; high dose (4.0 mg/kg) in black. Predictions are for late breeding males.572 
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Figure 1:  575 

576 
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Figure 2 578 
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Figure 3 581 
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Figure 4 587 
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Figure 5   590 
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