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SUMMARY1

Global magnetic field models are typically expressed as spherical-harmonic expansion coef-2

ficients. Slepian functions are linear combinations of spherical harmonics that produce new3

basis functions which vanish approximately outside chosengeographical boundaries, but also4

remain orthogonal within the spatial region of interest. Hence, they are suitable for decompos-5

ing spherical-harmonic models into portions that have significant magnetic field strength only6

in selected areas. Slepian functions are spatio-spectrally concentrated, balancing spatial bias7

and spectral leakage. Here, we employ them as a basis to decompose the global lithospheric8

magnetic field model MF7 up to degree and order 72, into two distinct regions. One of the9

resultant fields is concentrated within the ensemble of continental domains, and the other is10

localised over its complement, the oceans. Our procedure neatly divides the spectral power11

at each harmonic degree into two parts. The field over the continents dominates the overall12

crustal magnetic field, and each region has a distinct power spectral signature. The oceanic13

power spectrum is approximately flat, while that of the continental region shows increasing14

power as the spherical-harmonic degree increases. We provide a further breakdown of the field15

into smaller, non-overlapping continental and oceanic regions, and speculate on the source of16

the variability in their spectral signatures.17
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1 I N T R O D U C T I O N19

The magnetic field of Earth is one of the few measurable quantities that provide remote access to20

the internal dynamics of our planet (see, e.g. Thébault et al. 2010). For instance, past movements21

of tectonic plates may be inferred from the orientation of magnetic minerals in the crust, while the22

secular variation of the field at the surface gives insight into the properties of the outer core (Hulot23

et al. 2010).24

This paper studies the global lithospheric magnetic field atEarth’s surface, focusing on the25

different signatures of the field over continents and oceans. On short time scales, the crustal field26

can be regarded as effectively constant in time, though its induced part does vary slightly (Thébault27

et al. 2009, 2010). The magnitude of the crustal field can varyfrom a fraction of a nanoTesla (nT)28

to thousands of nT at Earth’s surface. The continents comprise a number of ancient blocks with29

varying magnetic properties, while the oceanic crust is relatively young, thinner, and appears much30

more homogeneous (Arkani-Hamed & Dyment 1996). It is generally assumed that at a global31

scale the continental regions mainly exhibit induced magnetisation while the oceanic regions can32

contain both remanent and induced magnetisation (Cohen & Achache 1994; Dyment & Arkani-33

Hamed 1998). One manifestation of the remanent magnetisation of the ocean floor is the “striping”34

parallel to mid-ocean ridges, which is due to past reversalsof the magnetic poles. The width of35

the stripes, from a few kilometres to tens of kilometres, reflects the combination of plate spreading36

rate and reversal frequency (Kono 2007).37

Since the times of Gauss, planetary magnetic fields have beenrepresented by the expansion38

of the potential in the basis of spherical harmonics (e.g. Backus et al. 1996; Langel & Hinze39

1998). From the ‘spectral’ representation in terms of spherical-harmonic ‘Gauss’ coefficients at40

individual degrees and orders, regional ‘spatial’ properties are difficult to deduce. The spherical41

harmonics are perfectly localised spectrally (Freeden & Michel 1999), but their spatial energy is42

⋆ Now at Astrock Geophysics, Finland.
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geographically distributed over the entire globe. Information about the field contained in a single43

spherical-harmonic coefficient thus ultimately derives from signal that may originate anywhere44

on the surface of the planet. Only by expanding the entire setof spherical harmonics back into45

the space domain do we regain a sense of the geographic distribution of the field — at the price46

of confounding its spectral properties. The situation is even worse when the spherical-harmonic47

coefficients are squared (which removes phase information)and summed over all orders, to report48

a (by this construction necessarily) isotropic ‘power spectrum’ or ‘degree variance’, at each indi-49

vidual degree. Here too, while we get an idea of the mean-squared value of the field at a certain50

spherical-harmonic degree, we remain ignorant of the distribution of precisely where, geograph-51

ically, the field is prominently contributing to the power atthat degree. In other words, spherical52

harmonics form a well-understood and convenient apparatusfor the representation and analysis of53

magnetic fields globally, but they lack the flexibility to identify the spatial and spectral structure54

of such fields from ‘spatio-spectrally’ mixed vantage point.55

One of the early attempts at bringing spatial selectivity tospherical-harmonic based repre-56

sentations involved an approach reminiscent of ‘wavelet’ analysis (Simons et al. 1997). Spatially57

selective widows targeting a particular spectral degree range were designed, and a space-spectral58

analysis conducted via a convolutional approach. The drawback of wavelets and their relatives59

is that the area of the spatial region over which informationis being extracted scales inversely60

with the spherical-harmonic degree range of interest. Large-degree (high spatial frequency) infor-61

mation derives from small areas, small-degree (low spatialfrequency) structure is obtained from62

larger regions.63

In order to study the spectral behavior of a geophysical signal confined to a particular geo-64

graphic region of interest, a different solution must be sought. Suppose we were to window the65

data over a spatial region of interest using a simple multiplicative binary mask (e.g. Peebles 1973;66

Wandelt et al. 2001; Dahlen & Simons 2008). In the spectral domain, this operation would es-67

sentially correspond to a convolution of the spherical-harmonic expansion coefficients of the data68

with those of the mask itself. A binary mask, while perfectlylocalised in the space domain, has an69

infinitely-dimensional ringing behavior in the spectral domain. The analysis operation would thus70
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lead to results displaying undesirable spectral-domain artifacts. Evidently some way of ‘tapering’71

the ‘boxcar’ must be found, by which some spatial selectivity is sacrificed in return for spectral72

windows that have better sidelobe behavior (Tegmark 1996, 1997). Such procedures, known as73

‘apodisation’, were first cast as an optimisation problem for application to time-series analysis in74

the 1960s (see, e.g., Slepian 1983).75

With spherical Slepian functions (Wieczorek & Simons 2005;Simons et al. 2006) the trade-76

off between spectral and spatial concentration on the surface of the unit sphere is optimised, by77

constructing a particular linear combination of sphericalharmonics. This combination is such that78

while bandlimited within a certain spectral interval of interest, the functions maximise their spatial79

energy over a certain spatial region of interest, preserving orthogonality over the entire sphere80

as well as over the chosen spatial domain. The trade-off arises because bandlimited expansions81

cannot be spatially limited, nor vice versa, which is a consequence of the Paley-Wiener theorem82

(Daubechies 1992; Mallat 1998), and because spatial concentration is inversely proportional to83

spectral concentration, which is a consequence of the Heisenberg inequality (Percival & Walden84

1993; Narcowich & Ward 1996; Freeden & Michel 1999; Wieczorek & Simons 2005).85

Only one Slepian function is the spatially ‘best’-concentrated function for a given target re-86

gionR on the surface of the sphereΩ. The complete solution to the ‘concentration problem’ as87

put forth by Simons et al. (2006) contains an entire basis setof functions which are eigenfunc-88

tions of the spatio-spectral localisation (bandlimitation followed by spatial limitation) projection89

operator. These eigenfunctions are all orthogonal to each other over the regionR, which can have90

an arbitrarily complex shape, and they are furthermore alsoorthogonal over the entire globeΩ.91

The eigenvalues embody the level to which the energy of the spatial functions is confined to the92

region of interestR. Well-concentrated functions are ‘large’ within the region and have eigen-93

values close to one. These can be used to approximate bandlimited signals inside the region of94

interest. The rest of the set consists of poorly-concentrated, nearly-zero-eigenvalue functions that95

are ‘small’ withinR but large in the complementary regionΩ\R. Those functions are suitable for96

approximating bandlimited signals outside the spatial region of primary interest.97

Taken together, the Slepian basis set is merely a unitary linear transformation of the spherical-98
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harmonic basis, but it is the spatial region of interest built into their construction via quadratic99

maximisation that leads to their efficiency for modelling regional signals. A small subset is ‘large’100

in the regionR, the vast majority is ‘small’ overR. The double orthogonality of the Slepian func-101

tions, both overR and overΩ \R is a property that is convenient and very welcome on statistical102

grounds, e.g. when inversions for the source or estimationsof the power spectral density of the103

field components or the overall potential are being made on the basis of actual satellite data (Si-104

mons & Dahlen 2006; Dahlen & Simons 2008; Simons et al. 2009; Plattner & Simons 2012), but105

note no such attempts are being made here. It finally should bestated that other data-based inver-106

sion approaches may provide the desired (double) orthogonality of the basis functions (e.g. Hwang107

1993; Górski 1994; Xu 1998; Schachtschneider et al. 2010; Slobbe et al. 2012; Schachtschneider108

et al. 2012), but Slepian functions are the only ones that achieve this feat in a fully analytical, and109

easily computable framework, from prior considerations ofthe geometry of the region of interest110

or data availability.111

In summary, and relating back to the objective in this paper,which is to study the spectral sig-112

nature of the Earth’s magnetic field over continents and oceans separately, the Slepian functions113

provide an optimal basis, or else, a set of windowing functions, to model, analyse or represent,114

the magnetic potential within non-overlapping geographical regions. In a decomposition where115

the entire bandwidth of the original model is being used, butselectively truncated expansions into116

Slepian functions are formed from the original spherical-harmonic coefficients, the fit of the signal117

within individual geographical regions is effectively maximised, while at the same time, edge ef-118

fects, which lead to distortions in their spherical-harmonic representations, are minimised. Counil119

et al. (1991) demonstrated that differences between the field in continental and oceanic crust mod-120

elled exclusively using spherical harmonic functions may be influenced by edge effects. Using121

Slepian functions, global signals can be decomposed into effectively regional models that best122

approximate and thus separate the field over the areas of interest, and whose spherical-harmonic123

spectrum can be studied robustly. Ultimately, our objective should be to use the separation of the124

magnetic fields over the continents and oceans for geological inference into the magnetisation125
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structure of the respective domains (e.g. Gubbins et al. 2011), but this goal remains out of the126

scope of the present contribution.127

The Slepian decomposition method can be applied to magneticfields from other planetary128

bodies with sufficient spherical-harmonic model resolution and identifiable regions of interest. The129

technique can also be used in other areas where spatial data are commonly described by spherical130

harmonics such as ocean or glacial signals in gravity models(e.g. Reigber et al. 2005; Slobbe et al.131

2012; Harig & Simons 2012) or when interpreting seismic shear wave velocity models (e.g Becker132

& Boschi 2002; Ritsema et al. 2010), but also astrophysics (e.g. Peebles 1973; Hauser & Peebles133

1973) and cosmology (e.g. Tegmark 1997; Oh et al. 1999).134

Regional modelling can be achieved by other methods, such asvia harmonic splines (Shure135

et al. 1982, 1985; Amirbekyan et al. 2008), (Revised) Spherical Harmonic Cap Analysis (Haines136

1985; Thébault et al. 2006) and various other localising techniques including wavelets (e.g. Holschnei-137

der et al. 2003; Lesur 2006). Each method has advantages overglobal spherical-harmonic analysis138

for local regions. Schott & Thébault (2011) discuss the merits and limitations of each approach in139

detail. However, none of the above techniques attempts to formally optimise field separation over140

arbitrary regions with irregular boundaries from a global model consisting of spherical-harmonic141

coefficients. In this respect the approach by Slepian functions is unique and suited to the prob-142

lem of studying the contributions to the global spherical-harmonic power spectrum that arise from143

distinct geographic regions, continents and oceans, and toassess their spectral characteristics in-144

dividually.145

Several high-quality lithospheric field models are available for study. Much use has been made146

of the excellent satellite vector data from the Ørsted, Champ and SAC-C missions which operated147

between 1999 and 2010. Models of the lithospheric field include satellite-only models such as148

MEME (Thomson et al. 2010) and POMME7 (Maus et al. 2010), and models including data from149

surface, marine, and aeromagnetic surveys such as EMAG2 (Maus et al. 2009). The spherical-150

harmonic expansion coefficients of these lithospheric models (the “Gauss coefficients”) typically151

agree to about degree 80. We restrict our study to the crustalfield between spherical harmonic152

degrees 16–72 using the Gauss coefficients from the MF7 model(Maus et al. 2007). Further im-153
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provements to lithospheric field models are anticipated with data from the ESA Swarm satellite154

mission (Friis-Christensen et al. 2006).155

We use a spherical Slepian-function decomposition of the field over the continents and their156

complement, the oceans, to investigate the differences between the field over those regions that157

can be identified from the spherical-harmonic power spectra. In Section 2 we review some basics158

of the spherical Slepian-function decomposition and establish the framework for its description.159

Originally developed as low-pass bandlimited functions, we also describe a decomposition using160

band-pass Slepian functions. For both of these we demonstrate how to decompose a field model of161

Gauss coefficients into separate regions. In Section 3, we present the results for the crustal mag-162

netic field with an analysis of the trade-off between spatialand spectral accuracy that arises from163

the coupling between each region. In Section 4 we discuss ourfindings and Section 5 concludes164

the paper.165

2 M E T H O D O L O G Y166

Before we proceed, we should caution the reader that historyhas decided that the commonly used167

symbol for the scalar Gauss expansion coefficients of the potential at spherical-harmonic degreel168

and orderm should begml .169

In more recent history (e.g. Simons et al. 2006; Simons & Dahlen 2006), we have usedgα(θ, φ)170

for theαth bandlimited scalar Slepian function evaluated at colatitudeθ and longitudeφ on the unit171

sphere, andgα,lm for the expansion coefficients of the Slepian functions in the spherical-harmonic172

basis. When we collect the coefficientsgα,lm for theαth Slepian functions into a (column) vector,173

we writegα, when we collect the expansion coefficients of all of the Slepian functions, column174

by column, in to a matrix, we write the results asG, and when we collect the Slepian functions175

themselves, evaluated as a function of colatitude and longitude, into a column vector, we write176

g(θ,φ).177

At the risk of antagonising our forebears we shall usevml for the (Gauss) expansion coefficients178

of the potentialV , and collect them in a column vectorv.179
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2.1 Spherical harmonics180

Magnetic fields originating inside or outside Earth can be approximated by a scalar potentialV

that satisfies Laplace’s equation,

∇2V = 0, (1)

i. e., is harmonic, outside the source region. From this potential, the magnetic fieldB is obtained

by

B = −∇V. (2)

In spherical coordinates(r, θ, φ) the harmonic potential of the internal field is convenientlyrepre-

sented by a spherical-harmonic expansion to a certain bandwidthL,

V (r, θ, φ) = a

L
∑

l=1

(a

r

)l+1
l

∑

m=−l

vml Y m
l (θ, φ), (3)

whereY m
l (θ, φ) is a real spherical surface harmonic of degreel and orderm, the Gauss coeffi-181

cientsvml define the weightings of the individual harmonics, anda is a reference radius for the182

expansion (typically Earth’s mean radius, 6371.2 km), which is valid whenr ≥ a. Here, thevml183

andv−m
l replace thegml andhm

l in the traditional geomagnetic notations.184

Spherical surface harmonics are orthogonal over the whole sphereΩ: whenl 6= l′ orm 6= m′,
∫

Ω

Y m
l (θ, φ)Y m′

l′ (θ, φ) dΩ = 0. (4)

In geomagnetism, the normalisation (i. e. the nonzero valueof eq. 4 whenl = l′ andm = m′)

is usually that due to Schmidt (see Blakely 1996). The spherical-harmonic power spectrumRl is

then defined as the squared magnitude of the magnetic field at degreel averaged over a spherical

surface of radiusr, which, in this Schmidt normalisation, amounts to (Mauersberger 1956; Lowes

1966, 1974; Sabaka et al. 2010):

Rl(r) = (l + 1)
(a

r

)2l+4
l

∑

m=−l

(

vml
)2
. (5)

We do not speak of “spectral densities” since we do not reportaverages per spherical-harmonic185

degree, but rather totals. A “flat” power spectrum in the sense of eq. (5) is not “white”, as “white-186

ness” would imply that the spatial autocorrelation is a delta function (Dahlen & Simons 2008,187
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their eqs 33–34). It is important to heed the implications ofthis particular definition for a physical188

interpretation (Hipkin 2001; Maus 2008).189

2.2 Slepian functions190

2.2.1 Notation and objective191

Spherical surface harmonics are functions of global support that can be converted, by a unitary192

linear transformation, into a spherical Slepian basis whose energy is concentrated onto specific193

patches of the sphere (Wieczorek & Simons 2005; Simons et al.2006). A detailed review of194

the construction and properties of 1D, 2D and 3D Slepian functions is given by Simons (2010).195

Here, we present a slightly different notation from that previously used by these authors. Both196

notations are equivalent, but in this paper we rely more on vector-matrix operations than on the197

explicit summations that have been mostly used elsewhere. First, we consider some elementary198

mathematical definitions.199

To allow for computations other than in geomagnetism, we include thel = 0 monopole term

in what follows below. Spherical surface harmonics up to degree and orderL can be expressed as

a vector of(L+ 1)2 elements, each of which is a function of position(θ, φ) on the unit sphere:

y(θ,φ) =
[

Y 0
0 (θ,φ) · · · Y m

l (θ,φ) · · · Y L
L (θ,φ)

]T

. (6)

The ordering of the spherical harmonicsY m
l is naturally arbitrary. The notation is such that all200

boldface lower-case characters represent column vectors and boldface upper-case represents ma-201

trices. In geomagnetism, the monopole harmonic (Y 0
0 ) is usually ignored (or set to zero), but we202

include it in this analysis to prevent loss of generality forother applications.203

On a unit sphere, the potentialV (θ,φ) up to degreeL is represented in a spherical-harmonic

basis by a single(L + 1)2–dimensional column vector of Gauss coefficients,v. The potential on

the surface is obtained from these Gauss coefficients as

V (θ,φ) = vTy(θ,φ) = v · y(θ,φ). (7)

The representation of the potential in a spherical-harmonic spectral-domain basis by the lower-204
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case boldface symbolv which lacks a dependence on(θ, φ) distinguishes it from the space-domain205

potentialV (θ,φ) in our notation.206

Spherical Slepian functions (hereafter simply: Slepian functions) are an alternative basis,

g(θ,φ) =
[

g1(θ,φ) · · · gα(θ,φ) · · · g(L+1)2(θ,φ)
]T

. (8)

Each of the entries in eq. (8) is a basis function that is linearly related to the surface harmonics by

the expansion

gα(θ, φ) = gT
αy(θ, φ) = gα · y(θ, φ). (9)

As in eq. (7), our notation distinguishes the spatial-domain Slepian functionsgα(θ, φ) from their

expansion coefficientsgα in the spherical-harmonic basis. Slepian basis functions are orthonormal

over the unit sphere so that

gα · gα′ =















1 if α = α′,

0 otherwise.

(10)

The Slepian basisg(θ,φ) is produced from the spherical surface harmonic basisy(θ,φ) by multi-

plying the latter by the unitary matrix which is given by

GT =













gT
1

...

gT
(L+1)2













, GGT = I. (11)

The matrixG is constructed by optimisation, as will be shown in the next section (2.2.2), to207

localise the solution over specified areas or regions (and their complements), for a given band-208

width L. Note that the regions of interest do not have to be connectedor contiguous, but they209

must be non-overlapping to preserve orthogonality betweendifferent constructions. For the case210

of unconnected continental regions on Earth, and the complementary oceanic domain, a single211

optimisation procedure determines a complete set of basis functions which naturally separate into212
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those basis functions that are well localised over either ofthe two distinct domains:213

GTy(θ,φ) =







GT
iny(θ,φ)

GT
outy(θ,φ)






=

































g1(θ,φ)
...

gK(θ,φ)

gK+1(θ,φ)
...

g(L+1)2(θ,φ)

































=







gin(θ,φ)

gout(θ,φ)






, (12)

where the indexK denotes the last element of the functions primarily concentrated in the first214

domain, subscripted “in” (that is, inside the region of interest), andK+1 denotes the first element215

of the functions concentrated in the other domain, subscripted “out” (outside the region of interest,216

inside of the complement). The basis functions of domain “in” are approximately non-zero only217

within the chosen regionR, while those of domain “out” are concentrated outsideR. The value218

of K depends on the bandwidth and the fractional area of the “in” region. With this type of a219

spherical harmonic-to-Slepian transformation we restrict ourselves to analysing only one spherical220

shell (e. g. the surface) at a time. Simons & Dahlen (2006, their Section 6.3) discuss aspects of221

harmonic continuation using the Slepian basis.222

2.2.2 Determination of the Slepian basis223

The Slepian functions span a linear subspace ofy(θ, φ) in which the energy, or sum-squared224

function value overR, is maximised. At this point the geometry of the region underconsideration225

enters the calculation. We compute the Gram matrix of energyin R as226

D =

∫

R

y(θ,φ)yT(θ,φ) dΩ (13)

=

∫

R













Y 0
0 Y

0
0 · · · Y 0

0 Y
L
L

...
. . .

...

Y 0
0 Y

L
L · · · Y L

L Y L
L













dΩ. (14)
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This “localisation” matrix is symmetric and the subspace ofmaximum energy is readily obtained

by eigenvalue decomposition. The eigenvalues and eigenvectors ofD are defined as

DG = GΛ, (15)

where each column ofG contains one eigenvector andΛ is a diagonal matrix with the correspond-

ing eigenvalues

Λ = diag
(

λ1, · · · , λα, · · · , λ(L+1)2
)

. (16)

The symmetry ofD provides that all eigenvalues are real and positive (or zero) and that all eigen-227

vectors are orthogonal, which makesG unitary. Furthermore, each eigenvalueλα defines the frac-228

tional energy (overR compared toΩ) that is represented in the projectiongα(θ, φ) = gα · y(θ, φ).229

The eigenvalue problem (15) is equivalent to the maximisation ofλ for functions given the avail-230

able bandwidthL. The Slepian functions in this discussion have been perfectly bandlimited spec-231

trally, to degree and orderL.232

The eigenvaluesλα are characterised by a spectrum of near-unity values separated from near-233

zero values by a narrow transition region. This shape is the motivation for the heuristic decomposi-234

tion intoK “in” and (L+1)2−K “out” functions, whereλK ≈ 0.5. It is generally not possible to235

separate perfectly the energy of the functions that concentrate inside and outsideR in this manner.236

Hence, there will be spatial leakage between the two domains“in” and “out”, and the energy of237

the leakage depends on the eigenvalues, which are close to (but smaller than) one,λα . 1, when238

α ≤ K, and greater than (but close to) zero,λα & 0, whenα > K.239

The diagonalisation is reminiscent of Principal-Component Analysis (PCA) (e.g. Jolliffe 2002)240

with the exception that PCA traditionally finds linear subspaces that concentrate data variance241

rather than basis-function energy. Slepian eigenvectors and eigenvalues can also be considered242

to result from singular-value decomposition (SVD) if we consider the integral in (14) as a “nor-243

mal” matrix, the product of a matrix and its transpose, as arises in inversion problems (Simons244

2010). The elements ofD are to be evaluated by numerical integration or analytically in certain245

circumstances; see Wieczorek & Simons (2005) and Simons et al. (2006, 2009). When the region246

of concentration has the symmetry of a polar cap or an antipodal pair of polar caps (Simons &247
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Dahlen 2006), the matrixG can be found without the intermediary ofD, through commutation248

relations. Numerically, this property is very attractive.249

The eigenvaluesλα cannot exceed unity because no orthonormal projection can provide more

fractional energy than any of the spherical surface harmonics over the whole sphere. For eigenval-

ues near one, most of the energy of the projection is be contained withinR. When the eigenvalues

are near zero, most energy of the projection is contained outsideR. The sum of the eigenvaluesλα

gives the “Shannon number” (Simons et al. 2006), which can directly be computed from

K = (L+ 1)2
A

4π
, (17)

whereA is the surface area (in steradians) ofR. The Shannon number, a space-bandwidth product,250

approximates the dimension of the space of approximately space- (toR) and band- (toL) limited251

functions on the sphere. It corresponds to the number of functions that usefully project the energy252

of the spherical harmonics onto the target regionR.253

It is reasonable to omit certain spherical-harmonic degrees from the Slepian functions if there is

no energy in those degrees. For instance, in crustal field models, due to the inability to separate the

dominant core field contribution at degreesl =12–15, Gauss coefficients of degreesl < l0 = 15

are generally set to zero. In such a case, the corresponding Slepian basis (8) has(L + 1)2 − l20

elements and the Shannon number, modified after (17), would be

K =
[

(L+ 1)2 − l20
] A

4π
. (18)

There are corresponding changes in all related equations that refer explicitly to the dimensions of254

vectors and matrices, which are, however, straightforwardto adapt. The resulting models would255

thus be based on band-pass Slepian functions rather than thelow-pass ones which have been the256

subject of all previous work using spherical Slepian functions known to us.257
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2.2.3 Decomposition of the Gauss coefficients258

A harmonic potentialV (θ, φ) can thus be decomposed into parts (almost) localised insideand259

outside a regionR as follows:260

Vin(θ, φ) =
(

GT
inv

)T
gin(θ, φ), (19)

Vout(θ, φ) =
(

GT
outv

)T
gout(θ, φ). (20)

The potential over the entire sphere is a superposition of these partial expansions,

V (θ, φ) = Vin(θ, φ) + Vout(θ, φ). (21)

Furthermore, the spherical-harmonic representations of the two regional potentials become the261

projections262

vin =
(

GinG
T
in

)

v, (22)

vout =
(

GoutG
T
out

)

v. (23)

Eqs (22)–(23) imply a transfer of energy from each of the spherical-harmonic elements in the263

original to the individual regional expansions, although the matrices
(

GinG
T
in

)

and
(

GoutG
T
out

)

are264

diagonally dominant. There is a trade-off between the spectral coupling and the spatial leakage265

from one domain to another: decreasing the amount of coupling will tend to increase the spatial266

bias by reducing the regional selectivity of the decomposition. The behaviour can be understood267

on the basis of the detailed considerations made by Simons & Dahlen (2006) for the case where268

linear functionals of the data result in signal estimation from noisy and incomplete observations,269

and by Dahlen & Simons (2008) which treated the case where quadratic data functionals result in270

direct estimates of the power spectral density from similarobservations. There are more connec-271

tions implicit in the early theoretical work by Kaula (1967), Spencer & Gubbins (1980), Whaler &272

Gubbins (1981), and in the practical studies by Slobbe et al.(2012), Trampert & Snieder (1996),273

Schachtschneider et al. (2010), to name a few examples from geodesy, seismology, and geomag-274

netism, respectively. However, the material in this section (2.2.3) does not appear explicitly in275

those papers, nor has the algorithm proposed in the next section (2.2.4) been applied before.276
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2.2.4 Algorithm277

We have implemented the ocean-continent magnetic-field decomposition using the following five278

algorithmic steps for which we have made the computer code freely available:279

(i) A file containing the latitudes and longitudes of the boundary outlines was generated to280

determine the spatial region of interestR. The average spacing between points was approximately281

10 km.282

(ii) A localisation matrixD was computed for the region of interest on the sphere using eq. (14)283

with the bandwidthL = 72. This is most the time-consuming step, which, however, benefited from284

a parallel implementation which reduced computation time to a matter of minutes on a contempo-285

rary eight-processor machine.286

(iii) Slepian basis functions for the region were generatedusing the eigenvector decomposition287

of the localisation matrix of eq. (15). They were sorted by eigenvalue, from the largest to the288

smallest.289

(iv) The spherical-harmonic coefficients were converted into equivalent Slepian coefficients290

using eqs (19)–(20).291

(v) The Shannon numberK was used to separate the Slepian coefficients into the two com-292

plementary regions of interest, and the Slepian coefficients were transformed back to spherical-293

harmonic coefficients using eqs (22)–(23).294

The spherical-harmonic coefficients for each region can be treated as usual, for example, to find295

field components at a series of points for plotting in map form, or squared, summed and scaled296

to give a power spectrum as per eq. (5). With regards to this last operation, it is to be noted297

that this does not amount to a “multitaper” power spectral estimate in the sense of Wieczorek298

& Simons (2007) or Dahlen & Simons (2008, their eqs 130 and 139). In the present approach299

we focused on containing spatial bias by achieving field separability over both regions at the full300

resolution of the data. As shown in the previous section (2.2.3) and in the examples to follow, this301

leads to a spectral coupling with a manageable bias, or effective bandwidth of resolution, for the302

spectral estimate, whose variance, unlike in both studies cited, we did not attempt to minimise. The303
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Figure 1. The radial component of the crustal magnetic field MF7 (Maus et al. 2007) for the spherical

harmonic degreesl =16–72 (units: nT). The green line shows the continental crust boundaries and the black

line denotes the shorelines for reference. The colour scaleis saturated: the field values reach a minimum of

-288 nT and a maximum of 397 nT in places.

advantage of our present approach is that it stays intuitively close to geomagnetic practice while304

alleviating the drawbacks of forming “periodogram” spectral estimates with simple binary masks305

for the continents and the oceans — a case treated in detail byDahlen & Simons (2008, their306

Section 5). Field separation and spectral estimation are different statistical problems, one linear307

in the data and the other quadratic: our approach of basis projection, truncation, and reprojection,308

for evaluation in the space domain and spectral estimation,serves a dual purpose that is closer in309

spirit to the former, without excessively violating the basic premise of the latter. Lewis & Simons310

(2012) can be consulted for an example for the Martian lithospheric field, where the focus lies on311

the estimation and parameterised inversion of the power spectrum rather than on separable field312

representation with the quadratic spectrum as a by-product, as is our case.313

3 C R U S T A L F I E L D D E C O M P O S I T I O N314

The lithospheric field decomposed is the model MF7 of Maus et al. (2007), which extends to315

spherical harmonic degree 133. This model, derived for use at the Earth’s mean radius (6371.2 km),316
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is based on Champ satellite measurements up to April 2010. The model is suitable for the analysis317

of long-wavelength features of the lithospheric field, as shorter wavelengths become distorted due318

to data processing and model regularisation. We thus examine the field at the spherical-harmonic319

degreesl =16–72, as degrees beyond 72 are subject to along-track filtering of the data and stronger320

a priori smoothing (Maus et al. 2008). The boundaries of the continental crust are approximated321

from global relief images of the NOAA ETOPO2v2 map. In most regions these images show clear322

features at the edges of continental and oceanic regions, which can be confirmed by comparison323

with oceanic crust boundaries of Müller et al. (2008) or Counil et al. (1991) among others.324

Fig. 1 shows the radial component of the magnetic field of MF7 along with the continental325

boundaries. We employ Slepian functions to decompose the scalar potential into a continental do-326

main and its complement, the oceanic domain. The figure includes the shoreline as a reference so327

that submarine continental crust is also distinguishable.We use the radial component of the mag-328

netic field to assess the decompositions visually in the following sections. We analyse the results329

by studying spherical-harmonic power spectra (eq. 5), eventhough the optimal decomposition of330

the potential is not necessarily also optimal for its field components (Plattner et al. 2012). The331

number of Slepian eigenfunctions and their eigenvalues foreach region are computed using the332

appropriate Shannon numbers from eqs (17) or (18). Some large-scale lithospheric anomalies are333

missing from the model, because the lowest spherical-harmonic degree considered is 16. Purucker334

et al. (2002) have argued that the large anomalies in southern North America could be the edge335

effects of large-scale cratonic magnetisation which is notcontained in truncated lithospheric field336

models. In this paper we can not study magnetisation of the continents or the oceans, only the337

magnetic field itself and how it is expressed over the individual domains.338

3.1 Decomposition using low-pass Slepian functions339

From the MF7 model we use the first 5328 Gauss coefficients (up to degree and order 72) and340

include theg00 coefficient (set to zero, as are degrees 1–15) for the purposes of the Slepian decom-341

position. A symmetric (5329 × 5329) localisation matrixD of eq. (14) is computed from a list342

of 10151 (latitude, longitude) pairs representing the continental shelf boundary, closed by spline343
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(a)

(b)
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Figure 2. The radial component of the MF7 magnetic field data decomposed into (a) continental and

(b) oceanic signals (units: nT). This decomposition uses low-pass Slepian functions that include spherical-

harmonic degrees 0–72, although the input model contains only degrees 16–72. The separation of the basis

set happens at the Shannon number,K = 2170 for the continents, which leaves 3159 functions to approxi-

mate the signal over the oceans.

interpolation. The eigenvectors of the localisation matrix are sorted by decreasing eigenvalue and344

then the Gauss coefficients are converted into the equivalent complete description by Slepian func-345

tion coefficients.346

Fig. 2 shows the radial components of the continental and theoceanic signals expressed in the347

Slepian basis. In both cases, the signal outside the chosen area is very small, though in neither case348

does it vanish completely. Moreover, certain features generate systematic reverberation, or ringing,349
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in the adjacent regions — such as that of continental signal south of Australia (upper panel). The350

computed Shannon number assigns 2170 Slepian basis functions to the continental crust and 3159351

to the oceanic crust. Judging from the corresponding eigenvalues, about 5.0% of the energy of the352

continental basis is outside of the boundaries; while for the oceanic basis, some 3.4% leaks into353

the continental domain. From a spatial integration of the original signal and its comparison to the354

reconstruction over the partial domains, more than 98.2% ofthe energy of the spatial signal is355

recovered in the continents, while 94.9% is recovered over the oceans.356

Fig. 3 shows the power spectra of the decomposed signals. In using eq. (5) for the computations357

in the case of the decomposed fields, we continue to refer to the surface area of the entire sphere,358

even though we have effectively zeroed out the contributions from the regions outside those of359

interest. A different definition of “power” spectrum might have scaled our results by the areas360

of the region of interest. On the other hand, a different interpretation of our computations might361

thus interpret our comparative results as “energy” spectrarather than power spectra. Whatever the362

preference of the reader, the computer code that accompanies this paper can be easily adapted to363

make accommodations for taste.364

For the oceanic region, degree 16 and the highest degrees (around 70) stand out. Degree 16365

corresponds approximately to a wavelength of 2500 km, possibly present in the (north–south)366

direction parallel to the mid-ocean ridges. Degree 70 corresponds approximately to wavelengths367

of 550 km, which is perhaps the longitudinal wavelength of the north-south oriented magnetic368

“stripes” visible by satellites in the Atlantic basin. The spectrum of the continental region shows369

much more variability than the oceanic signal. There are many peaks that follow those of the global370

spectrum. The peak at degree 25 is present in the oceanic signal but otherwise the large peaks are371

limited to the continents. Overall, the power from the continental region is significantly greater372

than the power of the oceanic region. This is most likely owing to the larger volume of magnetic373

rocks in the continents despite their smaller areal extent.374

Fig. 3 also shows explicitly that the power spectrum of the sum of the decomposed signals is375

identical to the global spectrum of the original, while it can be shown that the sum of the partial376

spectra is a good, though not perfect, approximation to the global spectrum. We also see that there377



20 C. D. Beggan, J. Saarim̈aki, K. A. Whaler & F. J. Simons

0 10 20 30 40 50 60 70
0

5

10

15

20

25

30

35

40

45

Spherical-harmonic degree l

P
o
w

e
r 

s
p
e
c
tr

u
m

 (
n
T

)2
Input spectrum

Continents

Oceans

Spectrum Cont + Oceans

Figure 3. Power spectra of the crustal magnetic field MF7, globally (“input”), and with the signals decom-

posed into continental and oceanic domains using low-pass Slepian functions that contain all spherical-

harmonic degrees from 0–72. Also shown is the spectrum of thesum of the continent and ocean model

fields, which is a close approximation to the global spectrum. Units: nT2.

is some spectral leakage into the degrees below 16, though this is quite low compared to the power378

elsewhere. At this point, we also note that we have decomposed other lithospheric field models379

including MF6 (Maus et al. 2008) and POMME (Maus et al. 2010) which gave similar results to380

those shown in Figs. 2 and 3.381
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Figure 4. Power spectra of the crustal magnetic field MF7, globally, and with the signals decomposed using

band-pass Slepian functions that contain only spherical-harmonic degrees between 16–72, and the spectrum

of the sum of the decomposed model fields, as described in the text. Units: nT2.
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3.2 Decomposition using band-pass Slepian functions382

Fig. 4 shows the power spectra for the model decomposed in band-pass Slepian functions of de-383

greesl = 16–72. The results are similar to the low-passl = 0–72 decomposition shown in Fig. 3.384

Spatial leakage is slightly more prominent than previously, as deduced from the eigenvalues of385

the solution: 5.7% of energy out of the continental basis and3.6% from the oceanic basis. At the386

North pole the leakage of continental signal is more pronounced, though overall the spatial leakage387

is still quite small. In the oceanic spectrum, the peak at degree 16 is stronger than for the low-pass388

Slepian functions, since with the band-pass functions coupling to the degrees 0–15 is excluded.389

There are also power increases at higher degrees.390

3.3 Individual continents and ocean basins391

We next decompose the field model MF7 into five continental areas — Americas (North, Central392

and South), Africa, Eurasia, Australia and Antarctica — andfour ocean basins — Atlantic, Pacific,393

Indian and North Pole. The field over each decomposed region is calculated from the original MF7394

magnetic potential model (not from the decomposed components of the previous sections). Each395

time, the separation was performed using the appropriate Shannon number for the area under396

consideration.397

Fig. 5 shows the power spectra of the decomposed regions. Thesum of the partial spectra398

for these nine parts approximates very well, but does not exactly match, the global MF7 spec-399

trum. There are similar contrasts between continental and oceanic signals as noted previously. For400

instance, continental spectra seem to “flatten” towards thehighest harmonic degrees, while the401

oceanic spectra tend to start to increase at higher degrees.There is much greater roughness in the402

spectra of the continental regions than in those of the oceanic ones. Eurasia and Americas, in par-403

ticular, show most departure from a smooth curve, exhibiting a series of crests and troughs in their404

spectra. The spectrum of the Americas contains one prominent peak close to degree 60 whereas405

that of Eurasia contains at least three peaks and displays overall much greater power within the de-406

gree range 50–70 than any other continental region. All of the continental regions are characterised407

by power that diminishes significantly from the higher to thelower degrees.408
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Figure 5. The power spectrum of the crustal magnetic field decomposed into nine different regions. Con-

tinental regions are presented in the upper plot and oceanicregions are in the lower one. The sum of the

partial spectra is a very good approximation to the global spectrum. Units: nT2.

In the oceanic signals, only the Pacific spectrum contains a clear peak at degree 16, which409

was noticeable in the all-oceanic signal shown in Fig. 3. Hence, whatever the cause of this long-410

wavelength variation, it most likely originates in the Pacific Ocean. The Pacific Ocean spectrum411

also exhibits much more variability than that of other oceanic regions. However, it does not account412

for much greater power than the spectra of the Atlantic or Indian Oceans, although its area is twice413

as large. There are also differences in smoothness of the spectra. The Pacific and Atlantic Ocean414

spectra are much less smooth than those for most of the continental regions, except for that of the415

Americas which also exhibits abrupt changes in slope. The North Pole is included in the oceanic416

areas, but it is questionable whether it is possible to obtain any information from the area by this417

analysis, as the area of the region is less than 1% of the wholeglobe and it lies within the satellite418

polar gap. Thus it is unlikely to have significant information or power at any of the wavelengths419

analysed here.420
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3.4 Spectral coupling in the decomposed signals421

Quantifying the spectral coupling or leakage within a decomposed signal allows us to determine422

the resolution of our power-spectral results. The couplingis related to the size of the region of423

interest, its shape, the degree resolution of the model, andthe truncation level of the bases. Cou-424

pling between degrees and orders arises from the separationof the matrixGT that we encoun-425

tered in eq. (11), which breaks its unitarity. Summation over the orders in the squaredGinG
T
in and426

GoutG
T
out projection matrices quantifies the spectral coupling between individual degrees in the427

power-spectral estimate of eq. (5) made with Gauss coefficients transformed via eqs (22)–(23),428

and by analogy with properties of spectral estimators discussed by Dahlen & Simons (2008, their429

eqs 57, 131 and 140). For example, the spectral coupling matrix Cin = (GinG
T
in)

2 for the “in”430

region yields a (732 × 732) matrix. The coupling value for each degreel is computed by summing431

over the orders ofCin, and dividing by(2l + 1), resulting in a (73 × 73) matrix. Ideally, these432

summation matrices should closely approximate the identity matrix, indicating a lack of coupling433

between degrees (but remember that eq. 5 contains a sum over the orders), but such a situation is434

not generally achievable when regional resolution over partial spatial domains is being sought.435

Fig. 6 shows the values of the coupling matrices for low-passdegree 0–72 Slepian functions436

with Shannon-number truncation. The behaviour of the band-pass functions is qualitatively similar437

and will not be illustrated here. The coupling is plotted on alogarithmic scale to emphasise the438

detail in the matrices. Coupling is evident between degrees0–15 which accounts for the spectral439

leakage seen in Fig. 3. From degrees 16–72 the coupling of both regions shows a strong peak at the440

central degree, with narrow flanks. The lower panel of Fig. 6 shows the coupling of degreel = 36441

for the continental “in” and oceanic “out” domains (i. e. the37th row of the low-pass coupling442

matrices). There is a strong peak at the target degree, with narrow shoulders falling to approxi-443

mately zero at about six spherical-harmonic degrees on either side. Except at the low-degree and444

high-degree edges of the domain, the coupling matrices are roughly constant-diagonal, which im-445

plies that in the interior the bandwidth of our spectral estimate is about twelve spherical-harmonic446

degrees. The effective bandwidth, in terms of its full-width at half height, is much smaller than447

that, only about two to three degrees. Information from degrees outside this band does not couple448
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Figure 6. Coupling matrices for the spherical-harmonic power spectrum of the domain-decomposed fields.

(a) Coupling when usingK = 2170 Slepian functions to concentrate over the continents, and (b) when

using(L − 1)2 −K = 3159 Slepian functions over the oceans. The values shown at each degree contain

the normalisation factor(2l + 1), as defined in Section 3.4. The lower panel shows the couplingof degree

l = 36 of the continental (solid black) and oceanic (dashed grey) decomposition, on a log scale. A linear

plot of the same data is shown in the left-hand corner.

strongly into the spectral estimate of the decomposed fieldsat the target. A comparison of this cou-449

pling with the behaviour of the “periodogram” and “(multi-)taper” estimates, derived and depicted450

by Dahlen & Simons (2008, their Figs 4–7), illustrates that the method employed in this paper is451

an effective way of localising the power spectral estimate both in the spatial and spectral domains.452

To give a visual sense of how spectral coupling works under our procedure, we illustrate it by453

simply decomposing models containing only one or a few individual spherical-harmonic degrees454

at a time. Using only coefficients from one spherical-harmonic degree (and including all orders455

of that degree) of the global model, we decompose it into oceanic and continental regions. The456

first such experiment is shown in Fig. 7(a). We then progressively add one extra model degree at457
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Figure 7. Decomposing strong peaks in the MF7 spectrum into oceanic and continental signals. These are

taken at the four peaks in the global spectrum within degrees55–68. First the data of (a) one peak (l =55),

then the data of (b) two peaks (l =55 and 61), then (c) three peaks (l =55, 61 and 64) and finally (d) all

four peaks (l =55, 61, 64 and 68) are analysed. Units: nT2.

a time, successively decomposing these synthesised fields into continental and oceanic parts, and458

calculating the power spectrum, as shown in Fig. 7(b)–(d) . The four spherical-harmonic degrees459

are chosen from the higher end of the spectrum where continental crust dominates, specifically460

degrees 55, 61, 64 and 68, where prominent peaks were seen to occur in Fig. 3.461

Fig. 7 shows the spectra of these decomposed signals. The peaks as recovered relate to the462

input power spectrum via convolution with the spectral coupling matrices of Fig. 6, as first shown463

by Wieczorek & Simons (2005, 2007) and generalised by Dahlen& Simons (2008, their eqs 59,464

135 and 140). Thus, the result for the single spike in Fig. 7(a) is similar to the curves from the465

cross-section of the coupling matrices in Fig. 6. As our spectral mean squares refer to the whole466

sphere, and not just to the area of the continents or oceans, due to its greater area, the power467

spectrum in the oceanic signal is greater than that of the continents. If instead of the low-pass468
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Slepian functions, their band-pass versions are being used, all relationships between degrees are469

altered, but the procedure for their evaluation remains identical. The spectral coupling matrix470

contains the information on the blurring that is caused by the particular decomposition, and spike471

tests can be performed for visual guidance. The band-pass and low-pass Slepian-function model472

decompositions are different. Since the crustal-field model does not contain the lowermost degrees,473

neither should the decomposed signals. For this reason, we prefer the analysis using the band-474

passed Slepian functions, although Figs 3–4 show that the interpretative differences will be minor.475

When the power spectrum shows significant roughness, or whenthe spectrum has a local slope476

that is significantly different from zero (indicating a “non-flat” spectral process), the coupling be-477

tween spherical-harmonic degrees induced by the decomposition will lead to estimates that are478

significantly biased, as they would be with any other partial-domain method (Dahlen & Simons479

2008). In contrast, the spectral estimates for smoothly-varying, flat or “moderately coloured” spec-480

tra will be approximately unbiased, if properly scaled. Theinterpretation of what constitutes “mod-481

erate” colouring is to be made with reference to the effective bandwidth of the spectral estimator.482

The comparison of the global power spectra in Figs 3–4 with the effective bandwidth of the esti-483

mator, as apparent from Fig. 6, suggests that this interpretative approximation is justified. We thus484

conclude that the decomposition of the global crustal magnetic field using Slepian functions into485

oceanic and continental portions not only provides an excellent approximation to the individual486

fields in the space domain, but also leads to useful and reliable representations of their power spec-487

tra. A complete multitaper analysis in the vein of Dahlen & Simons (2008, their Section 7) would488

provide more control over the variance of the power-spectral estimate, but given the clear-cut spec-489

tral separation of the source model after the spatial decomposition in the case of the magnetic field,490

the benefits would be largely statistical. However, should the spectrum need to be known with its491

uncertainty in order to map this into uncertainties on modelparameters derived from it, such an492

approach might still be preferable, as shown by Lewis & Simons (2012) for the Martian magnetic493

field.494
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4 D I S C U S S I O N495

In this work we employed spatio-spectrally concentrated spherical Slepian functions to decompose496

global geomagnetic models, available as spherical-harmonic expansion coefficients, into their re-497

gional contributions. Our experiments with the terrestrial lithospheric field indicate that there is a498

clear difference between the magnetic signature of continents versus oceans, and provide a quan-499

titative basis for its interpretation.500

First, the continental field carries more than twice as much energy (mean-squared field over501

the sphere summed over all available harmonics, defined in eq. 5) as the oceanic field, although502

the continental area is only∼40% of the surface. This can be explained by the larger volumeof503

the continental crust, although it should be counter-balanced to some extent by extrusive oceanic504

basaltic layers with strong magnetisation (Purucker et al.2003; Gubbins et al. 2011). Second, the505

oceanic signal contains approximately equal total power atall degrees, whereas the shape of the506

continental power spectrum resembles that of the whole field(increasing towards higher degrees507

and flattening slightly towards the end).508

The oceanic spectrum arises from a combination of processes, some natural and some inherent509

in the data processing, such as randomly timed reversals of magnetic poles, non-uniform plate510

motions and the smoothing effect of the satellite measurements from which MF7 is derived. We511

conclude that the young, steadily regenerating oceanic crust contains approximately equal power512

over all degrees, whereas the more mature, slowly evolving,crust of the continents possesses513

significantly more power in the higher degrees, due to the thickness of the continents and the514

nature of their amalgamation.515

As an additional experiment, we decomposed the historical core field of the modelgufm1at516

the CMB (Jackson et al. 2000) into regions of anomalously slow seismic shear wave velocities and517

their complement (Grand 2002). These decompositions were produced for every 10 years for the518

time period 1590–1990, with the results indicating that, approaching the present date, the spectral519

signatures of the decomposed regions become increasingly indistinct, suggesting that few unam-520

biguously resolvable differences exist between them. However, we concluded from examination521

of the coupling matrices that when the range of spherical harmonics degrees is limited, such as is522
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the case with the core field, the spatio-spectral decomposition is not sufficiently discriminant to523

justify strong conclusions.524

5 CONCLUSIONS525

Using spherical Slepian functions, both in their traditional low-pass (for the degrees 0–72) and526

novel band-pass (for degrees 16–72) incarnations, we decomposed the global lithospheric mag-527

netic field model MF7, complete to spherical-harmonic degree and order 72, into two regions: one528

that is localised over the continents, and its complement which is localised in the ocean basins. The529

results demonstrate that the continental region dominatesthe lithospheric magnetic field, and also530

that the two regions have very distinct spectral signatures. The oceanic signal appears to have ap-531

proximately equal power across all spherical-harmonic degrees while the continental signal shows532

increasing power as a function of degree.533

Our method provides interpretable decompositions when thedata set has a smoothly varying534

spectrum (with respect to the effective coupling bandwidthof the spectral estimate) and when535

the range of spherical harmonics degrees is sufficiently large. The lithospheric field was a prime536

candidate for our analysis; in contrast, the core field does not meet these criteria.537

The analysis using Slepian functions is one of a range of localisation methods that are ap-538

plicable to a large number of (geophysical) studies where spherical-harmonic modelling is used.539

The key advantages of Slepian functions are their harmonicity and double orthogonality, both540

over the region of interest and over the whole sphere, their ease of calculation, and their possi-541

ble application as basis functions to conduct linear inverse problems, or as windowing functions542

to perform quadratic spectral analysis. Each of those aspects has received a thorough theoretical543

treatment in prior work. The method developed in this paper represents a hybrid form, whereby544

we approximated the signal of interest inside of the individual regions of study using a truncated545

Slepian expansion, and subsequently, we employed the traditional Mauersberger-Lowes spherical-546

harmonics-based power-spectral estimation on the space-domain results. We have shown how this547

resulted in appropriately spatio-spectrally concentrated estimates both of the underlying signals548
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and their power spectra, and we showed how to interpret the resolution of the resultant spectral549

estimate via a characterisation of its coupling (or leakage) kernel.550
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