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Abstract 40 

Understanding the interactions of co-occurring species within and across trophic levels 41 

provides key information needed for understanding the ecological and evolutionary 42 

processes that underlie biological diversity. As genetics has only recently been integrated 43 

into the study of community-level interactions, the time is right for a critical evaluation 44 

of potential new, gene-based approaches to studying communities. Next generation 45 

molecular techniques, used in parallel with field-based observations and manipulative 46 

experiments across spatio-temporal gradients, are key to expanding our understanding 47 

of community-level processes. Here, we introduce a variety of “-omics” tools, with recent 48 

studies of plant–insect herbivores and of ectomycorrhizal systems providing a detailed 49 

example of how next generation approaches can revolutionize our understanding of 50 

interspecific interactions. We suggest ways that novel technologies may convert 51 

community genetics from a field that relies on correlative inference to one that reveals 52 

causal mechanisms of genetic co-variation and adaptations within communities. 53 

 54 

Community genetics aims to understand how genetic variation within and among populations 55 

of host species affects the composition of associated organisms interacting with the host 56 

(Agrawal 2003; Whitham et al. 2006; Johnson & Stinchcombe 2007; Rowntree et al. 2011; 57 

Wymore et al. 2011). Empirical community genetics has been stimulated by pioneering work 58 

on poplars (Populus spp.), their genotype-based phenotypic variation, and associated 59 

communities (Whitham et al. 2006). However, community genetics has hitherto largely 60 

remained phenomenological, and the underlying genetic basis and processes involved in the 61 

interactions between host and associated organisms have not been studied in detail yet. Given 62 

the rapid development of molecular techniques (Rokas & Abbot 2009), it will soon be 63 
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feasible to characterize the genomes of numerous members of a community. With whole-64 

genome sequences or other types of -omics data at hand (Nadeau & Jiggins 2010), community 65 

genetics will be able to establish a solid genetic framework in which to understand the 66 

interplay between ecological and evolutionary processes (Rokas & Abbot 2009). Here, we 67 

sketch possible avenues along which research in community genetics may proceed, focussing 68 

in particular on how -omics may improve our understanding of the role of gene variants in 69 

species interactions. First, we argue for exploring spatio-temporal variation to investigate the 70 

fundamental ecological and evolutionary aspects of community genetics. Second, we describe 71 

how genomic, transcriptomic, proteomic, and metabolomic research can improve 72 

understanding of the interactions between trees as focal species and ectomycorrhizal fungi or 73 

herbivorous insects, the key players in forest ecosystems. 74 

Community genetics in a spatio-temporal perspective 75 

Let us consider populations of a focal species that start to diverge genetically. Genetic drift 76 

and/or selection may induce shifts in allele frequencies, leading to changes in the phenotypic 77 

traits mediating interactions with associated species that use the focal species as a host. First, 78 

these genetic changes and changes in the associated traits may lead to shifts in the occurrence 79 

and abundance of species already associated with the host. Second, the new phenotypic traits 80 

of the focal species may allow new species from the regional species pool to colonize it. 81 

Finally, changes in the genetics of the host may induce evolutionary responses, including 82 

speciation events, in the associated organisms, which may feedback to evolutionary changes 83 

in the host. 84 

If the above scenarios hold true, we expect the relatedness of host genotypes to co-vary 85 

with similarity among the communities of associated species (Bangert et al. 2006; Brändle & 86 
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Brandl 2006). Within species, such patterns have received considerable attention under the 87 

concept of the “extended phenotype”. This concept was introduced by Richard Dawkins 88 

(1982) to describe effects of genes on an individual's environment including other organisms. 89 

Whitham et al. (2003; 2005; 2006) adopted this concept and developed a framework for 90 

community and ecosystem genetics, which includes a feedback where an individual’s 91 

phenotype is dependent on the interaction with other species. 92 

Community assembly (Kraft et al. 2007; Emerson & Gillespie 2008) is shaped by 93 

successive filters, including regional species pool, habitat area and isolation (biogeographical 94 

filters), local environmental constraints (abiotic, biophysical filters) and biological 95 

interactions such as competition or predation (biotic filters; Fig. 1). The host genotype, 96 

interacting with the environment, may affect the structure of associated communities at 97 

several filtering steps by controlling phenotypic traits that allow associated organisms to 98 

locate, select and exploit resources of their host (Johnson & Agrawal 2005; Bailey et al. 99 

2009) (Fig. 1). Thus, spatial variation in the composition of associated communities has a 100 

strong regional component. 101 

Despite many reports demonstrating a correlation between genotypes of a focal species and 102 

the composition of associated communities, the fundamental ecological, genetic and 103 

evolutionary processes that generate this correlation remain poorly explored and require 104 

consideration in future studies. In this regard, three aspects deserve special attention: spatial 105 

variation, temporal variation, and gene-to-gene interactions. 106 

First, space needs to be better integrated into study designs. As noted above, the assembly 107 

of species depends on the regional species pool, whose phylogenetic and functional structure 108 

imposes a constraint on the emerging local communities (Fig. 1). A group of genotypes of a 109 

focal species in natural or experimental population is embedded in a landscape context that 110 
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may include forest patches, arable land, urban environment or other habitats type, each of 111 

which has different species pools that might interact with the focal species. As the associated 112 

community influences the fitness of the focal species, the relative fitness of these genotypes 113 

will vary across sites, even if the abiotic conditions are similar. However, in single common 114 

garden experiments, genotypes of a focal species are exposed only to one particular species 115 

pool. Therefore, regional replicates of such experiments are necessary to estimate the stability 116 

of relationships between genotypes of the focal species and communities of associated 117 

species. Such replicates would enable us to distinguish between mainly spatial effects and 118 

those that can be attributed to the interaction between host genotypes and associated 119 

organisms. Alternatively, one might set up more complex common gardens including 120 

particular treatments, for example through fertilization or irrigation. Such an approach would 121 

allow tests of the effect of genotype x environment interactions on the assemblage of 122 

associated species for each local species pool. Furthermore, replicated common garden 123 

experiments would further allow constructing reaction norms of different genotypes of the 124 

focal species. Do these genotypes respond differentially for their extended phenotypes to the 125 

changes of abiotic or biotic conditions across the testing sites? An initial step would be to 126 

identify the shape of the reaction norms (linear or quadratic) and then to estimate their 127 

variation among genotypes. Finally, the spatial context may also be dissected at the within-128 

population level. For example, natural populations of trees usually exhibit strong spatial 129 

autocorrelation due to limited dispersal, which increases steadily over generations. On the 130 

other hand random spatial genetic structure is observed in recently planted forests. One would 131 

therefore expect very different spatial structures of extended phenotypes among these strongly 132 

contrasting cultural regimes. 133 
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Second, community genetics should consider temporal variation in species interactions, 134 

e.g. among seasons, among years along successional sequences, and other types of temporal 135 

gradients. Traits involved in plant–herbivore interactions are known to change during plant 136 

ontogeny (Boege & Marquis 2005; Holeski et al. 2009), which is why communities of insect 137 

herbivores – and herbivory pressure – on seedlings and mature individuals may differ (Le 138 

Corff & Marquis 1999; Basset 2001). Furthermore, although associated communities may 139 

change within and between years due to fluctuations in plant phenotypes, equally they may 140 

change due to differences in weather conditions. Thus, the phenotypic traits that are important 141 

for species interactions in a particular season or year may change within and between years, 142 

and drawing conclusions from short-term experiments may be misleading. Although such 143 

traits, and the underlying genes, are genuinely involved in community interactions, their 144 

relative importance compared to other genes may vary in time and can therefore only be 145 

established in long-term experiments. Hundreds of insect generations interact with a long-146 

living host such as a tree during its lifetime, and each generation experiences different 147 

biophysical constraints and trophic interactions with other fungi, herbivores or predators. As a 148 

consequence, even though insect populations can adapt to individual host genotypes (Mopper 149 

et al. 2000), the strength and direction of these adaptations are likely to change over time 150 

(moving targets; Ruhnke et al. 2006).  151 

Moreover, genetic processes underlie the formation of adaptive demes and co-evolution 152 

between host and associated organisms (Fig. 1). At present, the number and type of genes 153 

involved and the associated phenotypes of interacting species are largely unknown. Recent 154 

technological advances enable researchers to sequence whole genomes and to monitor gene 155 

expression of interacting species, offering the potential to identify the candidate genes 156 

mediating the interactions between focal and associated species. Such approaches will move 157 
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community genetics from studying anonymous genotype/phenotype effects to studying gene-158 

to-organism, gene-to-gene, and ultimately to genome-to-genome interactions. While current 159 

research has focused on the few "genome-enabled" species (Ekblom & Galindo 2011), the 160 

many ongoing whole-genome projects will widen the array of study systems applying 161 

genomics data in the near future (e.g. http://www.arthropodgenomes.org/wiki/i5K, 162 

http://1000.fungalgenomes.org/home/, http://pinegenome.org/pinerefseq/).  163 

The following sections describe how the various types of -omics may stimulate community 164 

genetics. and how they enable the genetic component of variation in community composition 165 

to be addressed at the level of variants in adaptive genes and their differential expression. 166 

An example of functional genomics based on a complete genome sequence: 167 

ectomycorrhizal symbiosis 168 

Ectomycorrhizae, the mutualistic symbiosis between tree roots and a cortege of soil fungal 169 

partners, are the most widespread and species-rich associations in temperate and boreal 170 

forests. Ectomycorrhizal fungi receive carbon from photosynthesis and, in turn, promote tree 171 

growth, enhance the survival of seedlings and increase the fitness of their plant partners under 172 

a wide range of environmental conditions. Despite the ecological significance of this 173 

mutualistic interaction, we have only started to explore its role for community ecology.  174 

A breakthrough was the release of the first two full-genome drafts of mycorrhizal fungi, 175 

namely Laccaria bicolor (Basidiomycota) and Tuber melanosporum, the Périgord truffle 176 

(Ascomycota; Martin et al. 2008; Martin et al. 2010). Comparative genomics of the two 177 

mycorrhizal fungi indicated that they use different gene networks (‘molecular toolkits’) to 178 

establish symbiosis (Martin et al. 2010). There are vast differences between these two 179 

ectomycorrhizal genomes. Laccaria bicolor has a 65 Mb genome with more than 23 000 180 
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predicted proteins, which is the largest complement of genes known for any fungus, whereas 181 

T. melanosporum has the largest fungal genome so far with 125 Mb, but has only 7500 182 

predicted genes, one of the smallest complement of proteins in any filamentous fungal 183 

genomes sequenced so far. Also, whereas the secretion of effector-like small secreted proteins 184 

seems to be crucial for the establishment of the symbiosis in L. bicolor (Plett et al. 2011), 185 

these so-called mycorrhiza-induced small secreted proteins (MiSSPs) are not present in the 186 

transcriptome of T. melanosporum symbiotic tissue (Martin et al. 2010) In spite of these 187 

differences,, some common features and some novelties emerged from the comparison with 188 

genomes of saprophytic and pathogenic fungi. Besides the loss of plant cell-wall degrading 189 

enzymes in ectomycorrhizae, an increase in the diversity and expression of nutrient 190 

transporters and signalling pathways (e.g. tyrosine kinases) in symbiotic tissues are hallmarks 191 

of mycorrhizal genomes (Martin et al. 2008; Kosti et al. 2010; Martin et al. 2010; Plett et al. 192 

2011). These symbiosis-related genes are good candidates for gene expression studies of 193 

multi-species interactions in the field. On the tree side, it is not known how the host tree 194 

selects its symbiotic associates. Plant-encoded small secreted proteins may be required, as 195 

shown for nitrogen-fixing symbioses (Van de Velde et al. 2010). Genomic studies will 196 

probably be the only way to elucidate the mechanisms of interaction and to understand the 197 

effect of gene variants on this interplay. Therefore, we think that this system is an exciting 198 

model for community genetics in the -omics era. 199 

Ectomycorrhizal fungi show a continuum of specialization to the host tree from strict 200 

specialists to generalists. Differences in the expansion of multigene families, in particular 201 

dynamic repertoires of genes encoding small secreted proteins and sugar-cleaving enzymes, 202 

might be responsible for the different host ranges of specialists, e.g. T. melanosporum, and 203 

generalists, e.g. L. bicolor (Martin et al. 2010). That is, the genome expansion observed in L. 204 
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bicolor might be driven by selection of the symbiont to exploit diverse substrates provided by 205 

multiple potential hosts and by diverse soils. As more genomes of mycorrhizal fungi are 206 

sequenced (Martin et al. 2011), this hypothesis will become testable. 207 

In addition to the genomics of host–symbiont interactions, studies of geographical patterns 208 

of co-evolution add to our knowledge of processes leading to reciprocal adaptation and 209 

specialization. There are only a handful of studies reporting the structure of geographic 210 

variation and patterns of co-evolution in mycorrhizal interactions, indicating that these 211 

patterns are geographically highly variable (Hoeksema 2010; Hoeksema et al. 2012). To date, 212 

mostly higher-level traits, such as intensity of mycorrhizal colonization or growth of host 213 

trees, have been studied. Several of these studies found significant genetic variation in either 214 

the host plant or the mycorrhizal fungus in its ecological effect on the other partner. For 215 

example, the relationship between the colonization intensity of the ectomycorrhizal fungus 216 

Thelephora terrestris and the growth of its host, Lodgepole pine (Pinus contorta), depends on 217 

the tree’s genotype (Karst et al. 2009). In poplar, both the intensity of colonization and the 218 

amount of enzymes secreted by poplar root tips colonized by L. bicolor are under the genetic 219 

control of the host (Courty et al. 2011). Similar findings come from arbuscular mycorrhizal 220 

systems, where host identity has a strong effect on the fitness of different strains of Glomus 221 

intraradices (Ehinger et al. 2009). 222 

An increasing body of evidence shows that subtle intraspecific differences in the genome 223 

of host plants determine the composition of interacting communities in mycorrhizal fungi 224 

(e.g. Korkama et al. 2006; Whitham et al. 2006; Sthultz et al. 2009; Karliński et al. 2010; 225 

Leski et al. 2010; Hoeksema et al. 2012). We have experimental evidence that such as 226 

intraspecific genetic variation in the host also affects the composition of interacting 227 

mycorrhizal populations (Hoeksema & Thompson 2007), but this has not yet been tested 228 
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under natural conditions. To understand the links between structure and diversity of 229 

communities and ecosystem functioning, we need to know more about spatio-temporal 230 

patterns of genetic variation. There are indications that both interspecific (e.g. van der Heijden 231 

et al. 1998; Maherali & Klironomos 2007) and intraspecific (e.g. Johnson et al. 2012) 232 

diversity of mycorrhizal fungi can regulate productivity and ecosystem functioning. We 233 

advocate studies of community and population diversity in forests and combining them with 234 

functional field studies, involving both partners of ectomycorrhizal symbioses. Numerous 235 

new techniques are emerging for gene expression studies, marker gene evaluation using 236 

comparative genomics, and enzyme activity profiling of whole ectomycorrhizal assemblages 237 

(Courty et al. 2010). The rapid development of high-throughput sequencing technologies 238 

facilitates the survey and comparison of whole microbial communities (Buée et al. 2009), 239 

although analysis, interpretation, and publication of data still needs to be optimized (Henrik 240 

Nilsson et al. 2012). Nevertheless, combined genotypic and functional studies are now 241 

feasible and may be expanded to natural and experimental gradients. Several reports indicate 242 

that soil microbe and mycorrhizal diversity differentially affect ecosystem functioning under 243 

different environmental conditions, e.g. nutrient status (van der Heijden et al. 2008). We also 244 

know that plant-associated microorganisms are an important factor influencing plant 245 

responses to climate change (Courty et al. 2010; Pickles et al. 2012). Combined genotypic 246 

and functional studies in diverse environments will help to understand current patterns and to 247 

predict changes and effects in the future. 248 



Gugerli et al. — 12 
 

Associations between genes and traits: potential of next generation approaches in 249 

community genetics 250 

An essential part of future studies in community genetics will be to identify the genes that 251 

underlie the traits of hosts that affect associated organisms. For this, sequencing of the 252 

complete genome of a host species is not sufficient. Rather, it is essential to link the presence 253 

or action of particular variants of genes or genomic regions of a host plant to the presence or 254 

abundance of associated organisms or arrays of their genes. There are basically two strategies 255 

for this, namely QTL mapping and genome-wide association studies (GWAS). We briefly 256 

outline and illustrate below the pros and cons of these two approaches for community 257 

genetics.  258 

An example of QTL mapping of community traits of poplar is a study aimed at identifying 259 

genomic regions associated with susceptibility to insects (DeWoody et al. submitted). Parents 260 

and progeny of a poplar (Populus trichocarpa × P. deltoides) F2 mapping population were 261 

assessed for various categories of leaf damage, including chewers and skeletonizers. The 262 

damage levels significantly varied among offspring genotypes. Each category was treated as a 263 

quantitative trait in a QTL mapping approach and more than ten QTLs were detected. QTLs 264 

also varied seasonally, suggesting that the insect community responds to traits and the 265 

underlying genetic variation over time. This underlines the importance of considering 266 

temporal variation in studies of community genetics, as noted above. 267 

Another example is a study on QTLs affecting ectomycorrhizal symbiosis in a P. deltoides 268 

× P. trichocarpa F1 population (Labbé et al. 2011). Four identified QTLs were associated 269 

with candidate genes, and differential transcript levels were assessed with the help of a whole-270 

genome microarray. The transcripts with the highest overrepresentation were, based on their 271 

gene ontology, in the repress defense mechanisms and in pathogen resistance.  272 
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Relatively few mapping populations have been produced for long-lived tree species, due to 273 

the length of time needed to maintain and study them, and the high costs associated with it. 274 

As a single cross will not contain all alleles present in a large population of an outcrossing 275 

species, not all QTLs can be detected in a single cross, and most QTL interactions will go 276 

unnoticed. Hence, several populations are necessary, and producing them would be an 277 

important investment. Next to full-sib families it may be possible to use full or partial diallel 278 

designs with multiple parents, so that more alleles are included and many more allele 279 

combinations can be studied, similar to MAGIC populations (Kover et al. 2009) but without 280 

the need for selfing to multiply and maintain the population.  281 

In the meantime, an elegant alternative for forest trees is to use existing progeny trials. 282 

Many of these have been established and often replicated at different locations, and 283 

phenotypic data are usually available for extensive periods of time. Many trials consist of 284 

half-sib families, in which the alleles from the mother segregate in the progeny. If only a 285 

limited number of fathers were involved, genotyping may even allow them to be split into a 286 

few interconnected full-sib families. Common garden experiments often include a sample of 287 

the diversity of an area. When these experiments are replicated at multiple sites, it may be 288 

possible to perform genome-wide association mapping with the advantage of multi-site / 289 

multi-year data.  290 

An issue for community genetics, as mentioned above, is that the local species pool may be 291 

different between the locations of the trials. This can be tackled efficiently by replicating the 292 

populations and planting them in different locations. Replicated populations will also spread 293 

the risk of losing individual members of the populations. 294 

After finding a QTL region based on the presence of an associated organism or, for 295 

example, damage caused by an insect species, the underlying mechanism can be unravelled, 296 
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in this case by measuring the secondary compound composition of all progeny trees and 297 

locating such traits on the genetic map. Co-localization of a compound with a QTL would 298 

suggest that it was responsible for the effect on the insects and that a structural or regulatory 299 

gene involved in its synthesis is located in that genomic region. In some species, this can be 300 

tested by mutant analysis, but it is not practical with trees. Alternatively, one could analyse 301 

the naturally occurring genetic variation in a large set of unrelated trees with different 302 

combinations of compounds and conduct association tests (i.e. GWAS).  303 

GWAS assumes that, in the absence of population substructure, markers that are physically 304 

linked to a gene associated with a phenotype of a trait can be distinguished from markers that 305 

are not linked, as the latter are assumed to occur randomly in individuals of the population 306 

regardless of the phenotype (Nordborg & Weigel 2008). There is no need to construct a 307 

mapping population as in QTL detection, but a reference genome or a dense genetic map in 308 

combination with sufficient linkage disequilibrium (LD) are required (Kim et al. 2007). LD 309 

appears to be limited in tree species (Ingvarsson 2005; Heuertz et al. 2006; Pyhäjärvi et al. 310 

2007), which implies that high-density genetic marker arrays are needed for applying 311 

association mapping and that many more individuals need to be studied. For instance, 312 

Fournier-Level et al. (2009) tested target candidate genes and identified the functional 313 

variation responsible for the observed variation in anthocyanin variation in grape by 314 

association analysis. The very low LD often encountered in natural tree populations (Neale & 315 

Savolainen 2004) will assist in finding many of the possible combinations of compounds, thus 316 

increasing the power of the association study. A new approach, becoming feasible because of 317 

high-throughput sequencing technology, is to pool and sequence DNA from multiple 318 

individuals within a population with clearly distinct phenotypes or habitat conditions (Turner 319 

et al. 2010), and to identify those markers across the genome that display a large difference in 320 
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allelic frequency between the pooled groups (Holderegger et al. 2008). The advantage of this 321 

‘population resequencing’ approach, which vaguely resembles bulked segregant analysis 322 

(BSA), is that no mapping population or extensive LD is necessary; the drawback is that an 323 

annotated genome is still needed for reference. Since annotated genome sequences are 324 

increasingly becoming available, this will be less of a problem in the future. The approach can 325 

be readily extended to polygenic traits (Heard et al. 2010). A potential application to 326 

community genetics in trees would be to pool the DNA from trees that host a particular insect 327 

with DNA from those that do not, and compare the sequenced genomes of the two groups.  328 

Next generation methods now enable genotyping-by-sequencing (Baird et al. 2008). In the 329 

context of segregating populations, restriction-site associated DNA (RAD) markers or 330 

transcriptome sequencing enable direct mapping-by-sequencing, thus skipping marker 331 

development altogether (Hartwig et al. 2012; Zhu et al. 2012). In QTL mapping this solves 332 

the problem of generating dense maps, so that the limiting factor for high resolution is the 333 

number of recombinations or the size of the segregating population. As forest trees have very 334 

small LD, the ability to generate high volumes of genomic data is a very promising 335 

development for GWAS.  336 

Gene expression profiling, a complementary approach to association genomics as a 337 

strategy for functional genomics, is also being revolutionized by developments in next 338 

generation technologies. Gene expression profiling has been applied to study stress response 339 

in trees, for example following insect attack where transcript analyses by cDNA microarray 340 

profiles have been combined with 2-D protein and protein spectrometric analyses (Lippert et 341 

al. 2007). In this pioneering work on pines and pine weevils, the authors identified 342 

interspecific cross-talking transcripts and their proteins. Next generation sequencing of tagged 343 

cDNA ends now enables researchers to quantify the number of transcripts from different 344 
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subsets of individuals. Given the availability of gene annotations, the transcripts will be 345 

associated with gene models and their regulators using publicly available databases. We 346 

expect that co-expression profiling will become feasible for populations as well as for 347 

individual ontogenetic stages of interacting species. Such an approach may also be scaled up 348 

from two-species interactions to multiple-species interactions, i.e. a true 'community 349 

transcriptome' approach.  350 

Proteomic approaches allow for an efficient and simultaneous detection of the proteins in a 351 

sample. The proteome composition to some extent integrates fluctuations in expression over a 352 

period of time, thus potentially being robust with regard to sampling time in the field. The 353 

identification of peptides relies on either a large, high-quality RNA-seq dataset, a complete 354 

set of alleles from a multigene family, or the genome sequence. An example is the use of 355 

peptide identification (Q-TOF LC-MSE) for fast screening of Bet v 1 isoforms in pollen of 356 

various birch species, as it was possible to determine both presence and relative abundances 357 

of individual isoforms (Schenk et al. 2009). For this, the mass spectra obtained from the 358 

pollen were compared with a set of predicted peaks based on a complete set of isoforms 359 

obtained by sequencing the genes. In species for which the genome sequence or a large 360 

amount of transcriptome data is available, this prediction becomes a relatively simple 361 

bioinformatics exercise. 362 

Other -omics techniques, such as metabolomics, may be employed in similar experimental 363 

schemes. Recent advances have increased the sensitivity and throughput of metabolomics and 364 

proteomics assays (‘next-gen biochem’). Now, one can directly map QTL controlling the 365 

metabolic profile of all offspring of a cross. For instance, untargeted GC-TOF-MS metabolite 366 

profiling allowed mapping of 100 mQTLs (Carreno-Quintero et al. 2012). The main 367 

drawbacks of metabolomics are the higher costs and the problem of interfering factors due to 368 
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the different growing conditions of the trees included in the association analysis. Moreover 369 

the samples cannot be all taken at the same time. On the other hand, the compounds measured 370 

are also the ones that affect the interaction with associated insect species. So if genetic 371 

variation in multiple genes affects the content of one important compound, the association of 372 

the compound with presence or absence of one or more insect species will be stronger than 373 

that of each of the underlying genes, and the association will also be more informative on the 374 

mechanism of the interaction. Even GWAS could be done in this way. In our example using a 375 

pool of trees including those that host a particular insect and those that do not, a comparison 376 

of compounds may be more straightforward than comparing DNA markers. In particular, if 377 

the insect is not always present on the same trees across years, the compounds present in each 378 

tree in each year could reveal a strong correlation, whereas the genes that enable the tree to 379 

produce the compounds would not.  380 

If, as indicated above, a compound affects the presence of insect species, then one would 381 

expect, reciprocally, the presence of catabolites of the compound in insect species that tolerate 382 

the compound, when these insects are sampled on the trees that produce it. This can be used 383 

to experimentally validate the statistical associations between compounds in the tree and the 384 

presence of insect species or guilds, and for a starting point for understanding the mechanisms 385 

behind the interactions between trees and insects. 386 

Perspectives 387 

A suite of -omics approaches is available to pave the way for studying entire communities. 388 

Accordingly, we need to refine hypotheses and develop suitable study designs and statistical 389 

tools (Augustin et al. 2010; Ovaskainen et al. 2010), which will improve implementation once 390 
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reduced costs make these tools applicable to large-scale sampling of community-level 391 

interactions (Table 1). 392 

As outlined above, we see two main directions that should be followed in community 393 

genetics to substantiate inference on the interplay of genes, organisms, communities, and their 394 

respective environments. First, joint descriptive and experimental studies should include 395 

spatial and temporal gradients to account for environmental variation in these dimensions 396 

(Thompson 2005; Crutsinger et al. 2009; Tack et al. 2010). Second, researchers in community 397 

genetics should make better use of the exponentially increasing genomic information 398 

becoming available, which will requires solid expertise in bioinformatics. If this is achieved, 399 

gene-to-gene interactions can be explored in individual-based associations and at the level of 400 

entire communities and shift community genetics towards becoming community genomics. 401 

Moreover, community genetics goes beyond the effects of genotypes in one species on the 402 

community of associated organisms. We also need to consider the reciprocal effects of how 403 

associated communities shape the genotypic composition of their hosts and of how the 404 

genotypes of associated species affect host communities (Fig. 1). There are virtually no 405 

studies available on this aspect of community interactions, which leaves a wide-open field of 406 

empirical research for the future. Exploring reciprocal interactions might help to extrapolate 407 

population genomics and quantitative genomics of focal species. We will then need to adopt a 408 

community-based understanding of selection and drift as well as to include G x G x E 409 

interactions into reaction norm calculations. However, elaborating on this subject goes 410 

beyond the scope of the present article. 411 

In conclusion, we believe that the amalgamation of traditional population genetics, 412 

quantitative genetics and ecology, fostered by the advent of new genomic technologies, will 413 
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revolutionise our perception of community and ecosystem processes and push community 414 

genetics into a new era. 415 
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Table 1 From genes of focal species to traits of the extended phenotype – and back: questions and experimental considerations, related to 599 

(a) spatio-temporal variation, (b) the application of -omics approaches, and (c) reciprocal effects to stimulate future studies in community 600 

genetics 601 

 602 

Theme Questions Experimental considerations 

   

(a) Spatio-temporal variation To what degree do regional species pools 

determine the composition of organisms 

associated to particular genotypes? 

Assess naturally occurring spatial replicates of 

particular genotypes, e.g. agricultural, 

horticultural or silvicultural clones, and perform 

regionally replicated experiments using the same 

(set of) genotypes exposed to various regional 

species pools of potentially associated 

organisms. 

 What is the relevance of phylogeographic 

structure in host species for the composition of 

associated communities? 

Consider genetic structure and evolutionary 

lineages of the focal species. 
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 How do relationships between genotypes and 

associated organisms vary among seasons or 

among life stages? 

Perform temporally replicated experiments or 

monitor natural communities across >1 year; 

establish long-term experiments with host plants 

from seedlings to mature adults. 

 How does landscape configuration, e.g. 

differences in the relative abundance of, or 

connectivity among, particular habitat types, 

affect regional species pools and, thus, the 

communities of associated organisms in a focal 

species? 

Include landscape characteristics when setting up 

experimental plots or assessing natural 

communities. 

 To which degree does plasticity shape extended 

phenotypes? 

Set up common garden experiments along 

ecological gradients including reciprocal 

transplants to test for genotype-by-environment 

interactions and reaction norms. 

(b) -omics approaches Which QTL relate to particular groups of 

associated organisms? 

Establish various fullsib families or diallel 

crosses to include a wide range of allele variants. 
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 What (classes of) compounds differ among host 

genotypes that are differentially affected by 

groups of associated organisms? 

Genome/transcriptome sequencing of pools of 

host plants differing in their associated 

communities. 

 Do traits affecting community composition of 

associated species rely on single or multiple 

genes, and how large is their allelic variation 

within host populations? 

Identify genes directly involved in the 

interaction, e.g. through QTL mapping, and 

quantify the degree of polymorphism using high-

throughput, reduced-representation sequencing. 

 Does one gene of a focal species influence a 

single, a group or all associated species? 

Use feeding (herbivores) or inoculation 

(ectomycorrhizae) experiments and perform co-

expression profiling and subsequent protein 

annotation. 

 How many such genes exist, given that a focal 

species may interact with hundreds of associated 

species? 

Perform gene expression studies of focal species 

that are experimentally associated with different 

single species or groups of species of associated 

organisms. 
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(c) Reciprocal effects How do different groups of associated species 

induce changes in the phenotypic traits (and the 

underlying allele frequencies) of the host? 

Expose the same (set of) hosts to different (sets 

of) associated species and test for changes in 

traits and allele frequencies over time. 

 What genes in host and associated species 

determine whether they interact as generalists or 

specialists? 

Combine comparative genomics and expression 

profiling among generalists and specialists in 

both hosts and associated species. 

 603 
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Fig. 1 How host plant genes might shape assemblages of associated organisms (blue pathway 604 

on the left). Several ecological filters drive the structure of communities associated with one 605 

host plant. Among associated species co-occurring within a region and determined by 606 

evolutionary and biogeographical processes (1, Total species pool), local species assemblages 607 

depend on dispersal (2, Landscape species pool) and habitat filters (3, Habitat species pool). 608 

Dispersal filter refers to the ability of species to colonize the focal site. Habitat filters 609 

correspond to their capacity to develop and survive in a habitat given abiotic constraints. 610 

Biotic interactions with the host species contribute to the shaping of a host species pool (4, 611 

biotic filter). Finally, variation among host plant genotypes may further select different 612 

associated communities, shaping the extended phenotypes. 613 

Genes of the focal host plant can interact with the four filters, as illustrated by the interaction 614 

between trees and associated insect herbivores: (1) There is evidence that pools of insect 615 

herbivore species of different tree families or genera are significantly different, probably 616 

owing to a long co-evolutionary process involving insect feeding traits and plant defence 617 

responses (Novotny et al. 2002); (2) insect herbivores use genetically controlled physical (e.g. 618 

shape, colour) and chemical cues (e.g. volatile organic compounds) provided by host plants to 619 

locate the plants; (3) trees can be seen as ecological engineers which can modify abiotic 620 

conditions that insects experience, e.g. wind, moisture, or light; (4) genes control plant 621 

phenotype and resistance traits that are deeply involved in interactions with insect herbivores 622 

(Schoonhoven et al. 2005); and (5) variants of host plant genes may ultimately induce 623 

quantitative changes in traits involved in plant–insect interactions with consequences for 624 

insect community structure (Crutsinger et al. 2008). 625 

Presumed reciprocal effects, through which associated organisms feed back to the 626 

composition of host genes, are depicted by orange colors (right side). 627 

628 
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