nerc.ac.uk

Comparative analysis of a teleost skeleton transcriptome provides insight into its regulation

Vieira, Florbela A.; Thorne, M.A.S. ORCID: https://orcid.org/0000-0001-7759-612X; Stueber, K.; Darias, M.; Reinhard, R.; Clark, M.S. ORCID: https://orcid.org/0000-0002-3442-3824; Gisbert, E.; Power, D.M.. 2013 Comparative analysis of a teleost skeleton transcriptome provides insight into its regulation. General and Comparative Endocrinology, 191. 45-58. https://doi.org/10.1016/j.ygcen.2013.05.025

Before downloading, please read NORA policies.
[img]
Preview
Text (This article has been accepted for publication and will appear in a revised form in General and Comparative Endocrinology, published by Elsevier. Copyright Elsevier.)
1-s2.0-S0016648013002645-main.pdf - Accepted Version

Download (1MB) | Preview

Abstract/Summary

An articulated endoskeleton that is calcified is a unifying innovation of the vertebrates, however the molecular basis of the structural divergence between terrestrial and aquatic vertebrates, such as teleost fish, has not been determined. In the present study long-read next generation sequencing (NGS, Roche 454 platform) was used to characterise acellular perichondral bone (vertebrae) and chondroid bone (gill arch) in the gilthead sea bream (Sparus auratus). A total of 15.97Mb and 14.53 Mb were produced, respectively from vertebrae and gill arch cDNA libraries and yielded 32,374 and 28,371 contigs (consensus sequences) respectively. 10,455 contigs from vertebrae and 10,625 contigs from gill arches were annotated with Gene Ontology terms. Comparative analysis of the global transcriptome revealed 4249 unique transcripts in vertebrae, 4201 unique transcripts in the gill arches and 3700 common transcripts. Several core gene networks were conserved between the gilthead sea bream and mammalian skeleton. Transcripts for putative endocrine factors were identified in acellular gilthead sea bream bone suggesting that in common with mammalian bone it can act as an endocrine tissue. The acellular bone of the vertebra, in contrast to current opinion based on histological analysis, was responsive to a short fast and significant (p<0.05) down-regulation of several transcripts identified by NGS, osteonectin, osteocalcin, cathepsin K and IGFI occurred. In gill arches fasting caused a significant (p<0.05) down-regulation of osteocalcin and up-regulation of MMP9.

Item Type: Publication - Article
Digital Object Identifier (DOI): https://doi.org/10.1016/j.ygcen.2013.05.025
Programmes: BAS Programmes > Polar Science for Planet Earth (2009 - ) > Ecosystems
ISSN: 0016-6480
Additional Keywords: vertebra and gill arch transcriptome, NGS, Sparus auratus, skeletal responsiveness, endocrine, advanced teleost, tissue responsiveness,
Date made live: 18 Jun 2013 10:51 +0 (UTC)
URI: https://nora.nerc.ac.uk/id/eprint/500363

Actions (login required)

View Item View Item

Document Downloads

Downloads for past 30 days

Downloads per month over past year

More statistics for this item...