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ABSTRACT

Statistical relationships between future and historical model runs in multimodel ensembles (MMEs) are

increasingly exploited to make more constrained projections of climate change. However, such emergent

constraints may be spurious and can arise because of shared (common) errors in a particularMMEor because

of overly influential models. This study assesses the robustness of emergent constraints used for Arctic

warming by comparison of such constraints in ensembles generated by the two most recent Coupled Model

Intercomparison Project (CMIP) experiments: CMIP3 and CMIP5. An ensemble regression approach is used

to estimate emergent constraints in Arctic wintertime surface air temperature change over the twenty-first

century under the Special Report on Emission Scenarios (SRES) A1B scenario in CMIP3 and the Repre-

sentative Concentration Pathway (RCP) 4.5 scenario in CMIP5. To take account of different scenarios, this

study focuses on polar amplification by using temperature responses at each grid point that are scaled by the

global mean temperature response for each climate model. In most locations, the estimated emergent con-

straints are reassuringly similar in CMIP3 and CMIP5 and differences could have easily arisen from sampling

variation. However, there is some indication that the emergent constraint and polar amplification is sub-

stantially larger in CMIP5 over the Sea of Okhotsk and the Bering Sea. Residual diagnostics identify one

climate model in CMIP5 that has a notable influence on estimated emergent constraints over the Bering Sea

and one in CMIP3 that that has a notable influence more widely along the sea ice edge and into midlatitudes

over the western North Atlantic.

1. Introduction

The Arctic region has exhibited some of the most

dramatic recent changes in climate, with in particular

a rapid retreat of sea ice since at least 1979 and a loss of

ice mass on Greenland since the late 1990s (Stroeve

et al. 2007; Rignot et al. 2008). These changes are ex-

pected to have an important impact on sea level and

ocean circulation (Lemke et al. 2007).

Climate model simulations have shown that projected

lower-tropospheric warming in the Arctic is amplified

compared to the projected warming in global mean

temperature (e.g., Frierson 2006). However, there is

substantial variation in the amplitude of polar amplifi-

cation simulated by different climate models (Hawkins

and Sutton 2009). Investigation of phase 3 of the Cou-

pled Model Intercomparison Project (CMIP3) multi-

model ensemble (Meehl et al. 2007) has demonstrated

that the intermodel spread in projected change in sur-

face air temperatures near the winter sea ice edge can be

partially accounted for by differences in the means of

the historical runs (Räisänen et al. 2010; Bracegirdle and

Stephenson 2012, hereafter BS12). More specifically,

near the ensemble mean sea ice edge, models that sim-

ulate colder present-day surface temperatures (asso-

ciated with more sea ice) give more future warming

(associated with the transition from sea ice to open

ocean) (Holland and Bitz 2003). Such state dependence

of the response provides an emergent constraint (Collins

et al. 2012) that can be used to reduce model-related

uncertainty and give more precise projections (BS12).
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Other emergent constraints have also been found and

exploited for other variables such as Arctic sea ice ex-

tent and snow albedo (Hall and Qu 2006; Boe et al.

2009).

However, emergent constraints may also be spurious

and arise by serendipity because of common structural

errors in a particular ensemble of climate model ex-

periments (Stephenson et al. 2012). Furthermore, the

estimate of an emergent constraint may be overly sen-

sitive to an individual climate model in a multimodel

ensemble (MME); in other words, a particular model

may be overly influential. This note explores these ro-

bustness issues by comparing emergent constraints in

CMIP5 (Taylor et al. 2012) and CMIP3 experiments and

by using a Cook’s distance diagnostic to identify the

most influential models. Following BS12, the emergent

constraint in wintertime surface air temperatures at high

northern latitudes is quantified using ensemble regres-

sion. By ensemble regression we mean a regression at

each grid point across anMMEbetween the present-day

mean state of a variable and the projected change in that

variable. To take account of the different scenarios used

inCMIP3 [Special Report onEmission Scenarios (SRES)

A1B is used here] and CMIP5 [Representative Concen-

tration Pathway (RCP) 4.5 is used here], gridpoint

temperature changes are first scaled by the global mean

temperature change for each model.

2. Data and methods

a. Data

Theanalysis is basedonwintertime (December–February

mean) gridded surface air temperatures (CMIP variable

name ‘‘tas’’), obtained from CMIP3 and CMIP5 exper-

iments. Tables 1 and 2 list themodels for which available

data were successfully downloaded. Data from the

CMIP5 ‘‘historical’’ scenario runs and CMIP3 Climate

of the Twentieth Century (20C3M) runs were used to

define the present-day basic state. A 30-yr climatological

mean over 1970–99 winters was used to define the pres-

ent-day basic state in both the CMIP5 historical runs and

the CMIP3 20C3M runs. Future scenarios used 2069–98

data from the CMIP5 RCP4.5 and CMIP3 SRES A1B

scenario runs. For both CMIP5 and CMIP3, the future

climate change response is defined as the difference

between means from the future and present-day sce-

narios. An estimate of true present-day climate was ob-

tained by using the observationally constrained European

Centre for Medium-Range Weather Forecasts (ECMWF)

Interim Re-Analysis (ERA-Interim) dataset (Dee et al.

TABLE 1. CMIP5 and CMIP3 models used in this study. The realization numbers used are also shown for CMIP5 historical and RCP4.5

runs and for CMIP3 20C3M and SRES A1B runs. Identification numbers (ID) are introduced here for the purpose of identifying CMIP

models elsewhere in this paper.

CMIP5 CMIP3

ID Acronym Historical RCP 4.5 ID Acronym 20C3M SRES A1B

5.1 ACCESS1.0 1 1 3.1 BCCR BCM2.0 1 1

5.2 BCC–CSM1–1 1–3 1 3.2 CCSM3 1–8 1–7

5.3 CanESM2 1–5 1–5 3.3 CGCM3.1(T47) 1–5 1–5

5.4 CCSM4 1–6 1–6 3.4 CGCM3.1(T63) 1 1

5.5 CNRM-CM5 1–10 1 3.5 CNRM-CM3 1 1

5.6 CSIRO Mk 3.6.0 1–10 1–10 3.6 CSIRO Mk 3.0 1–3 1

5.7 GFDL CM3 1–5 1 3.7 CSIRO Mk 3.5 1–3 1

5.8 GFDL-ESM2G 1 1 3.8 ECHAM5/MPI-OM 1–4 1–4

5.9 GFDL-ESM2M 1 1 3.9 ECHO-G 1–5 1–3

5.10 GISS-E2-R 1–6 1–6 3.10 FGOALS-g1.0 1, 2,* 3 1–3

5.11 HadGEM2-CC 1–3 1 3.11 GFDL CM2.0 1 1–3

5.12 HadGEM2-ES 1–4 1–4 3.12 GFDL CM2.1 1 1–2

5.13 INM-CM4 1 1 3.13 GISS-AOM 1–2 1–2

5.14 IPSL CM5A-LR 1–4 1–4 3.14 GISS-EH 1–5 1–3

5.15 IPSL CM5A-MR 1 1 3.15 GISS-ER 1–9 1–5

5.16 MIROC-ESM 1–3 1 3.16 INGV-SXG 1 1

5.17 MIROC-ESM-CHEM 1 1 3.17 INM-CM3.0 1 1

5.18 MIROC5 1–4 1–3 3.18 IPSL CM4 1–2 1

5.19 MPI-ESM-LR 1–3 1–3 3.19 MIROC3.2(hires) 1 1

5.20 MRI-CGCM3 1–5 1 3.20 MIROC3.2(medres) 1–3 1, 2, 3*

5.21 NorESM1-M 1–3 1 3.21 MRI CGCM2.3.2 1–5 1–5

5.22 NorESM1-ME 1 1 3.22 PCM 1–4 1–4

3.23 HadCM3 1 1

3.24 HadGEM1 1 1

* These runs were found to include erroneous values of near-surface temperature andwere therefore omitted from the ensemble averages.
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té
o
ro
lo
g
iq
u
e
s
C
o
u
p
le
d

G
lo
b
a
l
C
li
m
a
te

M
o
d
e
l,
v
e
rs
io
n
3

C
S
IR

O
M
k
3
.6
.0

C
o
m
m
o
n
w
e
a
lt
h
S
ci
e
n
ti
fi
c
a
n
d
In
d
u
st
ri
a
l
R
e
se
a
rc
h

O
rg
a
n
is
a
ti
o
n
M
a
rk
,
v
e
rs
io
n
3
.6
.0

C
S
IR

O
M
k
3
.0

C
o
m
m
o
n
w
e
a
lt
h
S
ci
e
n
ti
fi
c
a
n
d
In
d
u
st
ri
a
l
R
e
se
a
rc
h
O
rg
a
n
is
a
ti
o
n

M
a
rk
,
v
e
rs
io
n
3
.0

G
F
D
L
C
M
3

G
e
o
p
h
y
si
ca
l
F
lu
id

D
y
n
a
m
ic
s
L
a
b
o
ra
to
ry

–
C
li
m
a
te

M
o
d
e
l,

v
e
rs
io
n
3

C
S
IR

O
M
k
3
.5

C
o
m
m
o
n
w
e
a
lt
h
S
ci
e
n
ti
fi
c
a
n
d
In
d
u
st
ri
a
l
R
e
se
a
rc
h
O
rg
a
n
is
a
ti
o
n

M
a
rk
,
v
e
rs
io
n
3
.5
.0

G
F
D
L
-E

S
M
2
G

G
e
o
p
h
y
si
ca
l
F
lu
id

D
y
n
a
m
ic
s
L
a
b
o
ra
to
ry

–
E
a
rt
h
S
ci
e
n
ce

M
o
d
e
l
2
G

E
C
H
A
M
5
/M

P
I-
O
M

M
a
x
P
la
n
ck

In
st
it
u
te

fo
r
M
e
te
o
ro
lo
g
y
(M

P
I-
M
)
fu
ll
y
co
u
p
le
d

cl
im

a
te

m
o
d
e
l
E
C
H
A
M
5
a
n
d
H
a
m
b
u
rg

P
ri
m
it
iv
e
E
q
u
a
ti
o
n

O
ce
a
n
M
o
d
e
l

G
F
D
L
-E

S
M
2
M

G
e
o
p
h
y
si
ca
l
F
lu
id

D
y
n
a
m
ic
s
L
a
b
o
ra
to
ry

–
E
a
rt
h
S
ci
e
n
ce

M
o
d
e
l
2
M

E
C
H
O
-G

E
C
H
A
M
4
a
n
d
th
e
g
lo
b
a
l
H
a
m
b
u
rg

O
ce
a
n
P
ri
m
it
iv
e
E
q
u
a
ti
o
n

M
o
d
e
l

G
IS
S
-E

2
-R

G
o
d
d
a
rd

In
st
it
u
te

fo
r
S
p
a
ce

S
tu
d
ie
s
M
o
d
e
l
E
,
co
u
p
le
d

w
it
h
R
u
ss
e
ll
o
ce
a
n
m
o
d
e
l

F
G
O
A
L
S
-g
1
.0

F
le
x
ib
le

G
lo
b
a
l
O
ce
a
n
-A

tm
o
sp
h
e
re
-L
a
n
d
S
y
st
e
m

M
o
d
e
l

g
ri
d
p
o
in
t,
v
e
rs
io
n
1
.0

H
a
d
G
E
M
2
-C

C
H
a
d
le
y
C
e
n
tr
e
G
lo
b
a
l
E
n
v
ir
o
n
m
e
n
ta
l
M
o
d
e
l
2
,

C
a
rb
o
n
C
y
cl
e

G
F
D
L
C
M
2
.0

G
e
o
p
h
y
si
ca
l
F
lu
id

D
y
n
a
m
ic
s
L
a
b
o
ra
to
ry

C
li
m
a
te

M
o
d
e
l,

v
e
rs
io
n
2
.0

H
a
d
G
E
M
2
-E

S
H
a
d
le
y
C
e
n
tr
e
G
lo
b
a
l
E
n
v
ir
o
n
m
e
n
ta
l
M
o
d
e
l
2
,
E
a
rt
h
S
y
st
e
m

G
F
D
L
C
M
2
.1

G
e
o
p
h
y
si
ca
l
F
lu
id

D
y
n
a
m
ic
s
L
a
b
o
ra
to
ry

C
li
m
a
te

M
o
d
e
l,

v
e
rs
io
n
2
.1

IN
M
-C

M
4

In
st
it
u
te

o
f
N
u
m
e
ri
ca
l
M
a
th
e
m
a
ti
cs

C
o
u
p
le
d
M
o
d
e
l,
v
e
rs
io
n
4
.0

G
IS
S
-A

O
M

G
o
d
d
a
rd

In
st
it
u
te

fo
r
S
p
a
ce

S
tu
d
ie
s,
A
tm

o
sp
h
e
re
-O

ce
a
n
M
o
d
e
l

IP
S
L
C
M
5
A
-L
R

L
’I
n
st
it
u
t
P
ie
rr
e
-S
im

o
n
L
a
p
la
ce

C
o
u
p
le
d
M
o
d
e
l,

v
e
rs
io
n
5
,
co
u
p
le
d
w
it
h
N
E
M
O
,
lo
w
re
so
lu
ti
o
n

G
IS
S
-E

H
G
o
d
d
a
rd

In
st
it
u
te

fo
r
S
p
a
ce

S
tu
d
ie
s
M
o
d
e
l
E
,
co
u
p
le
d
w
it
h

th
e
H
Y
C
O
M

o
ce
a
n
m
o
d
e
l

IP
S
L
C
M
5
A
-M

R
L
’I
n
st
it
u
t
P
ie
rr
e
-S
im

o
n
L
a
p
la
ce

C
o
u
p
le
d
M
o
d
e
l,

v
e
rs
io
n
5
,
co
u
p
le
d
w
it
h
N
E
M
O
,
m
e
d
iu
m

re
so
lu
ti
o
n

G
IS
S
-E

R
G
o
d
d
a
rd

In
st
it
u
te

fo
r
S
p
a
ce

S
tu
d
ie
s
M
o
d
e
l
E
,
co
u
p
le
d
w
it
h

R
u
ss
e
ll
o
ce
a
n
m
o
d
e
l

M
IR

O
C
-E

S
M

M
o
d
e
l
fo
r
In
te
rd
is
ci
p
li
n
a
ry

R
e
se
a
rc
h
o
n
C
li
m
a
te
,

E
a
rt
h
S
y
st
e
m

M
o
d
e
l

IN
G
V
-S
X
G

Is
ti
tu
to

N
a
zi
o
n
a
le

d
i
G
e
o
fi
si
ca

e
V
u
lc
a
n
o
lo
g
ia
,
S
IN

T
E
X
-G

M
IR

O
C
-E

S
M
-C

H
E
M

M
o
d
e
l
fo
r
In
te
rd
is
ci
p
li
n
a
ry

R
e
se
a
rc
h
o
n
C
li
m
a
te
,

E
a
rt
h
S
y
st
e
m

M
o
d
e
l,
C
h
e
m
is
tr
y
C
o
u
p
le
d

IN
M
-C

M
3
.0

In
st
it
u
te

o
f
N
u
m
e
ri
ca
l
M
a
th
e
m
a
ti
cs

C
o
u
p
le
d
M
o
d
e
l,
v
e
rs
io
n
3
.0

M
IR

O
C
5

M
o
d
e
l
fo
r
In
te
rd
is
ci
p
li
n
a
ry

R
e
se
a
rc
h
o
n
C
li
m
a
te
,

v
e
rs
io
n
5

IP
S
L
C
M
4

L
’I
n
st
it
u
t
P
ie
rr
e
-S
im

o
n
L
a
p
la
ce

C
o
u
p
le
d
M
o
d
e
l,
v
e
rs
io
n
4

M
P
I-
E
S
M
-L
R

M
a
x
P
la
n
ck

In
st
it
u
te

E
a
rt
h
S
y
st
e
m

M
o
d
e
l,
lo
w
re
so
lu
ti
o
n

M
IR

O
C
3
.2
(h
ir
e
s)

M
o
d
e
l
fo
r
In
te
rd
is
ci
p
li
n
a
ry

R
e
se
a
rc
h
o
n
C
li
m
a
te
,
v
e
rs
io
n

3
.2

(h
ig
h
re
so
lu
ti
o
n
)

M
R
I-
C
G
C
M
3

M
e
te
o
ro
lo
g
ic
a
l
R
e
se
a
rc
h
In
st
it
u
te

C
o
u
p
le
d
G
e
n
e
ra
l

C
ir
cu
la
ti
o
n
M
o
d
e
l,
v
e
rs
io
n
3

M
IR

O
C
3
.2
(m

e
d
re
s)

M
o
d
e
l
fo
r
In
te
rd
is
ci
p
li
n
a
ry

R
e
se
a
rc
h
o
n
C
li
m
a
te
,
v
e
rs
io
n

3
.2

(m
e
d
iu
m

re
so
lu
ti
o
n
)

N
o
rE

S
M
1
-M

N
o
rw

e
g
ia
n
E
a
rt
h
S
y
st
e
m

M
o
d
e
l,
in
te
rm

e
d
ia
te

re
so
lu
ti
o
n

M
R
I
C
G
C
M
2
.3
.2

M
e
te
o
ro
lo
g
ic
a
l
R
e
se
a
rc
h
In
st
it
u
te

C
o
u
p
le
d
G
e
n
e
ra
l
C
ir
cu
la
ti
o
n

M
o
d
e
l,
v
e
rs
io
n
2
.3
.2

N
o
rE

S
M
1
-M

E
N
o
rw

e
g
ia
n
E
a
rt
h
S
y
st
e
m

M
o
d
e
l,
in
te
rm

e
d
ia
te

re
so
lu
ti
o
n
w
it
h
C
a
rb
o
n
C
y
cl
e

P
C
M

P
a
ra
ll
e
l
C
li
m
a
te

M
o
d
e
l

H
a
d
C
M
3

H
a
d
le
y
C
e
n
tr
e
C
li
m
a
te

M
o
d
e
l,
v
e
rs
io
n
3

H
a
d
G
E
M
1

H
a
d
le
y
C
e
n
tr
e
G
lo
b
a
l
E
n
v
ir
o
n
m
e
n
ta
l
M
o
d
e
l,
v
e
rs
io
n
1

15 JANUARY 2013 BRACEG IRDLE AND STEPHENSON 671



2011). Before analysis, all climate model and reanalysis

datasets were bilinearly interpolated onto the same hor-

izontal grid [the Hadley Centre Global Environmental

Model 2, Earth System (HadGEM2-ES); grid: 1.258 lati-
tude 3 1.8758 longitude].

b. Ensemble regression framework

Following BS12, at each grid point the multimodel

ensemble data are represented by the linear regression

model yi 5m1bxi 1 «i, where xi is the mean wintertime

temperature simulated by model i for the historical

scenario and yi is the response in wintertime tempera-

ture at the same grid point divided by the global mean

temperature response simulated by the samemodel. The

residuals «i are assumed to be identically and indepen-

dently distributed with zero expectation. The response

for each model is the difference between the mean of all

future runs and the mean of all past runs for that model,

with no account taken for the different numbers of runs

(summarized in Tables 1 and 2). The framework provides

a parsimonious description of the ensemble using only

three parameters at each grid point, m, b, and s2
« [the

variance of the residuals var(«)], which are estimated

here using ordinary least squares. The fraction of vari-

ance, R2 5 (s2
y 2s2

«)/s
2
y, provides a simple measure of

the strength of the emergent constraint. The model is

used to predict the mean response and confidence in-

terval one would obtain for a basic state equal to that

observed historically (for details see appendix). To

identify data points in the regression that have the most

influence on the estimated parameters, a Cook’s distance

(Faraway 2005; see appendix for more details) has been

calculated at each grid point for each model.

3. Results

a. Emergent constraints in CMIP3 and CMIP5

The analysis shown here includes all models except

model 3.10 in CMIP3. Model 3.10 has been removed as

in previous studies (e.g., BS12) because of its known

biases and unduly large influence (see next section).

After removal of model 3.10, CMIP5 and CMIP3 give

similar ensemble regression estimates of polar amplifica-

tion (Fig. 1). The Arctic average mean response (north

of 608N) is slightly larger in the CMIP5 models (2.788C)
than in the CMIP3 models (2.498C). Figures 1b,d show

the 95% prediction interval at each grid point (see

appendix for definition). The CMIP3- and CMIP5-

based predictions have similar precision with only

slightly larger 95% prediction intervals for CMIP5 than

CMIP3. Figure 1a also shows the locations referred to

below: the Labrador Sea (denoted with ‘‘L’’), the Bering

Sea (denoted with ‘‘B’’), and the Sea of Okhotsk (denoted

with ‘‘O’’).

Figures 2a–c show the fraction of variance explained

R2 by the regression in CMIP5 and CMIP3. The emer-

gent constraint is strongest along the winter boundary

between sea ice and open ocean (referred to here as the

ice edge). It accounts for broadly similar fractions of

variance in CMIP5 and CMIP3 (Figs. 2a,b). However,

the CMIP5 constraint is weaker along the sea ice edge

of the North Atlantic and stronger over the Sea of

Okhotsk.

Figures 2d–f show the estimated regression slopes for

the CMIP5 and CMIP3 ensembles. These also are

broadly similar for CMIP5 and CMIP3, with negative

slopes along the ice edge. Differences between b̂CMIP5

and b̂CMIP3 are generally smaller than the 95% confi-

dence intervals associated with their summed variances,

except over the Sea of Okhotsk and the Bering Sea

(Figs. 2g–i), where the slopes for CMIP5 are sub-

stantially more negative.

Figure 3 shows detailed comparisons over the Lab-

rador Sea (Figs. 3a–c), the Sea of Okhotsk (Figs. 3d–f),

and the Bering Sea (Figs. 3g–i). These locations were

chosen because the Labrador Sea is an example of a lo-

cation of close agreement between CMIP3 and CMIP5,

whereas over the Sea of Okhotsk and Bering Sea dif-

ferences between b̂CMIP5 and b̂CMIP3 are large. The im-

plications of these differences can be explored by using

the ensemble regression estimates from CMIP3 to make

predictions of CMIP5 model responses based on the

model historical mean state. Over the Labrador Sea

(Fig. 3c) the CMIP5 and CMIP3 estimated slopes are

similar. However, over the Sea of Okhotsk, the rela-

tively large differences between b̂CMIP5 and b̂CMIP3 mean

that CMIP5 responses predicted from CMIP3 relation-

ships are unreliable. It should be noted, however, that

the CMIP5 projected change for all but four CMIP5

models is within the 95% prediction interval of the pro-

jected change estimated using CMIP3 ensemble regres-

sion. Over the Bering Sea the differences are due to an

outlier with a large influence on the ensemble regression

slope (model 5.8), which is clearly apparent in Fig. 3g.

Withmodel 5.8 removed, theCMIP5 andCMIP3 slopes at

this location are in much closer agreement (not shown).

b. Influential models in ensemble regression

Figure 4 shows Cook’s distances averaged over the

subarctic, which suggest that model 5.8 in CMIP5 and

model 3.10 in CMIP3 are by far the most influential in

the ensemble regressions for these experiments. This is

consistent with the above finding that model 5.8 has

a large influence over the Bering Sea. The spatial dis-

tribution of the Cook’s distance of model 5.8 shows that
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its large influence occurs almost entirely over the central

and southern Bering Sea (Fig. 5a). This is in contrast with

model 3.10, which shows large Cook’s distances in many

regions (Fig. 5b). In their CMIP3 study, BS12 also identi-

fied model 3.10 as having large influence (based on lever-

age diagnostics; see appendix) and omitted it since it is

known to have an unrealistically small poleward ocean

heat transport atmidlatitudes (Arzel et al. 2006).Model 5.8

is worthy of amore detailed investigation to find out why it

was identified as influential in CMIP5. Model 5.6 exhibits

the next largest subarctic Cook’s distance after model 5.8.

Interestingly this model has been found to be an outlier in

terms of September Arctic sea ice extent (Massonnet et al.

2012). TheCMIP5 ensemble regression estimates were not

found to be substantially different in sensitivity tests

where model 5.6 was removed (not shown).

FIG. 1. Predicted polar amplification (warming per 18C in global mean temperature): (a) CMIP5 mean response,

(b) CMIP5 95% prediction interval, (c) CMIP3 mean response, and (d) CMIP3 95% prediction interval. In (a), the

letters O, B, and L indicate the locations of the Sea of Okhotsk, the Bering Sea, and the Labrador Sea, respectively.
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FIG. 2. Summary of ensemble regression for CMIP5 and CMIP3. Fraction of variance explainedR2 for (a) the CMIP5 ensemble, (b) the

CMIP3 ensemble, and (c) the difference CMIP52 CMIP3. Slope estimate b̂ for (d) the CMIP5 ensemble, (e) the CMIP3 ensemble, and

(f) the difference CMIP5 2 CMIP3. Uncertainty in b̂ (standard error multiplied by 1.96) for (g) CMIP5, (h) CMIP3, and (i) the ratio

between the absolute slope estimate difference in (f) and the combined CMIP3 and CMIP5 uncertainty in b̂ (i.e., 1:96
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
b̂3

1s2
b̂5

q
, where

sb̂3 and sb̂5 are the standard error in b̂ for CMIP3 and CMIP5, respectively).
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4. Conclusions

This intercomparison of emergent constraints in

CMIP3 and CMIP5 has found that the inverse rela-

tionship of wintertime polar amplification of Arctic

warming to the mean present-day temperatures simu-

lated by models is generally robust. The significant cor-

relations along the winter sea ice edge, identified in

CMIP3 by Räisänen (2007) and Knutti et al. (2010), are

also present in CMIP5. It is likely that the same physical

mechanism can explain this in both cases: namely, that,

near the ensemble mean ice edge, models with too much

sea ice in present-day climate tend to havemore warming

in the future since as ice retreats the transition from sea

ice to open ocean gives large surface warming (Holland

and Bitz 2003). However, if the emergent constraint was

caused by structural model error, a small amount of

similarity might still be expected since the models in

CMIP5 have evolved from those inCMIP3 and so the two

ensembles are not completely independent.

The ensemble regression slopes show the same broad

spatial pattern in CMIP5 and CMIP3. Over the North

Atlantic and most of the Arctic the differences between

CMIP5 and CMIP3 regression slopes could easily have

FIG. 3. Scatterplots comparing linear fits to intermodel relationships in surface air temperature (SAT) over (a)–(c) the Labrador Sea

(608N, 54.48W), (d)–(f) the Sea ofOkhotsk (558N, 1508E), and (g)–(i) theBering Sea (57.58N, 174.48E). These locations aremarked in Fig. 1a.

CMIP5 output is shown in (a),(d), and (g) and CMIP3 output is shown in (b),(e), and (h). The black solid (dashed) lines show the

ensemble regression (ensemble mean) predicted mean response in scaled SAT, and the blue solid (dashed) lines show the 95% prediction

interval. In (c) and (f), the change from individual CMIP5 model projections is compared with estimates of those projections based on

feeding the CMIP5 historical mean state into the CMIP3 regression relationships. The vertical lines show the prediction intervals. The

arrows in (g) and (i) indicate model 5.8.
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arisen because of sampling variation. There are some

significant differences over the Sea of Okhotsk and the

Bering Sea. Over the Bering Sea, this is attributable to

a model with a large local influence on the ensemble

regression slope (discussed below). Over the Sea of

Okhotsk, the reason for the differences is less clear. One

possibility is that the emergent constraint is less robust

in this region and prone to changes in structural errors

possibly related to model improvements such as higher

horizontal resolution. However, a comparison between

‘‘high’’ and ‘‘low’’ resolution subsets of the CMIP3 en-

semble showed no indication of a sensitivity of regres-

sion slope to resolution (not shown). Alternatively, it is

clear that over the Sea ofOkhotsk the intermodel spread

in historical climatology is smaller in CMIP5 than in

CMIP3 (Figs. 3d,e) but with a similar range of projected

changes. The consequence of this is therefore a steeper

slope in CMIP5.

It is possible that significance in the differences be-

tween the parameters estimated from the CMIP3 and

CMIP5 ensembles is overestimated here because of the

effective number of independent models being smaller

than the actual number of models (e.g., Jun et al. 2008;

Masson and Knutti 2011). However, it should be noted

that it is the regression residuals in model temperatures,

rather than the model temperatures, that are assumed to

be independently distributed. The inclusion of a depen-

dence on the basic state helps to produce residuals that

appear to be identically and independently distributed.

This point is supported by a lack of obvious clustering

of related models in the scatterplots of past–future re-

lationships in gridpoint surface temperature shown in

Fig. 2 of BS12.

A Cook’s distance diagnostic identified model 5.8 in

CMIP5 and model 3.10 in CMIP3 as the most influential

models over the Arctic. The large Cook’s distance ex-

hibited by model 3.10 shows that the large leverage

found by BS12 for this model is causing a large influence

on ensemble regression slopes. The issues with model

3.10 are well documented and understood. However, it

is not yet clear what the reasons are for the strong in-

fluence of model 5.8 over the Bering Sea. This is an

important issue to investigate in the future but is beyond

the scope of this paper.

FIG. 4. Subarctic averages (areaweighted over 508–708N) of Cook’s distances for (a) the CMIP5

models and (b) the CMIP3 models.
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APPENDIX

Prediction Uncertainty, Leverage, and Influence

This appendix gives a brief explanation of the con-

cepts of prediction uncertainty, leverage, and influence

relevant to ensemble regression. The reader is referred

to standard textbooks on linear models for more com-

prehensive discussion (e.g., Faraway 2005).

From the regression model described in section 2b,

the predicted mean climate change response is given by

ŷ0 5 m̂1 b̂x0, where x0 is an estimate of the present-day

basic state (e.g., the climatological mean of reanalysis

temperatures). The carat symbol denotes either a pa-

rameter estimate or a regression model prediction. It

should be noted that only ensemble climate model data

are used to estimate the regression parameters, and so

observations have no effect on estimates of the slope and

intercept. Uncertainty in future observations involves

uncertainty in the predicted response and uncertainty

caused by the natural variability of future observations.

We represent it here with the 95% prediction interval

with lower and upper limits,

ŷ02 1:96
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(sŷ

21s2
«)

q
and ŷ01 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(sŷ

21s2
«)

q
,

which are valid for large ensemble size if the residuals

are normally distributed.

With regard to leverage and Cook’s distance di-

agnostics, it is useful to write down the regression model

in matrix form as ŷ5X(XTX)21XTy5Hy, where H is

known as the ‘‘hat matrix’’ and X is a matrix with col-

umns incorporating the intercept and predictor x. The

diagonal elements of the hat matrixHii are referred to as

‘‘leverages.’’

With one predictor variable x, high leverage occurs for

points that have outlying values in x. BS12 used leverage

to help identify influential climate models in ensemble

regression. However, the influence of a data point on the

FIG. 5. Spatial distribution of Cook’s distance for (a) model 5.8 and (b) model 3.10.
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regression estimates also depends on both its leverage

and its distance from the regression slope. An item with

a small leverage could still have a large influence if it has

a large residual. Both effects are taken into account in

the Cook’s distance diagnostic given by

Di 5
1

p

«2i
s2
«

Hii

(12Hii)
2
,

where p is the number of predictors plus 1 (Faraway

2005, p. 70).
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