Projected flow alteration and ecological risk for pan-European rivers
Laize, C.L.R.; Acreman, M.C.; Schneider, C.; Dunbar, M.J.; Houghton-Carr, H.A.; Florke, M.; Hannah, D.M.. 2014 Projected flow alteration and ecological risk for pan-European rivers. River Research and Applications, 30 (3). 299-314. https://doi.org/10.1002/rra.2645
Before downloading, please read NORA policies.
|
Text
N500239PP.pdf - Accepted Version Download (2MB) | Preview |
Abstract/Summary
Projection of future changes in river flow regimes and their impact on river ecosystem health is a major research challenge. This paper assesses the implications of projected future shifts in river flows on in-stream and riparian ecosystems at the pan-European scale by developing a new methodology to quantify ecological risk due to flow alteration (ERFA). The river network was modelled as 33 668 cells (5′ longitude × 5′ latitude). For each cell, modelled monthly flows were generated for an ensemble of 10 scenarios for the 2050s and for the study baseline (naturalized flows for 1961–1990). These future scenarios consist of combinations of two climate scenarios and four socio-economic water-use scenarios (with a main driver of economy, policy, security or sustainability). Environmental flow implications are assessed using the new ERFA methodology, based on a set of monthly flow regime indicators (MFRIs). Differences in MFRIs between scenarios and baseline are calculated to derive ERFA classes (no, low, medium and high risk), which are based on the number of indicators significantly different from the baseline. ERFA classes are presented as colour-coded pan-European maps. Results are consistent between scenarios and show that European river ecosystems are under significant threat with about two-thirds at medium or high risk of change. Four main zones were identified (from highest to lowest risk severity): (i) Mediterranean rim, southwest part of Eastern Europe and Western Asia; (ii) Northern Europe and northeast part of Eastern Europe; (iii) Western and Eastern Europe; and (iv) inland North Africa. Patterns of flow alteration risk are driven by climate-induced change, with socio-economics as a secondary factor. These flow alterations could be manifested as changes to species and communities, and loss of current ecosystem functions and services.
Item Type: | Publication - Article |
---|---|
Digital Object Identifier (DOI): | https://doi.org/10.1002/rra.2645 |
Programmes: | CEH Topics & Objectives 2009 - 2012 > Water > WA Topic 2 - Ecohydrological Processes > WA - 2.3 - Assess the responses of river, lake and wetland ecosystems to ecohydrological drivers |
UKCEH and CEH Sections/Science Areas: | Acreman Boorman (to September 2014) |
ISSN: | 1535-1459 |
Additional Information. Not used in RCUK Gateway to Research.: | This document is the author’s final manuscript version of the journal article, incorporating any revisions agreed during the peer review process. Some differences between this and the publisher’s version remain. You are advised to consult the publisher’s version if you wish to cite from this article. The definitive version is available at http://onlinelibrary.wiley.com |
Additional Keywords: | ecohydrology, hydroecology, river ecosystem, flow alteration, ecological risk, climate change, socio-economic change, Europe |
NORA Subject Terms: | Ecology and Environment |
Date made live: | 06 Mar 2013 16:37 +0 (UTC) |
URI: | https://nora.nerc.ac.uk/id/eprint/500239 |
Actions (login required)
View Item |
Document Downloads
Downloads for past 30 days
Downloads per month over past year