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Abstract

This paper develops and demonstrates a model of stochastic spatial variation. It

is proposed that this model may represent soil variability according to a particular mode

under which the soil varies continuously, showing short-range lateral trends induced by

local effects of the factors of soil formation which vary across the region of interest in an

unpredictable way. The trends in soil variation are therefore only apparent locally, and

the soil variation at regional scale appears random. Such variation might be expected

in a landscape where the soil varies along topographic catenas which repeat across the

region in response to a drainage pattern which is not entirely regular in spacing or

orientation, and is therefore unpredictable. The Continuous Local Trend (CLT) mode

of soil variation may also be expected where gradients of soil properties are induced

around individual plants, or plant roots.

In the stochastic model the local trend is assumed to be described by a function of

distance to the nearest event in a realization of a random spatial point process. A model

is developed here in which the point process shows complete spatial randomness, so it

is called the Poisson Continuous Local Trend (PCLT) model. The covariance function

for the PCLT with a general distance function is developed and some hypothetical

examples are shown, including one in which the variogram of a soil property is inferred

by using a published topofunction. The PCLT model is then fitted to the empirical

variogram of some data on soil water content in a gently undulating clay landscape,
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and the multiple point statistics of the PCLT model for these data are compared with

those of a corresponding multivariate normal model.

Keywords: Linear mixed model; Stochastic geometry; Voronoi tessellation; Multiple

point geostatistics; Topofunction.

1. Introduction

Geostatisticians use mixed models to analyse and predict soil properties. In these mod-

els some of the soil variation is accounted for by fixed effects, continuous covariates or

categorical factors, and the remaining variation is modelled as random effects, includ-

ing a spatially correlated component (Lark et al., 2006). Typically our knowledge of

soil processes is put to use by selection of appropriate fixed effects for such models.

The random effects account for the soil variation that we cannot explain in terms of

fixed effects. Either no fixed effects can be formulated, because of the complexity of the

origins of the soil variation and its dependence on contingent events in the prehistory

of the landscape (Webster, 2000), or appropriate covariates are not measured at the

scale of interest in the region under study.

The spatial correlation of the random effects is modelled by a covariance function

typically selected from a set of authorised functions with convenient mathematical

properties (Webster and Oliver, 2007). However, covariance models for the random

effects would ideally be selected because they represent the processes that cause the

variation. One advantage of such an approach would be that prior distributions for the

covariance parameters could be specified from scientific knowledge and understanding

of the underlying processes. These prior models could then be used to improve the

efficiency of sampling (Marchant and Lark, 2006).

The relationship between the form of the covariance function and the underlying

physical processes is well established for diffusion (Whittle, 1954; 1962) and for vari-
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ables in branches of the earth sciences including hydrology (Kolvos et al., 2004) and

geophysics (Chilès and Delfiner, 1999), but we might reasonably observe that in most

cases the factors underlying soil variation are too complex to allow a straightforward

inference from process understanding to the form of the covariance function. However,

we might identify a model of random variation in space that represents a general mode

of soil variation that we can expect to encounter in particular conditions.

By a mode of soil variation is meant a simple and generalizable rule that captures

how the effect of a factor of soil formation varies laterally. The mode of variation for a

variable is a basis for prediction of features of its statistical distribution (e.g. Allègre

and Lewin, 1995) and for decisions such as the selection of a transformation or model.

For example, if soil variation is associated with microtopography in a landscape which

shows pronounced and regular periodicity (e.g. ridge and furrow), then we might call

the expected mode of variation periodic, and expect to see a variogram with a regular

fluctuation. Webster and Oliver (2007) note that apparent fluctuations in the empirical

variogram can be artefacts, arising, for example, from strongly clustered sampling, and

advise against the routine selection of periodic variograms models just because they

fit. Pedological knowledge that a variable arises from a periodic mode of variation

gives us confidence both to select a variogram model with a periodic component and to

interpret the wavelength of the fluctuation in the variogram as real information about

the underlying mode of variation (its wavelength) and the soil-forming factors that

underly it.

Lark (2009) considered another mode of soil variation where the factors of soil

formation operate within discrete domains (different geological units, agricultural fields,

catchments etc.) The Poisson Voronoi Tesselation (PVT) model was proposed for

random variation of soil according to this mode, based on the partition of space into

Dirichlet tiles around seed points drawn from a Poisson spatial point process. The

model fitted well to the empirical variograms of soil properties measured at a range of
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scales. Lark (2010) showed that the PVT model was a more plausible model of the

variation in several soil data sets than was an alternative multivariate normal model.

However, it is clear that a model based on discrete domains will not be universally

appropriate for the random variation of the soil. It is necessary to develop a wider

range of random models for other modes of soil variation.

In this paper I propose a random model for soil variation that exhibits continuous

local trends (CLT). This mode of soil variation can be exemplified at disparate spatial

scales. For example, gradients of soil properties may be induced around individual

plants (Pérez, 1995) or individual rhizospheres (Youseff and Chino, 1989). Gradients

of soil properties have also been reported from the centre to the margins of the polygons

in patterned ground (Barrett et al., 2004). Such variation is continuous (there are no

step changes in the soil property), and is characterised by lateral trends. However,

the trend is not global (at the scale of the whole region of interest) but rather is local

induced by an underlying process such as the distribution of plants, roots or periglacial

polygons whose distribution is not predictable at a global scale. The local trends

therefore form a repeating pattern across the region, which cannot be regarded as a

simple deterministic function (unlike a global trend across the region), and may, in

the absence of an appropriate covariate (such as a remote sensor image of patterned

ground) be consigned to the random effects of a mixed model.

The CLT mode of soil variation is exemplified at landscape scale by certain forms

of catenary variation. The concept of the catena was introduced by Milne (1936)

to facilitate soil survey in East Africa. Milne’s catenas represent a pattern of soil

variation across a valley from drainage line to interfluve. Variation along a catena may

be continuous, or abrupt: for example at the transition from woodland to grassland

at the margin of the dambo which occupies the bottom of the catena described by

Webster (1965). In a catenary landscape soil varies predictably across a valley from

one interfluve to the next, but across a region this sequence repeats, constituting a
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pattern. Milne delineated map units within which a characteristic catenary pattern

of variation could be discerned. One might, as Webster (2000) observed, regard the

variation of a soil property at locations within such a unit as random because of the

unpredictability of the drainage pattern. One such landscape is the Eldama landsystem

in Western Kenya, as surveyed by Scott et al. (1971). A block diagram of this land

system is shown in Figure 1a. In the mixed model context one might assign this

variation to fixed effects if it can be represented by covariates, perhaps drawn from a

digital elevation model, or otherwise to random effects. The CLT mode of variation

would be exemplified by a repeating catenary pattern which can be represented by a

continuous topofunction (Yaalon, 1975) such as those proposed for various landscapes

by Walker (1966), Ruhe (1969), Walker and Ruhe (1968), Walker et al., (1968) and

Kleiss (1970). Continuous local trends, associated with topography are also predicted

by pedogenetic models (e.g. Rosenbloom et al., 2001). In those landscapes where the

drainage is strongly oriented in one direction the CLT mode of variation is essentially

one-dimensional (across the drainage line), this is illustrated by the Lolimo land system

in the survey of Western Kenya by Scott et al. (1971), shown in Figure 1b. A two-

dimensional mode of variation could be envisaged in circumstances where the local

direction of the drainage line is unpredictable for a randomly located site in the region.

In this paper I propose a stochastic model for the CLT mode of soil variation. In

this model it is assumed that local trends are induced by the events in a realization of

a random spatial point process (which could, for example, correspond to positions of

individual plants in the example of CLT variation presented by Pérez (1995). The value

of the CLT process at any location depends on the distance to the nearest event from

the underlying point process. In this paper I assume complete spatial randomness of

the point process, which induces a Poisson CLT (PCLT). In the remainder of this paper

I derive this model in more detail and show the form of the variogram for a number of

hypothetical instances. I then fit the PCLT model to the empirical variogram of some
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data on the water content of soil in an undulating clay landscape in eastern England.

2. Theory

In this paper I propose a Poisson CLT (PCLT) model of random variation in which the

value of the variable at some location is a function of the distance to the nearest event

from a Poisson spatial point process with specified intensity. In this section I develop

this model and derive the variogram function for it.

2.1 Notation

Let s be an arbitrary location in our region of interest which is a d-dimensional real

subspace R ⊂ Rd. Let h ∈ Rd be a ‘structuring element’, i.e. a vector of unit norm

and arbitrary direction (on the assumption of isotropy when d > 1), and let r be a lag

distance.

Let Ψ be a point process in Rd. This is a random process and a realization of it

in Rd, ψ, is a set of points with random positions, xi ∈ Rd, i ≥ 0. Denote by S some

subspace of our d-dimensional space, S ⊂ Rd. By |S| is denoted the Lebesgue measure

of S, (that is the length in one dimension, area in two dimensions, volume in three

dimensions etc). Let ψ(S) denote a random variable which is the number of events of

the point process in S. The intensity of the spatial point process is λ such that

E [ψ(S)] = λ |S| , (1)

where E[·] denotes the expectation of the term in square brackets. The distribution of

ψ(S) is denoted by P {ψ(S)}, which is a Poisson distribution if the events of the process

are completely spatially random and independent. I assume here that Ψ is a stationary

random process (homogeneous Poisson) so that statistics such as the intensity are

invariant under a translation in space.

A Poisson Voronoi tessellation of S, denoted by T , is the partition of S into non-

overlapping space-filling cells which depend on ψ. The ith cell of T , Ci(ψ), contains
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the ith point in ψ and only the ith point because Ci(ψ) is defined as the set of all

points in S which are closer to the ith point in ψ than to any other point in ψ. The

boundary of the ith cell is denoted ∂Ci, and the tessellation T is defined uniquely by

its skeleton, the union of all the cell boundaries ∂T = Ui≥0 (∂Ci).

For any vectors u,v ∈ Rd, B [u, ||v||] ⊂ Rd denotes the closed d-ball of radius

||v||, such that ∀s, s ∈ B [u, ||v||] if and only if ||s− u|| ≤ ||v||.

By U (B [u, ||v||] , B [u′, ||v′||]) ⊂ Rd is denoted the union of the two balls that

are arguments of the expression.

2.2 The Poisson continuous local trend (PCLT) model and its variogram

Consider an arbitrary point s ∈ S ⊂ Rd, where S contains points of a realization ψ of

a Poisson process with intensity λ. We denote by K(s) a random variable

K(s) = min {||s− xi||} , ∀i ≥ 0, (2)

that it to say, it is the distance from s to its nearest neighbour in ψ. Under the PCLT

model for a variable Z, it is a random function

Z(s) = D (K(s)) , (3)

where D (·) is some deterministic function that we call the distance function since its

argument is a distance.

As defined, Z(s) is an isotropic random function because Ψ is an isotropic process.

This is not generally a realistic model for soil variation. In the following derivation

isotropy is assumed, and the data used in the case study are on a transect so anisotropy

is not an issue. However, the model could be extended to the anisotropic case in further

work. This might be most easily done by proposing an underlying isotropic random

field which is then subject to an affine transformation (Webster and Oliver, 2007).

The function Z(s) is a random function because, although the distance function

D (·) is deterministic, its argument is a random variable. The function Z(s) is not dif-

ferentiable at the boundaries of Voronoi cells, that is when s ∈ ∂T . Its differentiability
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elsewhere depends on the distance function and s. For example, if the distance function

is D(k) = α+βk2 then Z(s) is differentiable for any s /∈ ∂T , whereas if D(k) = α+βk

then Z(s) is not differentiable at any s ∈ ψ (that is, at seed points of the Voronoi cells).

Note that, while Z(s) is not differentiable at s ∈ ∂T , it is continuous at the

boundary of Voronoi cells in the sense that, if s ∈ ∂Ci ∩ ∂Cj, i.e. s is at the boundary

of the ith and jth cell, then

{Z(sk)− Z(sl)} → 0 as sk → s and sl → s ∀sk ∈ Ci(ψ) and sl ∈ Cj(ψ), (4)

see Siersma (1999). The function is similarly continuous at seed points.

This model is proposed as a random model for the CLT mode of soil variation.

With appropriate choice of Ψ and D (·) it may describe the variation of processes that

show pronounced trends. For example, if the seed points in ψ represent local topo-

graphic maxima in a gently undulating landscape with more or less isotropic hillocks,

and the skeleton of the Voronoi cells, ∂T , represent topographic minima, then, with an

appropriate choice of D (·) to represent a topofunction, the random function Z(s) may

represent soil properties strongly associated with topography in the landscape, such as

water content.

There are some evident limitations to the model as presented here. In particular it

is assumed that parameters of the function D (·) are constant. This means, for example,

that the value of Z(s) is identical at all seedpoints, and that the lateral maximum rate

of change of Z(s) is the same for any s /∈ ψ and s /∈ ∂T . This requirement could

be relaxed so that parameters of D (·) were random variables, but then Z(s) would no

longer be continuous at ∂T in the sense of Equation (4).

The next step is to derive the spatial covariance function, (or equivalently the

variogram), for Z(s). Under the assumption that Ψ is stationary and isotropic, the

covariance Cov {Z(s), Z(s + rh)} can be written as a function of only the scalar lag

interval, C(r). It is possible to obtain a function, C(r), for a PCLT process. First, one

derives the marginal distribution function for K(s), F (k). Next, the joint distribution
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function for {K(s), K(s + rh)} is obtained, which, under stationarity, can be denoted

by H(k, kr). The joint distribution function for a PCLT process depends, as shown

in the appendix, on the joint survival function of the point process, S(k, kr), which

is the probability that both the distance from s to the nearest event in ψ is larger

than k and the distance from s + rh to the nearest event in ψ is larger than kr. The

covariance function for a random variable that depends on some distance function D (·)

can then be obtained. The detail of how this is done is presented in an appendix to this

paper, Equation (20) gives the covariance function C(r) for a PCLT process in terms

of the distribution function, F (k); the joint survival function, S(k, kr) and the distance

function D (·). One may then obtain the variogram of Z(s) by the usual relationship

to the covariance function:

γ(r) = C(0) − C(r). (5)

2.3 Some theoretical examples

Figure 2 (continuous lines) shows variogram functions computed for four PCLT models

in two dimensions. In all the intensity, λ, of the point process is 0.25× 10−3 events per

unit square of area, so, following Heinrich (1998) and Equation (15) of Lark (2009),

the mean chord length of the Voronoi cells is ξ=63 units. Four distance functions

are used, each is a simple function of distance or the square of distance and defined

for all non-negative distances: D(k) = k, D(k) = k2/10, D(k) = 10(k + 1)−1 and

D(k) = 10(k + 1)−2. The PCLT variograms were obtained from Equation (5), the

covariances were computed with Equation (20) with the joint-survival function and

the stationary cdf of K obtained from Equations (17) and (13) respectively, for the

two-dimensional case. The double integral in Equation (21) was evaluated numerically

with the subroutine twodq in the IMSL library (Visual Numerics, 2006).

For illustrative purposes I then generated 5000 realizations of each PCLT process

as follows. The intensity of the Poisson process was specified as 0.25×10−3 events
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per unit square. The PCLT process was simulated over a 2000×2000-unit region,

so the expected number of events was µ = 1000. I obtained the number of events

in a particular realization, np, as a Poisson random variables with µ = 1000, using

the Poisson random number generator rnpoi in the IMSL library (Visual Numerics,

2006). These np events were then allocated to locations within the 2000×2000-unit

region independently and at random with uniform intensity. After a realization of the

Poisson point process had been generated, the procedure below was followed.

1. A transect, length 1000 units and centred at the centre of the region was sampled

at unit intervals.

2. At each location on the transect the distance to the nearest of the seed locations

was computed, k.

3. Each of the distance functions, D(k), listed above was evaluated at each location

on the transect.

4. For each PCLT process, corresponding to one of the distance functions, the vari-

ogram was estimated from the values on the transect, using Matheron’s standard

estimator as implemented for systematic sampling in one dimension by Webster

and Oliver (2007).

After this had been done for each of the 5000 realizations, the average variogram

over all realizations was computed for each PCLT process. These are shown as solid

discs on the respective plots in Figure 2. There is good agreement between the simu-

lations and the computed variograms.

Matérn variogram functions were fitted to these computed models by the vari-

ofit procedure in the geoR package (Ribeiro and Diggle, 2001) in R (R Development

core team, 2010). The smoothness parameter ν and distance parameter φ are presented

in Table 1 along with the effective range, at which the variogram reaches 95% of the

sill variance.
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All the variograms show some degree of upward-concavity at short lag distances,

although this is not visually apparent for all of them in the graphs in Figure 2. This

form is to be expected given that PCLT models are based on local trends. The concavity

is not strong for the PCLT processes where the distance function is the reciprocal of a

polynomial term; these have smaller values of the ν parameter than do the other PCLT

processes. In fact the PCLT with distance function proportional to the reciprocal of

distance squared has ν = 0.5 which is equivalent to an exponential variogram. Note

also that the PCLT models with reciprocal distance functions have effective ranges

shorter than the mean chord length of the Voronoi cells, whereas the PCLT models

with distance functions proportional to distance or to its square have effective ranges

rather longer than the mean chord length. The interpretation of the effective range

of a variogram must therefore be cautious since its relation to the length scale of

an underlying process (the Voronoi cells here) depends on the form of the distance

function.

Figure 3 shows marginal distribution functions (after standardization to zero

mean and unit variance) for the four PCLT variables, these were generated using

Equation (15) to obtain the pdf of k. Note the difference among these distributions with

respect to the coefficient of skewness which is shown on the graphs. All the variables

show some degree of positive skewness, but this is only strong for the variable where the

distance function is proportional to the square of distance. All variables have truncated

distributions, the variables with reciprocal distance functions are truncated at the

maximum values (10 before standardization) and the variables with distance functions

proportional to distance or the square of distance are truncated at the minimum (zero

before standardization). The effect of the truncation is most apparent for the variable

where the distance function is proportional to the square of distance.

One final theoretical example is considered. Walker et al. (1968) presented results

from the analysis of the lateral variation of soil properties across a drift landscape in
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central Iowa. In particular they present a topofunction that expresses the thickness of

the A horizon, tA (cm), defined as material with a soil organic carbon content greater

than 2%), as a function of distance downslope from the local summit, d (hm). The

function is a polynomial:

tA = 19.0 + 2.54d+ 0.66d2. (6)

Walker et al. (1968) report a correlation coefficient from which we may infer that the

coefficient of determination for the fit of this function is R2 = 0.79.

I made the explicit assumption that the topofunction can be incorporated into a

PCLT model in 2 dimensions, i.e. that the direction of the drainage, over a region is

not uniform, and that the local summits from which d is defined in the topofunction

are realizations of a Poisson point process, with some specified intensity. Given this,

one can compute a covariance function for thickness of the A horizon, as predicted

for the topofunction, by substituting the topofunction in Equation (6) for D(k) in

Equation (21). I calculated this covariance function for some specified intensity, λ. I

assumed that the variation in thickness of the A horizon not accounted for by the topo-

function could be regarded as a pure nugget process, and that the nugget to sill ratio

was approximated by 1−R2 for the fitted function. Figure 4 shows the corresponding

standardized variogram (i.e. standardized to a sill variance of 1.0) and with the lag

distance expressed as a proportion of the mean chord length of the Voronoi cells defined

by the local summits. In the absence of any further information about the variability

of this property in a comparable landscape, this function summarizes the information

implicit in the topofunction and the assumption that this can be incorporated into a

PCLT model. Given some plausible value to use for the mean chord length, which

might be inferred from the original paper to be around 200 m in this landscape, this

variogram might be used to optimize a sampling scheme to produce a reliable estimate,

perhaps using the procedure of Lark (2002).
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3. Case Study

3.1 Data.

The case study entails the analysis of data on the gravimetric water content of soil from

Central Bedfordshire. The collection of these data has been described elsewhere (Milne

et al., 2011). The soil was sampled with cores of diameter 44 mm from the depth interval

0–15 cm at 29.45-m intervals on a straight transect, with some additional points added

at 6- and 3-m intervals from the regular locations. For purposes of this study I wanted

to examine soil variation that could be expected to be dominated by topography. I

therefore selected a section of the transect over a single soil association as mapped by

King (1969), the Wicken Association. This association comprises Cambisols, Luvisols

and Acrisols according to the World Reference Base classification (IUSS Working Group

WRB, 2006). It lies over the Gault Clay, and the soils themselves were formed in

the Gault Clay and overlying mixed drift. The landscape undulates gently and most

of the land is under grass or arable crops. The points from the transect that were

on the Wicken Association were identified from the map of King (1969). The first

transect location on the Wicken Association had coordinates 508563.3, 235402.1 on the

Ordnance Survey national grid of Great Britain (units are metres) and the last location

was at 508897.8, 232477.0. This section of the transect comprised 111 samples. Of

these 15 were collected under woodland or shrubby waste ground. The water content

of these soils was much larger than the others, so the analysis was restricted to 96

samples from arable land or land under grass, of which eight were samples at shorter

intervals than the basic transect. Table 1 shows summary statistics for these data. The

data are weakly skewed. The empirical distribution function of the data, after they

were standardized to zero mean and unit variance by the sample statistics, is shown

by the open symbols in Figure 5.

3.2 Fitting a PCLT model.
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The statistical modelling of these data proceeds on the assumption that the water

content of the soil depends largely on elevation. The land undulates gently and the local

drainage has no dominant orientation; I assumed that local topographic maxima can be

treated as a Poisson process in two dimensions, with intervening minima corresponding

to the boundaries of the Voronoi cells around the maxima. I assumed also that soil

water content increases with distance from the topographic maximum. This is a simple

and speculative model, although it is also a reasonable one. I explore its implications

for the spatial variability of water content and see whether the distribution of a PCLT

variable arising from such a model can plausibly describe the distribution of these data.

A simple choice of distance function for the PCLT process is that it is a polynomial

function of distance. The data are weakly skewed, and in fact the skewness is close to

the value found in the previous section for the simple distance function D(k) = k. The

distribution function for the standardized PCLT variable with this distance function

strongly resembles the empirical distribution function of the standardized water data

(Figure 5), so I decided to use this PCLT variable for further analysis.

I estimated the empirical variogram of water content from the data using the

standard estimator due to Matheron (1962) as implemented in the variog procedure

of geoR (Ribeiro and Diggle, 2001), specifying 30 lag bins of width 30 m. I then fitted

a model

γ(h) = c0 + c1γPCLT(h|λ), (7)

in which c0 is the spatially independent nugget variance, c1 is the variance of the spa-

tially correlated PCLT process and γPCLT(h|λ) is the variogram for the PCLT process

with λ the intensity of the underlying Poisson process, and the sill variance standard-

ized to 1. This standard variogram could be obtained for any specified value of λ

from Equation (5) with the required covariances computed from Equation (20) for a

process in two-dimensions as done to compute the theoretical examples previously.

The estimates of the three parameters, c0, c1 and λ were obtained by weighted least
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squares with weights as recommended by Cressie (1985). I estimated λ by computing

its weighted least squares profile, finding estimates of c0 and c1 that minimized the

weighted sum of squares given some specified valued of λ, and repeating this for a

range of values of λ. A profile plot of the minimized weighted sum of squares against λ

is shown in Figure 6. The minimum is at an intensity of 6.59 points per km2. The mean

chord length of the corresponding Voronoi tessellation (Heinrich, 1998) computed from

Equation (15) of Lark (2009) is 305.8 m. The variogram model is shown in Figure 7

along with the empirical variogram to which it was fitted.

3.4 Multiple point statistics of the PCLT model.

We have seen that the PCLT process gives rise to a marginal distribution for a variable,

in this case water content, that is non-normal. This means that the multivariate

distribution of the variable at a set of locations in space cannot be normal. This may

have implications for the application of geostatistical methods, such as conditional

simulation, which invoke an assumption of multivariate normality.

If a variable is multivariate normal at locations in space, then its joint distribution

at these locations is fully accounted for by all the pairwise covariances. Many variables

in the geosciences do not seem to have this property (e.g. Strebelle, 2002), which is

why multiple point geostatistics has been developed. As an example in this paper I

consider three locations with coordinates x0, x−1 = x0 + {−150, 0} and x1 = x0 +

{150, 0}, so they lie on a straight line, 300m long. The conditional distribution of some

variable Z(x0) given the values at x−1 and x1, F {Z(x0)|Z(x−1), Z(x1)} depends on

the joint distribution at the three locations which can be inferred from the pairwise

covariances between the locations if Z(x) is multivariate normal. If the multivariate

distribution is not normal, then it cannot be guaranteed that the joint distribution is

wholly characterised by the covariance, or two-point statistics; hence the term ‘multiple

point statistics’. In the methods developed for multiple point statistics conditional

distributions such as F {Z(x0)|Z(x−1), Z(x1)} are inferred from large data sets, called
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training images. All instances where the conditioning observations Z(x−1), Z(x1) meet

some criteria are found, and the empirical distribution of Z(x0) over these instances is

the estimate of F {Z(x0)|Z(x−1), Z(x1)}.

I used simulation to estimate the conditional distribution of the PCLT process

fitted to the gravimetric water data at x0 conditional on the gravimetric water content’s

being below the first empirical quartile (36.8%) at x−1 and above the third empirical

quartile (46.6%) at x1. In this simulation the variation represented by the nugget

variance in the fitted variogram was ignored. To simulate the desired distribution

I used the same procedure by which I generated realizations of PCLT processes to

generate the empirical variograms shown in Figure 2. The intensity of the Poisson

process in the fitted PCLT model for soil water content was 6.59 events km2. The

process was simulated within a square region with linear dimension 3 017.4 m, so the

expected number of events of the underlying point process within the region was 60. As

previously, the number of events in a particular realization was obtained as a Poisson

random variable with mean µ = 60. The value of k, the distance to the nearest

seed point was then evaluated at locations x0 = 0, 0 and x−1 = x0 + {−150, 0} and

x1 = x0 + {150, 0}. The value of the PCLT random function Z(s) = D(k) = k

was then evaluated at each of these three locations. The values were standardized to

zero mean and unit variance, using the known parameters for the pdf of Z(s), from

Equation (15). These standardized values were then rescaled to values of soil water

content by multiplying by c0.51 , where c1 is the spatially dependent variance component

in the PCLT variogram model fitted to the empirical variogram of water content,

Equation (7). The sample mean value was then added. If the values at locations

x−1 and x1 matched the conditions, then the value at x0 was retained as a sample

from the desired conditional distribution. Otherwise the realization was discarded and

another one drawn. This was repeated until 100 000 samples had been drawn from the

conditional distribution.
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A similar approach was used to sample the same conditional distribution un-

der the assumption that it is multivariate normal. In this case a single realization

at x0 = {0, 0} and x−1 = x0 + {−150, 0} and x1 = x0 + {150, 0} was drawn by the

LU decomposition method (see Webster and Oliver, 2007) implemented in the rnmvn

algorithm in the IMSL library (Visual Numerics, 2006). This requires a covariance

matrix for the three locations. The covariances were computed from the fitted vari-

ogram function. As in the PCLT simulation, the marginal variance of the variable was

equal to the variance of the spatially-dependent component, c1 in Equation(7), and

the nugget variance was ignored. Once again, a single realization was drawn, and the

value at x0 was retained as a sample of the target conditional distribution if and only if

the specified conditions were met at the other two locations. A total of 100 000 values

from the conditional distribution was simulated this way.

The kerneldensity procedure in GenStat (Goedhart, 2009) was used to com-

pute empirical density functions for the two conditional distributions, and these are

plotted in Figure 8. The PCLT and multivariate normal distributions had neglibly

different means (41.2% and 41.9% respectively) but the former had a much smaller

variance than the latter (14.6%2 and 42.3%2 respectively). Some 75% of the values of

the conditional distribution for the PCLT model fell between the two empirical quar-

tiles of the water content data used for conditioning, in comparison to 55% of the

values for the multivariate normal model. These results are consistent with the two

underlying models. Consider first the PCLT process. The three points are on a line

close in length to the mean chord length of the underlying Voronoi tessellation. This

means that, when the conditions on the distribution hold, it is likely that the locations

x−1 and x1 correspond, respectively, to the top and bottom of a catena in our land-

scape with dry conditions at the top and wet at the bottom. In these circumstances

we should expect the value at x0 to be close to the mean, and so it is not surpris-

ing that the values are tightly distributed about the mean with 76% lying between
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quartile 1 and quartile 3 of the empirical distribution. In contrast, under the assump-

tion of multivariate normality, the distribution of values at location xo is much wider

and only slightly more values fall between the first and third quartiles than we would

expect for the marginal distribution of the random variable (50%). This shows that

the two-point statistics of the process, and hence the normal model, fail to capture all

features of the spatial variation of the PCLT process. This is expected, since the PCLT

variable is not normally distributed. This particular example is of interest, however,

because it shows how the PCLT joint distribution at three locations retains features

that we would expect from a pattern of variation which comprises local trends which

the commonly-assumed multivariate normal model cannot reproduce.

4. Discussion

It has been shown how the Poisson Continuous Local Trend (PCLT) model can be

developed mathematically and fitted to soil data where it is plausible that the domi-

nant sources of soil variation may be represented by the CLT mode. I have shown how

the form of the variogram for a PCLT process depends on the form of the underlying

distance function, and the intensity of the underlying seed process. Also, given a topo-

function (such as that of Walker et al., 1968), and perhaps some statistical information

on its fitting, one can propose the corresponding form of the variogram, assuming that

local summits can be treated as Poisson point processes. Finally, we can see that

the PCLT model has multiple point statistics that cannot be accounted for from the

two-point statistics, and so it is different to a multivariate normal process.

This paper has introduced the PCLT model and its properties, and shown how

it can be fitted to data. The fact that such a model fits does not show that it is

necessarily best, however. This is an area for further work. In general this cannot be

tested by examining directly the underlying point process, or the distance function,

D(k), since these are, usually, latent. In circumstances where they could be examined
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directly then this information would normally be incorporated into a mixed model

for a soil variable through the fixed effects rather than to parameterize a model for

the random effects. Instead, the multiple point statistics, specifically the conditional

distributions involving three or more locations, would provide a basis to compare the

PCLT with other spatial models for data and to asses its practical advantages. These

would require many more data than I had, and might be done using intensive sensor

data, such as data from geophysical surveys of soil water content.

The PCLT is of potential practical interest for two reasons. First, in circum-

stances where we may expect a CLT mode of soil variation, it is a model that could be

proposed a priori. Its likely form might also be proposed, given pedological knowledge

about the likely form of a distance function such as a topofunction, and a plausible

range of values for the mean chord length (i.e. the mean interval between bound-

aries separating the notional topographic cells, which might be obtained from a locally

experienced field scientist. From such information one might generate a range of pos-

sible forms of the variogram. These might be fitted with a standard model (such as

the Matérn function), to provide a range of values, and so prior distributions, for its

parameters, which could then be used to optimize sampling, perhaps as proposed by

Marchant and Lark (2006). The PCLT model could also be used to simulate data to

plan design-based sampling to estimate global means (de Gruijter et al, 2006).

Second, the results in this paper suggest that standard geostatistical methods,

which assume an underlying multivariate distribution, might not be well suited to soil

properties that vary continuously along short-range lateral trends, reflecting a CLT

mode of variation, since these may not be entirely characterized by two-point statistics.

One constraint on multiple point methods, such as the algorithm of Strebelle (2002),

is the availability of training data to estimate the required conditional distributions.

If the PCLT model were shown to be generally plausible, then it could be used to

generate unlimited training data by the simulation methods used in this paper.
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Further research is required. I have already noted the need for some systematic

studies with large data sets to compare the PCLT model with other plausible ones,

particularly with respect to multiple point statistics. In addition, it would be useful

to develop CLT models for underlying point processes other than the simple homo-

geneous Poisson process in which the intensity, λ, is spatially uniform. For example,

in conditions where topographic variation is rather more regular than a purely ran-

dom subdivision of space an underlying point process is under-dispersed relative to a

homogeneous point process. Non-homogeneous point processes are available for such

circumstances, as well as for circumstances where the point process is more clustered

than a homogeneous Poisson process. In some cases variation on continuous local trends

may be strongly anisotropic, because the drainage lines in the landscape are aligned

(Figure 1b). In these conditions a one-dimensional CLT model might be fitted per-

pendicular to the drainage lines; and a non-homogeneous process for the topographic

maxima would probably be most appropriate.

Finally, it was observed that variation at the scale of the classical catena is ideally

treated not as random effects but in terms of fixed effects represented by covariates

derived from digital elevation models and other sources. It would be particularly

valuable, therefore, to investigate the plausibility of the PCLT model at finer spatial

scales, representing microtopography, and even variation at plot to subcore scale.

5. Conclusions

The properties of the PCLT model of soil variation, a plausible model of variation

that shows a strong catenary mode, have been explored. The PCLT model shows, as

would be expected, effects of local drift (upward concavity of the variogram at short

lags), and the shape depends on the proposed topofunction. Given a topofunction

for a soil property, and assuming that local summits can be represented as Poisson

point processes, it is possible to compute a proposed variogram for that property a
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priori. The PCLT variogram model can also be fitted to the empirical variogram of

soil data. The PCLT has multiple point statistics that are not reducible to its two-point

statistics, so for purposes such as simulation a multivariate normal assumption would

not be appropriate for such a variable. There is a need for further work to validate the

PCLT model on soil properties at a range of scales.
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Appendix. Derivation of the covariance function for a PCLT process

Höffding (1940) showed that two random variables X and Y have covariance

Cov {X, Y } =

∫
R2

{H(x, y)− F (x)G(y)} dxdy, (8)

where H(x, y), F (x) and G(y) are respectively the joint cumulative distribution func-

tion (cdf) of X and Y and the cdfs of X and of Y . Cuadras (2002) generalized this

to

Cov {α(X), α(Y )} =

∫
R2

{H(x, y)− F (x)G(y)} dα(x)dβ(y), (9)

where the functions α(·) and β(·) are defined on intervals of the real numbers and,

within these intervals, both functions have bounded variation, and the expectations:

E [||α(X)β(Y )||] ,

E [||α(X)||] ,

E [||β(Y )||] ,

are all finite.

For the moment we focus on computing the covariances of the distances, that is

to say, D (·) is the identity function. In this case

CI(r) = Cov {K(s), K(s + rh)} . (10)
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K(s) and of K(s + rh) have the same cdf under stationarity, which is denoted

F (k). This is derived as follows. The probability that K(s), the distance from an

arbitrary location s to its nearest neighbour in ψ, is greater than some distance k is

equal to the probability that no member of ψ lies within a ball of radius k centred at

s:

Prob {K(s) > k} = Prob {B [s, k] ∩ ψ = ∅} . (11)

For a Poisson ψ

Prob {B [s, k] ∩ ψ = ∅} = exp {−λ|B [s, k] |} , (12)

from the definition of the Poisson distribution. Under stationarity this is independent

of s, so we define

|Bo [k] | ≡ |B [0, k] |,

where 0 is the origin of Rd, and can then write the cdf of K(s)

F (k) = Prob {K(s) ≤ k}

= 1− exp {−λ|Bo [k] |} . (13)

For d = 2 this is

F (k) = 1− exp
{
−λπk2

}
. (14)

We can obtain the pdf of k, f(k) by

f(k) =
d

dk
F (k) = 2λπk exp

{
−λπk2

}
. (15)

Under stationarity assumptions we can simplify the notation for the random variables,

writing K and Kr respectively in place of K(s) and K(s + rh). Next, we require an

expression for the joint cdf of K and Kr , H(k, kr). First, we define the joint survival

function

S(k, kr) = Prob {K > k,Kr > kr} . (16)
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For a Poisson and stationary Ψ this is given by

S(k, kr) = Prob {U (B [0, k] , B [0 + rh, kr]) ∩ ψ = ∅}

= exp {−λ|U (B [0, k] , B [0 + rh, kr]) |} . (17)

Figure 9 represents the variate [K,Kr]
T. Each variable has a lower bound at

zero. The values k and kr define two overlapping regions for which K > k and Kr > kr

respectively. The integral of the joint density of [K,Kr]
T over these unbounded regions

is 1−F (k) and 1−F (kr) respectively. The integral of the joint density over the overlap

between these two regions is the joint survival function S(k, kr). The integral over the

bounded region [0 ≤ K ≤ k, 0 ≤ Kr ≤ kr] is the function that we require, the joint cdf

H(k, kr), so it can be seen that

H(k, kr) = 1− [(1− F (k)) + (1− F (kr))− S(k, kr)]

= S(k, kr) + F (k) + F (kr)− 1. (18)

From Equation (8), and substituting Equation (18) for H(k, kr),

CI(r) =

∫
R2

{H(k, kr)− F (k)G(kr)} dk dkr,

=

∫
R2

{S(k, kr) + F (k) + F (kr)− F (k)F (kr)− 1} dk dkr. (19)

For the random function with D (·) not the identity function, it can be seen from

Equation (9) that

C(r) =

∫
R2

{S(k, kr) + F (k) + F (kr)− F (k)F (kr)− 1} dD(k) dD(kr)

=

∫
R2

{S(k, kr) + F (k) + F (kr)− F (k)F (kr)− 1}D′(k)dk D′(kr)dkr,(20)

where D(k) is the distance function in Equation (3) and D′(k) is its first derivative

with respect to k. Thus, for example, if

D(k) = α + βk2,

then

C(r) =

∫
R2

{S(k, kr) + F (k) + F (kr)− F (k)F (kr)− 1} 2β dk 2β dkr. (21)
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Table 1. Matérn parameters fitted to PCLT variograms.

Distance function, D(k) ν φ Effective range

k 5.2 8.9 73.4
k2/10 5.0 10.4 83.9
10{k + 1}−1 0.7 10.7 36.9
10{k + 1}−2 0.5 4.1 12.4
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Table 2. Summary statistics on gravimetric water content (/%) of soil from the

transect on soils under arable and grassland over the Wicken Association.

Mean 42.4
Median 42.5
Standard deviation 7.39
Skewness 0.67
Quartile 1 36.8
Quartile 3 46.6
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Figure captions

1. Block diagrams for (a) the Eldama Landsystem and (b) the Lolimo Landsystem

in Westen Kenya. Taken from Scott et al. (1971). c© Crown Copyright 1971,

licensed under the Open Government Licence v1.

2. Computed variograms (solid lines) for PCLT processes with intensity λ = 0.25 ×

10−3 events per unit square of area and distance functions indicated on the graph.

The mean experimental variograms from 5000 realizations of each PCLT process

on a linear transect are shown as solid symbols.

3. Computed marginal distribution functions for standardized random variables gen-

erated by a PCLT processes with different distance functions.

4. Inferred variogram for thickness of the A horizon obtained by incorporating the

topofunction of Walker et al. (1968) into a PCLT model, and with a nugget:sill

ratio inferred from the coefficient of determination reported for that function.

The variance is scaled to a sill of one and lag distances are scaled relative to the

mean chord length of the underlying Voronoi tesselation.

5. Empirical distribution function for gravimetric soil water content from data from

the transect on soils under arable and grassland over the Wicken Association after

standardization to zero mean and unit variance. The distribution function for a

standardized PCLT process with distance function D(k) = k is superimposed.

6. Profile plot of the weighted least squares for fits of a PCLT model, D(k) = k, to

the empirical variogram of gravimetric water content.

7. Empirical variogram of gravimetric water content (solid symbols) and fitted PCLT

model, D(k) = k.
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8. Distribution of gravimetric water content (nugget component excluded) at a lo-

cation, x0 conditional on the gravimetric water content at x0 + {150, 0} being

larger than the empirical third quartile and the gravimetric water content at

x0 + {−150, 0} being smaller than the empirical first quartile. Distributions are

shown for the PCLT model fitted to the Bedfordshire data (heavy line), and

the equivalent distribution for a multigaussian process with the same covariance

function (fine line).

9. Space of the variate [K,Kr]
T, with values of the integral of the joint density over

four partly overlapping regions.
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