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SUMMARY

Global magnetic field models are typically expressed asrg@itdharmonic expansion coef-
ficients. Slepian functions are linear combinations of sighéharmonics that produce new
basis functions which vanish approximately outside chasmygraphical boundaries, but also
remain orthogonal within the spatial region of interestnkks they are suitable for decompos-
ing spherical-harmonic models into portions that haveifigant magnetic field strength only
in selected areas. Slepian functions are spatio-spgctraticentrated, balancing spatial bias
and spectral leakage. Here, we employ them as a basis to geserthe global lithospheric
magnetic field model MF7 up to degree and order 72, into twandisregions. One of the
resultant fields is concentrated within the ensemble ofinental domains, and the other is
localised over its complement, the oceans. Our proceduatyndivides the spectral power
at each harmonic degree into two parts. The field over thereamis dominates the overall
crustal magnetic field, and each region has a distinct popettsal signature. The oceanic
power spectrum is approximately flat, while that of the coenital region shows increasing
power as the spherical-harmonic degree increases. Wedgra\further breakdown of the field
into smaller, non-overlapping continental and oceanitoreg and speculate on the source of

the variability in their spectral signatures.
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1 INTRODUCTION

The magnetic field of Earth is one of the few measurable quesithat provide remote access to
the internal dynamics of our planet (see, e.g. Thébault @040). For instance, past movements
of tectonic plates may be inferred from the orientation ofjnetic minerals in the crust, while the
secular variation of the field at the surface gives insigtat the properties of the outer core (Hulot
et al. 2010).

This paper studies the global lithospheric magnetic fiel@ath’s surface, focusing on the
different signatures of the field over continents and oce@nsshort time scales, the crustal field
can be regarded as effectively constant in time, thoughdhsded part does vary slightly (Thébault
et al. 2009, 2010). The magnitude of the crustal field can frary a fraction of a nanoTesla (nT)
to thousands of nT at Earth’s surface. The continents caa@inumber of ancient blocks with
varying magnetic properties, while the oceanic crust etiadly young, thinner, and appears much
more homogeneous (Arkani-Hamed & Dyment 1996). It is gdheessumed that at a global
scale the continental regions mainly exhibit induced mégaton while the oceanic regions can
contain both remanent and induced magnetisation (Cohen&aétte 1994; Dyment & Arkani-
Hamed 1998). One manifestation of the remanent magnetisattihe ocean floor is the “striping”
parallel to mid-ocean ridges, which is due to past reversiathe magnetic poles. The width of
the stripes, from a few kilometres to tens of kilometreserf the combination of plate spreading
rate and reversal frequency (Kono 2007).

Since the times of Gauss, planetary magnetic fields have tepeasented by the expansion
of the potential in the basis of spherical harmonics (e.gckBa et al. 1996; Langel & Hinze
1998). From the ‘spectral’ representation in terms of sjghéharmonic ‘Gauss’ coefficients at
individual degrees and orders, regional ‘spatial’ prapsrare difficult to deduce. The spherical

harmonics are perfectly localised spectrally (Freeden &hdl 1999), but their spatial energy is

* Now at Astrock Geophysics, Finland.
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Decomposition of magnetic field models using Slepian fansti 3
geographically distributed over the entire globe. Infatisraabout the field contained in a single
spherical-harmonic coefficient thus ultimately derivasnirsignal that may originate anywhere
on the surface of the planet. Only by expanding the entir@&spherical harmonics back into
the space domain do we regain a sense of the geographiddigin of the field — at the price
of confounding its spectral properties. The situation isreworse when the spherical-harmonic
coefficients are squared (which removes phase informadioth summed over all orders, to report
a (by this construction necessarily) isotropic ‘power $peu’ or ‘degree variance’, at each indi-
vidual degree. Here too, while we get an idea of the meanrsdualue of the field at a certain
spherical-harmonic degree, we remain ignorant of theidigion of precisely where, geograph-
ically, the field is prominently contributing to the powerthat degree. In other words, spherical
harmonics form a well-understood and convenient appafatuble representation and analysis of
magnetic fields globally, but they lack the flexibility to ity the spatial and spectral structure
of such fields from ‘spatio-spectrally’ mixed vantage point

One of the early attempts at bringing spatial selectivitysphierical-harmonic based repre-
sentations involved an approach reminiscent of ‘waveledlygsis (Simons et al. 1997). Spatially
selective widows targeting a particular spectral degrageavere designed, and a space-spectral
analysis conducted via a convolutional approach. The daawlof wavelets and their relatives
is that the area of the spatial region over which informaigbeing extracted scales inversely
with the spherical-harmonic degree range of interest. é-@ggree (high spatial frequency) infor-
mation derives from small areas, small-degree (low spaggluency) structure is obtained from
larger regions.

In order to study the spectral behavior of a geophysicalaiganfined to a particular geo-
graphic region of interest, a different solution must begstuSuppose we were to window the
data over a spatial region of interest using a simple midajple binary mask (e.g. Peebles 1973;
Wandelt et al. 2001; Dahlen & Simons 2008). In the spectrahala, this operation would es-
sentially correspond to a convolution of the sphericahi@ric expansion coefficients of the data
with those of the mask itself. A binary mask, while perfedtigalised in the space domain, has an

infinitely-dimensional ringing behavior in the spectrahaiin. The analysis operation would thus
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lead to results displaying undesirable spectral-domdifaets. Evidently some way of ‘tapering’
the ‘boxcar’ must be found, by which some spatial selegtiigtsacrificed in return for spectral
windows that have better sidelobe behavior (Tegmark 199871 Such procedures, known as
‘apodisation’, were first cast as an optimisation problemeafgplication to time-series analysis in
the 1960s (see, e.g., Slepian 1983).

With spherical Slepian functions (Wieczorek & Simons 208bnons et al. 2006) the trade-
off between spectral and spatial concentration on the ciréé the unit sphere is optimised, by
constructing a particular linear combination of spheri@monics. This combination is such that
while bandlimited within a certain spectral interval oféngst, the functions maximise their spatial
energy over a certain spatial region of interest, presgroithogonality over the entire sphere
as well as over the chosen spatial domain. The trade-o#sbecause bandlimited expansions
cannot be spatially limited, nor vice versa, which is a coneace of the Paley-Wiener theorem
(Daubechies 1992; Mallat 1998), and because spatial ctmatiem is inversely proportional to
spectral concentration, which is a consequence of the klegsg inequality (Percival & Walden
1993; Narcowich & Ward 1996; Freeden & Michel 1999; WieckogeSimons 2005).

Only one Slepian function is the spatially ‘best’-concatgd function for a given target re-
gion R on the surface of the sphefe The complete solution to the ‘concentration problem’ as
put forth by Simons et al. (2006) contains an entire basi®katnctions which are eigenfunc-
tions of the spatio-spectral localisation (bandlimitatfollowed by spatial limitation) projection
operator. These eigenfunctions are all orthogonal to ettedr over the regiork, which can have
an arbitrarily complex shape, and they are furthermore atdmgonal over the entire glolse.
The eigenvalues embody the level to which the energy of th@agunctions is confined to the
region of interestR. Well-concentrated functions are ‘large’ within the ragiand have eigen-
values close to one. These can be used to approximate baedlisgnals inside the region of
interest. The rest of the set consists of poorly-concesdratearly-zero-eigenvalue functions that
are ‘small’ within R but large in the complementary region\ R. Those functions are suitable for
approximating bandlimited signals outside the spatialbmgf primary interest.

Taken together, the Slepian basis set is merely a unitaggditransformation of the spherical-



929

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

Decomposition of magnetic field models using Slepian fansti 5
harmonic basis, but it is the spatial region of interesttiantio their construction via quadratic
maximisation that leads to their efficiency for modellingiinal signals. A small subset is ‘large’
in the regionR, the vast majority is ‘small’ oveR. The double orthogonality of the Slepian func-
tions, both over? and over) \ R is a property that is convenient and very welcome on stedikti
grounds, e.g. when inversions for the source or estimatibtise power spectral density of the
field components or the overall potential are being made erb#sis of actual satellite data (Si-
mons & Dahlen 2006; Dahlen & Simons 2008; Simons et al. 20Gatrier & Simons 2012), but
note no such attempts are being made here. It finally shoustiabed that other data-based inver-
sion approaches may provide the desired (double) orthdigppagthe basis functions (e.g. Hwang
1993; Gorski 1994; Xu 1998; Schachtschneider et al. 20l et al. 2012; Schachtschneider
et al. 2012), but Slepian functions are the only ones thatsaetthis feat in a fully analytical, and
easily computable framework, from prior considerationthef geometry of the region of interest
or data availability.

In summary, and relating back to the objective in this papbrch is to study the spectral sig-
nature of the Earth’s magnetic field over continents and mesaparately, the Slepian functions
provide an optimal basis, or else, a set of windowing fum&jdo model, analyse or represent,
the magnetic potential within non-overlapping geograpghiegions. In a decomposition where
the entire bandwidth of the original model is being used selgctively truncated expansions into
Slepian functions are formed from the original sphericalnmonic coefficients, the fit of the signal
within individual geographical regions is effectively nignsed, while at the same time, edge ef-
fects, which lead to distortions in their spherical-harisaepresentations, are minimised. Counil
et al. (1991) demonstrated that differences between thkifielontinental and oceanic crust mod-
elled exclusively using spherical harmonic functions mayirifluenced by edge effects. Using
Slepian functions, global signals can be decomposed iféztafely regional models that best
approximate and thus separate the field over the areas oéstitand whose spherical-harmonic
spectrum can be studied robustly. Ultimately, our objecskiould be to use the separation of the

magnetic fields over the continents and oceans for geologifexence into the magnetisation
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6 C.D.Beggan, J. Saariéki, K. A. Whaler & F. J. Simons
structure of the respective domains (e.g. Gubbins et all @it this goal remains out of the
scope of the present contribution.

The Slepian decomposition method can be applied to maghelits from other planetary
bodies with sufficient spherical-harmonic model resolutiad identifiable regions of interest. The
technique can also be used in other areas where spatialrdataramonly described by spherical
harmonics such as ocean or glacial signals in gravity mddeds Reigber et al. 2005; Slobbe et al.
2012; Harig & Simons 2012) or when interpreting seismic seae velocity models (e.g Becker
& Boschi 2002; Ritsema et al. 2010), but also astrophysics @eebles 1973; Hauser & Peebles
1973) and cosmology (e.g. Tegmark 1997; Oh et al. 1999).

Regional modelling can be achieved by other methods, suefadsarmonic splines (Shure

et al. 1982, 1985; Amirbekyan et al. 2008), (Revised) Sghétiiarmonic Cap Analysis (Haines

1985; Thébault et al. 2006) and various other localisismégues including wavelets (e.g. Holschnei-

der et al. 2003; Lesur 2006). Each method has advantageglobal spherical-harmonic analysis
for local regions. Schott & Thébault (2011) discuss theite@nd limitations of each approach in
detail. However, none of the above techniques attemptstodily optimise field separation over
arbitrary regions with irregular boundaries from a globaldal consisting of spherical-harmonic
coefficients. In this respect the approach by Slepian fanstis unique and suited to the prob-
lem of studying the contributions to the global sphericatrhonic power spectrum that arise from
distinct geographic regions, continents and oceans, aadgess their spectral characteristics in-
dividually.

Several high-quality lithospheric field models are avdédbr study. Much use has been made
of the excellent satellite vector data from the @rsted, Qhand SAC-C missions which operated
between 1999 and 2010. Models of the lithospheric field uelgatellite-only models such as
MEME (Thomson et al. 2010) and POMME7 (Maus et al. 2010), andets including data from
surface, marine, and aeromagnetic surveys such as EMAGAgMiaal. 2009). The spherical-
harmonic expansion coefficients of these lithospheric rsofdlee “Gauss coefficients”) typically
agree to about degree 80. We restrict our study to the criistdlbetween spherical harmonic

degrees 16—72 using the Gauss coefficients from the MF7 nibdels et al. 2007). Further im-
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Decomposition of magnetic field models using Slepian fansti 7
provements to lithospheric field models are anticipatedh wéta from the ESA Swarm satellite
mission (Friis-Christensen et al. 2006).

We use a spherical Slepian-function decomposition of tHd &eer the continents and their
complement, the oceans, to investigate the differencasdeet the field over those regions that
can be identified from the spherical-harmonic power spebitr&ection 2 we review some basics
of the spherical Slepian-function decomposition and distalthe framework for its description.
Originally developed as low-pass bandlimited functions,also describe a decomposition using
band-pass Slepian functions. For both of these we demoabiva to decompose a field model of
Gauss coefficients into separate regions. In Section 3, e&ept the results for the crustal mag-
netic field with an analysis of the trade-off between spatnal spectral accuracy that arises from
the coupling between each region. In Section 4 we discusfiralings and Section 5 concludes

the paper.

2 METHODOLOGY

Before we proceed, we should caution the reader that hismsylecided that the commonly used
symbol for the scalar Gauss expansion coefficients of thenpial at spherical-harmonic degree
and ordem should beg;".

In more recent history (e.g. Simons et al. 2006; Simons & BaR006), we have used (6, ¢)
for theath bandlimited scalar Slepian function evaluated at coidé&d and longitudeb on the unit
sphere, and,, ;,, for the expansion coefficients of the Slepian functions eagpherical-harmonic
basis. When we collect the coefficients;,,, for theath Slepian functions into a (column) vector,
we write g, when we collect the expansion coefficients of all of the Blegunctions, column
by column, in to a matrix, we write the results @ and when we collect the Slepian functions
themselves, evaluated as a function of colatitude and todegj into a column vector, we write
g(0.9).

At the risk of antagonising our forebears we shall y8dor the (Gauss) expansion coefficients

of the potential/, and collect them in a column vectoer
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2.1 Spherical harmonics

Magnetic fields originating inside or outside Earth can bpragpimated by a scalar potenti&l

that satisfies Laplace’s equation,

V2V =0, (1)
i. e., is harmonic, outside the source region. From thismiak the magnetic fieldB is obtained
by

B=-VVW (2)
In spherical coordinates, 6, ¢) the harmonic potential of the internal field is conveniendgre-
sented by a spherical-harmonic expansion to a certain bdtfu,

L a +1 !
V(r0.0)=ad (2) N or(0.9), 3)
=1

m=—1

whereY;" (6, ¢) is a real spherical surface harmonic of degremd orderm, the Gauss coeffi-
cientsv;” define the weightings of the individual harmonics, ani a reference radius for the
expansion (typically Earth’s mean radius, 6371.2 km), Whecvalid whenr > a. Here, thev”
andv, ™ replace they” andh;" in the traditional geomagnetic notations.

Spherical surface harmonics are orthogonal over the wipblersQ2: whenl # I’ orm # m/,

/Q V™6, )Y (6, ¢) dQ2 = 0. (4)

In geomagnetism, the normalisation (i. e. the nonzero val@g. 4 wherl = I’ andm = m’)
is usually that due to Schmidt (see Blakely 1996). The sphkharmonic power spectruf; is
then defined as the squared magnitude of the magnetic fiekbate averaged over a spherical
surface of radius, which, in this Schmidt normalisation, amounts to (Mauergker 1956; Lowes

1966, 1974; Sabaka et al. 2010):

R =+ (S @) ©

m=—I
We do not speak of “spectral densities” since we do not repagtages per spherical-harmonic

degree, but rather totals. A “flat” power spectrum in the sesfeq. (5) is not “white”, as “white-

ness” would imply that the spatial autocorrelation is aadélinction (Dahlen & Simons 2008,
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Decomposition of magnetic field models using Slepian fansti 9
their egs 33—34). It is important to heed the implicationthed particular definition for a physical

interpretation (Hipkin 2001; Maus 2008).

2.2 Slepian functions
2.2.1 Notation and objective

Spherical surface harmonics are functions of global suppat can be converted, by a unitary
linear transformation, into a spherical Slepian basis wharsergy is concentrated onto specific
patches of the sphere (Wieczorek & Simons 2005; Simons €0al6). A detailed review of
the construction and properties of 1D, 2D and 3D Slepiantfans is given by Simons (2010).
Here, we present a slightly different notation from thatvpyasly used by these authors. Both
notations are equivalent, but in this paper we rely more atorematrix operations than on the
explicit summations that have been mostly used elsewhést, we consider some elementary
mathematical definitions.
To allow for computations other than in geomagnetism, wéuthe thel = 0 monopole term
in what follows below. Spherical surface harmonics up torde@nd ordef. can be expressed as

a vector of(L + 1)? elements, each of which is a function of positi@n¢) on the unit sphere:

T

y(0.:0) = | YQ(0,9) --- Y™(60,0) -+ YE(6.0) | - (6)

The ordering of the spherical harmonikg® is naturally arbitrary. The notation is such that all
boldface lower-case characters represent column veatdrbadface upper-case represents ma-
trices. In geomagnetism, the monopole harmotrig)(is usually ignored (or set to zero), but we
include it in this analysis to prevent loss of generalitydtier applications.

On a unit sphere, the potentigl(d,¢) up to degred. is represented in a spherical-harmonic
basis by a singléL + 1)>-dimensional column vector of Gauss coefficientsThe potential on

the surface is obtained from these Gauss coefficients as

V(0,0) = v'y(0.9) = v-y(0.0). (7)

The representation of the potential in a spherical-harmepéectral-domain basis by the lower-
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case boldface symbelwhich lacks a dependence @h ¢) distinguishes it from the space-domain
potentialV/ (6,¢) in our notation.

Spherical Slepian functions (hereafter simply: Slepiarcfions) are an alternative basis,

T

800) = | 51(06) -+ 9a(0.6) -~ g (06) | - ®)

Each of the entries in eq. (8) is a basis function that is liyealated to the surface harmonics by

the expansion

90(0,0) = ghy(0,6) = ga - ¥(0, 9). 9)
As in eq. (7), our notation distinguishes the spatial-den&lepian functiong,, (6, ¢) from their
expansion coefficients, in the spherical-harmonic basis. Slepian basis functiomsdhonormal

over the unit sphere so that

1 ifa=d,
o B = (10)
0 otherwise.

The Slepian basig(6,¢) is produced from the spherical surface harmonic ba8is)) by multi-
plying the latter by the unitary matrix which is given by

gl

GT = : ., GG'=1L (11)
g(TLJrl)2
The matrixG is constructed by optimisation, as will be shown in the nextisn (2.2.2), to
localise the solution over specified areas or regions (aenl tomplements), for a given band-
width L. Note that the regions of interest do not have to be connemtexntiguous, but they
must be non-overlapping to preserve orthogonality betwb#@rent constructions. For the case
of unconnected continental regions on Earth, and the comgiéary oceanic domain, a single

optimisation procedure determines a complete set of basibns which naturally separate into
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23 those basis functions that are well localised over eithéh®two distinct domains:

_ 91(6,9) -
G y(0 x (0,
Gy (0.6) = ny (0,0) | 9x(0.9)
outY(9 ¢) 9K+1(9’¢)
9+12(0,0) |
_ gin(0,9) (12)
Zout(0,0)

2 Where the index< denotes the last element of the functions primarily coneged in the first
2s domain, subscripted “in” (that is, inside the region of net&), andK + 1 denotes the first element
26 Of the functions concentrated in the other domain, subsatifout” (outside the region of interest,

; inside of the complement). The basis functions of domaii dire approximately non-zero only

2.

~

25 Within the chosen regio®, while those of domain “out” are concentrated outsitieThe value
2 Of K depends on the bandwidth and the fractional area of the ‘@gion. With this type of a

» spherical harmonic-to-Slepian transformation we reisticselves to analysing only one spherical

2:

N}

2:

N

. shell (e. g. the surface) at a time. Simons & Dahlen (2006r tection 6.3) discuss aspects of

2 harmonic continuation using the Slepian basis.

2 2.2.2 Determination of the Slepian basis

»« The Slepian functions span a linear subspace (@f ¢) in which the energy, or sum-squared
»s function value ovelR, is maximised. At this point the geometry of the region unoersideration

» enters the calculation. We compute the Gram matrix of enierdyas

D = [y 000 (13)
R
YOV e YOVE

_ / . o (14)
R
YE]OYLL YLLYLL
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This “localisation” matrix is symmetric and the subspacenaiximum energy is readily obtained

by eigenvalue decomposition. The eigenvalues and eigtorgaaf D are defined as
DG = GA, (15)

where each column @& contains one eigenvector ands a diagonal matrix with the correspond-

ing eigenvalues
A =diag (M, -+, Aas oo Aae) - (16)

The symmetry oD provides that all eigenvalues are real and positive (or)zand that all eigen-
vectors are orthogonal, which mak@sunitary. Furthermore, each eigenvalygdefines the frac-
tional energy (oveRR compared td?) that is represented in the projectign(d, ¢) = g. - y (0, ¢).
The eigenvalue problem (15) is equivalent to the maximosadif A for functions given the avail-
able bandwidth.. The Slepian functions in this discussion have been pdyfbandlimited spec-
trally, to degree and ordér.

The eigenvalueg, are characterised by a spectrum of near-unity values depldram near-
zero values by a narrow transition region. This shape is tht@/ation for the heuristic decomposi-
tioninto K “in”and (L + 1)? — K “out” functions, where\x ~ 0.5. It is generally not possible to
separate perfectly the energy of the functions that conatmninside and outside in this manner.
Hence, there will be spatial leakage between the two donfaihand “out”, and the energy of
the leakage depends on the eigenvalues, which are closatterffaller than) one), < 1, when
a < K, and greater than (but close to) zekq,=> 0, whena > K.

The diagonalisation is reminiscent of Principal-Compdmeralysis (PCA) (e.g. Jolliffe 2002)
with the exception that PCA traditionally finds linear subsps that concentrate data variance
rather than basis-function energy. Slepian eigenvectotdseggenvalues can also be considered
to result from singular-value decomposition (SVD) if we swler the integral in (14) as a “nor-
mal” matrix, the product of a matrix and its transpose, asegrin inversion problems (Simons
2010). The elements dD are to be evaluated by numerical integration or analyiiaallcertain
circumstances; see Wieczorek & Simons (2005) and Simors(@086, 2009). When the region

of concentration has the symmetry of a polar cap or an argipoair of polar caps (Simons &
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Dahlen 2006), the matri& can be found without the intermediary Bf, through commutation
relations. Numerically, this property is very attractive.

The eigenvaluesa, cannot exceed unity because no orthonormal projection ande more
fractional energy than any of the spherical surface harasoower the whole sphere. For eigenval-
ues near one, most of the energy of the projection is be cwadaiithin k. When the eigenvalues
are near zero, most energy of the projection is containesidri®. The sum of the eigenvalueg

gives the “Shannon number” (Simons et al. 2006), which cegcty be computed from

A
K= (L+1)?—
( )47T’

17)
whereA is the surface area (in steradians)bfThe Shannon number, a space-bandwidth product,
approximates the dimension of the space of approximatelgesp(to?) and band- (td’) limited
functions on the sphere. It corresponds to the number otifumethat usefully project the energy
of the spherical harmonics onto the target regibn

Itis reasonable to omit certain spherical-harmonic degireen the Slepian functions if there is
no energy in those degrees. For instance, in crustal fielcelapdiue to the inability to separate the
dominant core field contribution at degrdes12—-15, Gauss coefficients of degrées [, = 15
are generally set to zero. In such a case, the correspontépgas basis (8) hatL + 1)* — 2

elements and the Shannon number, modified after (17), wauld b

K=[(L+1)*-1] %. (18)

There are corresponding changes in all related equatiansefer explicitly to the dimensions of
vectors and matrices, which are, however, straightforaradapt. The resulting models would
thus be based on band-pass Slepian functions rather thaéowikgass ones which have been the

subject of all previous work using spherical Slepian fupresi known to us.
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2.2.3 Decomposition of the Gauss coefficients

A harmonic potential/ (6, ¢) can thus be decomposed into parts (almost) localised irside

outside a regiorR as follows:

Va(0,0) = (Giv) gn(0.9). (19)
Voul0,6) = (Gouv) goul6,9). (20)
The potential over the entire sphere is a superpositionesfeipartial expansions,

V(0,0) = Vin(0,0) + Vould, ¢). (21)

Furthermore, the spherical-harmonic representations@ftwo regional potentials become the

projections
Vin = (Gin Ga)v, (22)
Vout = (GoutGoTut) V. (23)

Eqgs (22)—(23) imply a transfer of energy from each of the gphkharmonic elements in the
original to the individual regional expansions, althoulgé tnatrice G;,G{) and (GG, are
diagonally dominant. There is a trade-off between the sakcbupling and the spatial leakage
from one domain to another: decreasing the amount of cogiglifi tend to increase the spatial
bias by reducing the regional selectivity of the decompasitThe behaviour can be understood
on the basis of the detailed considerations made by Simonsl&dd (2006) for the case where
linear functionals of the data result in signal estimatimmf noisy and incomplete observations,
and by Dahlen & Simons (2008) which treated the case wherérgtia data functionals result in
direct estimates of the power spectral density from sinulzservations. There are more connec-
tions implicit in the early theoretical work by Kaula (1963pencer & Gubbins (1980), Whaler &
Gubbins (1981), and in the practical studies by Slobbe €2@ll2), Trampert & Snieder (1996),
Schachtschneider et al. (2010), to name a few examples femtesy, seismology, and geomag-
netism, respectively. However, the material in this sec(i®.2.3) does not appear explicitly in

those papers, nor has the algorithm proposed in the nexbs€2t2.4) been applied before.
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2.2.4 Algorithm

We have implemented the ocean-continent magnetic-fieldrdposition using the following five

algorithmic steps for which we have made the computer casiyfravailable:

(i) A file containing the latitudes and longitudes of the bdary outlines was generated to
determine the spatial region of interéstThe average spacing between points was approximately
10 km.

(i) Alocalisation matrixD was computed for the region of interest on the sphere using.éy
with the bandwidth. = 72. This is most the time-consuming step, which, however, tigagerom
a parallel implementation which reduced computation tima inatter of minutes on a contempo-
rary eight-processor machine.

(iif) Slepian basis functions for the region were generaigidg the eigenvector decomposition
of the localisation matrix of eq. (15). They were sorted byeewvalue, from the largest to the
smallest.

(iv) The spherical-harmonic coefficients were converteo iequivalent Slepian coefficients
using eqgs (19)—(20).

(v) The Shannon numbdk was used to separate the Slepian coefficients into the twe com
plementary regions of interest, and the Slepian coeffisiardre transformed back to spherical-

harmonic coefficients using egs (22)—(23).

The spherical-harmonic coefficients for each region carrdsted as usual, for example, to find
field components at a series of points for plotting in map foomsquared, summed and scaled
to give a power spectrum as per eq. (5). With regards to tlsisdperation, it is to be noted
that this does not amount to a “multitaper” power spectréihese in the sense of Wieczorek
& Simons (2007) or Dahlen & Simons (2008, their egs 130 and).180the present approach
we focused on containing spatial bias by achieving field isdplity over both regions at the full
resolution of the data. As shown in the previous section82&nd in the examples to follow, this
leads to a spectral coupling with a manageable bias, ortefelsandwidth of resolution, for the

spectral estimate, whose variance, unlike in both studglied,ave did not attempt to minimise. The
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Figure 1. The radial component of the crustal magnetic field MF7 (Maual.e2007) for the spherical
harmonic degrees=16—72 (units: nT). The green line shows the continentaltdrosndaries and the black
line denotes the shorelines for reference. The colour seakaturated: the field values reach a minimum of
-288 nT and a maximum of 397 nT in places.

advantage of our present approach is that it stays intlytslese to geomagnetic practice while
alleviating the drawbacks of forming “periodogram” spat#stimates with simple binary masks
for the continents and the oceans — a case treated in det@ahjen & Simons (2008, their
Section 5). Field separation and spectral estimation dfereint statistical problems, one linear
in the data and the other quadratic: our approach of basjsqgtian, truncation, and reprojection,
for evaluation in the space domain and spectral estimasienves a dual purpose that is closer in
spirit to the former, without excessively violating the legsremise of the latter. Lewis & Simons
(2012) can be consulted for an example for the Martian lphesic field, where the focus lies on
the estimation and parameterised inversion of the powestispe rather than on separable field

representation with the quadratic spectrum as a by-prodads our case.

3 CRUSTAL FIELD DECOMPOSITION

The lithospheric field decomposed is the model MF7 of Mausl.e2807), which extends to

spherical harmonic degree 133. This model, derived for tibedcarth’s mean radius (6371.2 km),
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is based on Champ satellite measurements up to April 20I®middel is suitable for the analysis
of long-wavelength features of the lithospheric field, asrdr wavelengths become distorted due
to data processing and model regularisation. We thus exathanfield at the spherical-harmonic
degree$ =16-72, as degrees beyond 72 are subject to along-trackijjteirthe data and stronger
a priori smoothing (Maus et al. 2008). The boundaries of the contahenust are approximated
from global relief images of the NOAA ETOPO2v2 map. In mosgfioas these images show clear
features at the edges of continental and oceanic regionshwhn be confirmed by comparison
with oceanic crust boundaries of Muller et al. (2008) or @ibat al. (1991) among others.

Fig. 1 shows the radial component of the magnetic field of Mienh@with the continental
boundaries. We employ Slepian functions to decompose tiarguootential into a continental do-
main and its complement, the oceanic domain. The figure dedihe shoreline as a reference so
that submarine continental crust is also distinguishabteuse the radial component of the mag-
netic field to assess the decompositions visually in th@fatg sections. We analyse the results
by studying spherical-harmonic power spectra (eq. 5), éveagh the optimal decomposition of
the potential is not necessarily also optimal for its fieldnponents (Plattner et al. 2012). The
number of Slepian eigenfunctions and their eigenvalueg#ah region are computed using the
appropriate Shannon numbers from eqs (17) or (18). Some-kugle lithospheric anomalies are
missing from the model, because the lowest spherical-haicmiegree considered is 16. Purucker
et al. (2002) have argued that the large anomalies in sautiierth America could be the edge
effects of large-scale cratonic magnetisation which iscoottained in truncated lithospheric field
models. In this paper we can not study magnetisation of timéireents or the oceans, only the

magnetic field itself and how it is expressed over the indigidlomains.

3.1 Decomposition using low-pass Slepian functions

From the MF7 model we use the first 5328 Gauss coefficientsquegree and order 72) and
include theg)) coefficient (set to zero, as are degrees 1-15) for the puspftbe Slepian decom-
position. A symmetric 1329 x 5329) localisation matrixD of eq. (14) is computed from a list

of 10151 (latitude, longitude) pairs representing the icamital shelf boundary, closed by spline
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Figure 2. The radial component of the MF7 magnetic field data deconthas® (a) continental and
(b) oceanic signals (units: nT). This decomposition usesgass Slepian functions that include spherical-
harmonic degrees 0-72, although the input model contailysdegrees 16—72. The separation of the basis
set happens at the Shannon numbér= 2170 for the continents, which leaves 3159 functions to approxi-
mate the signal over the oceans.
interpolation. The eigenvectors of the localisation nxadre sorted by decreasing eigenvalue and
then the Gauss coefficients are converted into the equivedemplete description by Slepian func-
tion coefficients.

Fig. 2 shows the radial components of the continental andd¢kanic signals expressed in the

Slepian basis. In both cases, the signal outside the chosaimsasery small, though in neither case

does it vanish completely. Moreover, certain features gaaeystematic reverberation, or ringing,
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in the adjacent regions — such as that of continental signghsof Australia (upper panel). The
computed Shannon number assigns 2170 Slepian basis fositdithe continental crust and 3159
to the oceanic crust. Judging from the corresponding eajang, about 5.0% of the energy of the
continental basis is outside of the boundaries; while feragbeanic basis, some 3.4% leaks into
the continental domain. From a spatial integration of thgioal signal and its comparison to the
reconstruction over the partial domains, more than 98.2% @fenergy of the spatial signal is
recovered in the continents, while 94.9% is recovered dwepteans.

Fig. 3 shows the power spectra of the decomposed signalsirig ag. (5) for the computations
in the case of the decomposed fields, we continue to refeetsutface area of the entire sphere,
even though we have effectively zeroed out the contribstioom the regions outside those of
interest. A different definition of “power” spectrum mighave scaled our results by the areas
of the region of interest. On the other hand, a differentrpritation of our computations might
thus interpret our comparative results as “energy” speatteer than power spectra. Whatever the
preference of the reader, the computer code that accongpthrisepaper can be easily adapted to
make accommodations for taste.

For the oceanic region, degree 16 and the highest degrems(hair0) stand out. Degree 16
corresponds approximately to a wavelength of 2500 km, pbsgresent in the (north—south)
direction parallel to the mid-ocean ridges. Degree 70 spwads approximately to wavelengths
of 550 km, which is perhaps the longitudinal wavelength & tiorth-south oriented magnetic
“stripes” visible by satellites in the Atlantic basin. Thgestrum of the continental region shows
much more variability than the oceanic signal. There areyrpaaks that follow those of the global
spectrum. The peak at degree 25 is present in the oceanal biginotherwise the large peaks are
limited to the continents. Overall, the power from the coaetital region is significantly greater
than the power of the oceanic region. This is most likely @ntimthe larger volume of magnetic
rocks in the continents despite their smaller areal extent.

Fig. 3 also shows explicitly that the power spectrum of the s the decomposed signals is
identical to the global spectrum of the original, while ihdae shown that the sum of the partial

spectra is a good, though not perfect, approximation to liblgadj spectrum. We also see that there
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Figure 3. Power spectra of the crustal magnetic field MF7, globallptit”), and with the signals decom-
posed into continental and oceanic domains using low-pbegsa® functions that contain all spherical-
harmonic degrees from 0-72. Also shown is the spectrum otine of the continent and ocean model
fields, which is a close approximation to the global spectridmits: nT?.

is some spectral leakage into the degrees below 16, thoigis tjuite low compared to the power
elsewhere. At this point, we also note that we have decondgpotfer lithospheric field models

including MF6 (Maus et al. 2008) and POMME (Maus et al. 2018)ch gave similar results to

those shown in Figs. 2 and 3.
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Figure 4. Power spectra of the crustal magnetic field MF7, globallg waith the signals decomposed using
band-pass Slepian functions that contain only spherigaahbnic degrees between 16—72, and the spectrum

of the sum of the decomposed model fields, as described iexhelinits: nF.
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3.2 Decomposition using band-pass Slepian functions

Fig. 4 shows the power spectra for the model decomposed i-pass Slepian functions of de-
grees = 16—72. The results are similar to the low-pass 0—72 decomposition shown in Fig. 3.
Spatial leakage is slightly more prominent than previouatydeduced from the eigenvalues of
the solution: 5.7% of energy out of the continental basis &6&6 from the oceanic basis. At the
North pole the leakage of continental signal is more proeednthough overall the spatial leakage
is still quite small. In the oceanic spectrum, the peak ate&ked6 is stronger than for the low-pass
Slepian functions, since with the band-pass functions lkeogipo the degrees 0-15 is excluded.

There are also power increases at higher degrees.

3.3 Individual continents and ocean basins

We next decompose the field model MF7 into five continentasare- Americas (North, Central
and South), Africa, Eurasia, Australia and Antarctica — smat ocean basins — Atlantic, Pacific,
Indian and North Pole. The field over each decomposed regicaiculated from the original MF7
magnetic potential model (not from the decomposed compsradrihe previous sections). Each
time, the separation was performed using the appropriatéar®&n number for the area under
consideration.

Fig. 5 shows the power spectra of the decomposed regionssuineof the partial spectra
for these nine parts approximates very well, but does nottgxenatch, the global MF7 spec-
trum. There are similar contrasts between continental aedrtc signals as noted previously. For
instance, continental spectra seem to “flatten” towardshtgkest harmonic degrees, while the
oceanic spectra tend to start to increase at higher dedreere is much greater roughness in the
spectra of the continental regions than in those of the ocemes. Eurasia and Americas, in par-
ticular, show most departure from a smooth curve, exhipitiiseries of crests and troughs in their
spectra. The spectrum of the Americas contains one prormpeak close to degree 60 whereas
that of Eurasia contains at least three peaks and displ&yalbmnuch greater power within the de-
gree range 50—70 than any other continental region. All@ttintinental regions are characterised

by power that diminishes significantly from the higher to kivser degrees.
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Figure 5. The power spectrum of the crustal magnetic field decompagedine different regions. Con-
tinental regions are presented in the upper plot and oceagions are in the lower one. The sum of the
partial spectra is a very good approximation to the globatspm. Units: n¥.

In the oceanic signals, only the Pacific spectrum containea @eak at degree 16, which
was noticeable in the all-oceanic signal shown in Fig. 3.d¢emhatever the cause of this long-
wavelength variation, it most likely originates in the RmcOcean. The Pacific Ocean spectrum
also exhibits much more variability than that of other ogeaggions. However, it does not account
for much greater power than the spectra of the Atlantic oildm@ceans, although its area is twice
as large. There are also differences in smoothness of tlitrap@&he Pacific and Atlantic Ocean
spectra are much less smooth than those for most of the entairregions, except for that of the
Americas which also exhibits abrupt changes in slope. ThehNRole is included in the oceanic
areas, but it is questionable whether it is possible to al#ay information from the area by this
analysis, as the area of the region is less than 1% of the wghaibe and it lies within the satellite
polar gap. Thus it is unlikely to have significant informatior power at any of the wavelengths

analysed here.
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3.4 Spectral coupling in the decomposed signals

Quantifying the spectral coupling or leakage within a deposed signal allows us to determine
the resolution of our power-spectral results. The coupitelated to the size of the region of
interest, its shape, the degree resolution of the modeltfl@ttuncation level of the bases. Cou-
pling between degrees and orders arises from the sepacititie matrixG™* that we encoun-
tered in eq. (11), which breaks its unitarity. Summationrdlae orders in the squardd, Gl and
G, G2, projection matrices gquantifies the spectral coupling betwiadividual degrees in the
power-spectral estimate of eq. (5) made with Gauss coeffeigansformed via egs (22)—(23),
and by analogy with properties of spectral estimators dised by Dahlen & Simons (2008, their
egs 57, 131 and 140). For example, the spectral couplingsm@y = (G;,Gl)? for the “in”
region yields a73? x 73%) matrix. The coupling value for each degreés computed by summing
over the orders o€j,, and dividing by(2/ + 1), resulting in a {3 x 73) matrix. ldeally, these
summation matrices should closely approximate the identdtrix, indicating a lack of coupling
between degrees (but remember that eq. 5 contains a sumheverders), but such a situation is
not generally achievable when regional resolution ovetiglaapatial domains is being sought.
Fig. 6 shows the values of the coupling matrices for low-mgieggee 0—72 Slepian functions
with Shannon-number truncation. The behaviour of the lqzasb functions is qualitatively similar
and will not be illustrated here. The coupling is plotted ologarithmic scale to emphasise the
detail in the matrices. Coupling is evident between degbed$ which accounts for the spectral
leakage seen in Fig. 3. From degrees 16—72 the coupling birbgions shows a strong peak at the
central degree, with narrow flanks. The lower panel of Figa@ss the coupling of degrde= 36
for the continental “in” and oceanic “out” domains (i. e. tB&" row of the low-pass coupling
matrices). There is a strong peak at the target degree, aitiow shoulders falling to approxi-
mately zero at about six spherical-harmonic degrees oereside. Except at the low-degree and
high-degree edges of the domain, the coupling matricesoaighty constant-diagonal, which im-
plies that in the interior the bandwidth of our spectralrastie is about twelve spherical-harmonic
degrees. The effective bandwidth, in terms of its full-widt half height, is much smaller than

that, only about two to three degrees. Information from degroutside this band does not couple
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Figure 6. Coupling matrices for the spherical-harmonic power spectof the domain-decomposed fields.
(a) Coupling when usind( = 2170 Slepian functions to concentrate over the continents, bhavien
using(L — 1) — K = 3159 Slepian functions over the oceans. The values shown at eaglelcontain
the normalisation factof2/ + 1), as defined in Section 3.4. The lower panel shows the coupfidggree
I = 36 of the continental (solid black) and oceanic (dashed gregpohposition, on a log scale. A linear
plot of the same data is shown in the left-hand corner.
strongly into the spectral estimate of the decomposed fadlthe target. A comparison of this cou-
pling with the behaviour of the “periodogram” and “(multaper” estimates, derived and depicted
by Dahlen & Simons (2008, their Figs 4-7), illustrates tiat tnethod employed in this paper is
an effective way of localising the power spectral estimathlin the spatial and spectral domains.
To give a visual sense of how spectral coupling works undepoacedure, we illustrate it by
simply decomposing models containing only one or a few iigdial spherical-harmonic degrees
at a time. Using only coefficients from one spherical-harimalegree (and including all orders

of that degree) of the global model, we decompose it into miceand continental regions. The

first such experiment is shown in Fig. 7(a). We then progvedsadd one extra model degree at
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Figure 7. Decomposing strong peaks in the MF7 spectrum into oceamicantinental signals. These are
taken at the four peaks in the global spectrum within degs®e68. First the data of (a) one peak=55),
then the data of (b) two peaks £55 and 61), then (c) three peaks=£55, 61 and 64) and finally (d) all
four peaks [ =55, 61, 64 and 68) are analysed. Units2nT

a time, successively decomposing these synthesised figllsontinental and oceanic parts, and
calculating the power spectrum, as shown in Fig. 7(b)—(d)e fbur spherical-harmonic degrees
are chosen from the higher end of the spectrum where cominerust dominates, specifically
degrees 55, 61, 64 and 68, where prominent peaks were seecuioiio Fig. 3.

Fig. 7 shows the spectra of these decomposed signals. The psaecovered relate to the
input power spectrum via convolution with the spectral dmgpmatrices of Fig. 6, as first shown
by Wieczorek & Simons (2005, 2007) and generalised by Da&l&mons (2008, their eqs 59,
135 and 140). Thus, the result for the single spike in Fig) igaimilar to the curves from the
cross-section of the coupling matrices in Fig. 6. As our sjpémean squares refer to the whole
sphere, and not just to the area of the continents or oceamstodits greater area, the power

spectrum in the oceanic signal is greater than that of théiramnts. If instead of the low-pass
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Slepian functions, their band-pass versions are being, adlelationships between degrees are
altered, but the procedure for their evaluation remainstidal. The spectral coupling matrix
contains the information on the blurring that is caused leyghrticular decomposition, and spike
tests can be performed for visual guidance. The band-paskanpass Slepian-function model
decompositions are different. Since the crustal-field rhddes not contain the lowermost degrees,
neither should the decomposed signals. For this reason referhe analysis using the band-
passed Slepian functions, although Figs 3—4 show that tegietative differences will be minor.
When the power spectrum shows significant roughness, or thieespectrum has a local slope
that is significantly different from zero (indicating a “ndlat” spectral process), the coupling be-
tween spherical-harmonic degrees induced by the decotiposiill lead to estimates that are
significantly biased, as they would be with any other pad@hain method (Dahlen & Simons
2008). In contrast, the spectral estimates for smoothtying, flat or “moderately coloured” spec-
tra will be approximately unbiased, if properly scaled. Titerpretation of what constitutes “mod-
erate” colouring is to be made with reference to the effediandwidth of the spectral estimator.
The comparison of the global power spectra in Figs 3—4 wighetifiective bandwidth of the esti-
mator, as apparent from Fig. 6, suggests that this intexfpretapproximation is justified. We thus
conclude that the decomposition of the global crustal magfield using Slepian functions into
oceanic and continental portions not only provides an éxeehpproximation to the individual
fields in the space domain, but also leads to useful and feliepresentations of their power spec-
tra. A complete multitaper analysis in the vein of Dahlen &8ns (2008, their Section 7) would
provide more control over the variance of the power-speestamate, but given the clear-cut spec-
tral separation of the source model after the spatial deositipn in the case of the magnetic field,
the benefits would be largely statistical. However, shobédgpectrum need to be known with its
uncertainty in order to map this into uncertainties on mguebhmeters derived from it, such an
approach might still be preferable, as shown by Lewis & Sisn@®12) for the Martian magnetic
field.
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4 DISCUSSION

In this work we employed spatio-spectrally concentratétesipal Slepian functions to decompose
global geomagnetic models, available as spherical-hamexpansion coefficients, into their re-
gional contributions. Our experiments with the terrestiibospheric field indicate that there is a
clear difference between the magnetic signature of contisneésrsus oceans, and provide a quan-
titative basis for its interpretation.

First, the continental field carries more than twice as mudrgy (mean-squared field over
the sphere summed over all available harmonics, defined.iB)eap the oceanic field, although
the continental area is onky40% of the surface. This can be explained by the larger volaime
the continental crust, although it should be counter-lizddrio some extent by extrusive oceanic
basaltic layers with strong magnetisation (Purucker 2@03; Gubbins et al. 2011). Second, the
oceanic signal contains approximately equal total powallategrees, whereas the shape of the
continental power spectrum resembles that of the whole fietadteasing towards higher degrees
and flattening slightly towards the end).

The oceanic spectrum arises from a combination of processe® natural and some inherent
in the data processing, such as randomly timed reversalsaghetic poles, non-uniform plate
motions and the smoothing effect of the satellite measunésrfeom which MF7 is derived. We
conclude that the young, steadily regenerating oceanat cantains approximately equal power
over all degrees, whereas the more mature, slowly evolvingst of the continents possesses
significantly more power in the higher degrees, due to thektlgss of the continents and the
nature of their amalgamation.

As an additional experiment, we decomposed the historimad field of the modejufmlat
the CMB (Jackson et al. 2000) into regions of anomaloushy skeismic shear wave velocities and
their complement (Grand 2002). These decompositions wetuped for every 10 years for the
time period 1590-1990, with the results indicating thaprapching the present date, the spectral
signatures of the decomposed regions become increasimgjbtinct, suggesting that few unam-
biguously resolvable differences exist between them. Heweave concluded from examination

of the coupling matrices that when the range of sphericahbaics degrees is limited, such as is
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the case with the core field, the spatio-spectral decomposg not sufficiently discriminant to

justify strong conclusions.

5 CONCLUSIONS

Using spherical Slepian functions, both in their tradiiblow-pass (for the degrees 0-72) and
novel band-pass (for degrees 16—72) incarnations, we deuased the global lithospheric mag-
netic field model MF7, complete to spherical-harmonic degred order 72, into two regions: one
that is localised over the continents, and its complemeittinik localised in the ocean basins. The
results demonstrate that the continental region dominlagekthospheric magnetic field, and also
that the two regions have very distinct spectral signaturee oceanic signal appears to have ap-
proximately equal power across all spherical-harmonicegwhile the continental signal shows
increasing power as a function of degree.

Our method provides interpretable decompositions whem#t@ set has a smoothly varying
spectrum (with respect to the effective coupling bandwiolthhe spectral estimate) and when
the range of spherical harmonics degrees is sufficientgjelarhe lithospheric field was a prime
candidate for our analysis; in contrast, the core field do¢sneet these criteria.

The analysis using Slepian functions is one of a range oflikat@on methods that are ap-
plicable to a large number of (geophysical) studies whehesgal-harmonic modelling is used.
The key advantages of Slepian functions are their harntgngeid double orthogonality, both
over the region of interest and over the whole sphere, tlase @f calculation, and their possi-
ble application as basis functions to conduct linear irvgn®blems, or as windowing functions
to perform quadratic spectral analysis. Each of those éspes received a thorough theoretical
treatment in prior work. The method developed in this paperesents a hybrid form, whereby
we approximated the signal of interest inside of the indmaid-egions of study using a truncated
Slepian expansion, and subsequently, we employed théitrzaliMauersberger-Lowes spherical-
harmonics-based power-spectral estimation on the spaoeaid results. We have shown how this

resulted in appropriately spatio-spectrally concentrastimates both of the underlying signals
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=« and their power spectra, and we showed how to interpret swutton of the resultant spectral

s estimate via a characterisation of its coupling (or leak&genel.
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