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|Abstract| 

A new data analysis toolkit is presented, suitable for the analysis of large-scale, long-term datasets and the 
phenomenon/anomalies they possess.  The toolkit aims to expose and quantify scientific information in a 
number of forms contained within a time-series based dataset in a quantitative and rigorous manner, reducing 
the subjectivity of observations made, thereby supporting the scientific observer.  The features contained 
within the toolkit include the ability to handle non-uniform datasets, time-series component determination, 
frequency component determination, feature/event detection and characterisation/parameterisation of local 
behaviours.  An application is presented of a case study dataset arising from the 'Lasgit' experiment.   
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Introduction 
The development of the safety case for deep 

geological repositories has prompted a series of 
experimental activities ranging from laboratory 
scale to field scale.  A proportion of such 
experiments have a significant duration owing to 
the longevity of the problems being studied, e.g. 
the (re)saturation of clay buffers (SKB 2007, 
Dixon et al. 2002).  The large-scale, long-term 
nature of these experiments can yield vast datasets 
that would be impractical to examine entirely by 
hand. 

Time-series analysis and signal processing 
techniques applied computationally can help to 
reduce subjectivity in observations made (e.g. 
Chatfield 1989), therefore supporting the scientific 
observer.  This is achieved by providing a uniform 
and automated procedure for making observations 
that, by its nature, performs the task in a 
quantitative way.  This approach improves such 
observations by turning them into measurements. 

Such computational analysis may also be 
instrumental in uncovering a wealth of information 
contained within the dataset (e.g. Box and 
Jenkins 1976, Chatfield 1989), while addressing the 
practicalities of analysing a large-scale dataset.  In 
addition to any primary observations or data 
processing, an analysis focusing on smaller scale 
features can be performed to expose this 
information and can potentially yield extra value 
from the dataset.  Such an analysis is termed a 
‘second order’ analysis in this work. 

As an additional consequence of the longevity of 
such experimental undertakings, non-uniform 
datasets often arise, often due to circumstances 
outside of the experimental control such as 
hardware malfunction/failure.  The probability of 
experiencing an event causing non-uniformity 
increases with the length of the experiment 
(Halpern 1978, O’Connor 1995).  Typically 
automated computational analysis algorithms take 
uniform input data, and as such can be hampered 
by the non-uniformities present in such datasets 
(e.g. Box and Jenkins 1976). 

This paper describes the development at the 
GRC of a series of data analysis tools designed 
around long-term, large-scale datasets capable of 
performing time-series and signal processing 
procedures on non-uniform datasets.  These 
approaches, based on statistics, Fourier analysis and 
component analysis are described within the paper 
as a ’data analysis toolkit’.  Each data processing 
and analysis component has been chosen based on 
its potential to expose useful scientific information 
and implemented in such a way as to accommodate 
the input of such a dataset.  An initial analysis is 
then presented of a case study dataset that aims to 
computationally identify and quantify smaller scale 
and otherwise difficult to observe behaviours and 
features. 

Case study 
An example of a long-term large-scale experiment 
with a large non-uniform dataset is the Large Scale 



Gas Injection Test or ‘Lasgit’, a field-scale 
experiment located at the Äspö Hard Rock 
Laboratory (HRL) in Sweden. The project is a full-
scale demonstration test based on the KBS-3V high-
level radioactive waste disposal concept (SKB 2006) 
and is designed to examine the impact of gas 
(generated primarily by corrosion of metal) in 
compact bentonite within a deposition hole. 

Lasgit has been in continuous operation since 
February 2005 (Cuss et al. 2010) and has undergone 
more than 90 000 logging cycles (i.e. the recording 
of a single datum point at all installed sensors at a 
specific time) leading to an acquired dataset in 
excess of 14.7 million datum points owing to its 
highly instrumented nature. 

As of the end of 2011 three gas injection tests 
have been undertaken. Tortuous gas flow paths 
have been detected and a number of externally 
caused events have been observed within the 
dataset (Cuss et al. 2010, Cuss et al. 2011).  
However a large quantity of uninterpreted 
information may remain within the dataset making 
it a candidate for analysis of the kind described in 
this paper. 

The Lasgit dataset possesses a number of 
phenomena that require consideration during 
computational analysis.  Primarily the logging (time) 
interval is not consistent across the dataset.  This 
non-uniformity is due in part to increases of sample 
rates during periods of critical interest such as gas 
injection phases and also to hardware limitations 
and unavoidable breakdown causing interruptions 
and loss of data.  Some data streams also 
occasionally ‘spike’, characterised by a single datum 
point, disparate from the consensus of surrounding 
data and therefore can be considered to not be a 
representative measurement at that time, or of the 
process of interest at the observed scale. 

Data analysis toolkit 
To address the above problems a toolkit capable of 
performing a ‘second order’ analysis (as defined 
above) on long-term, large-scale datasets with non-
uniformities has been developed. 

Options regarding reformatting of a dataset 
Computational time-series analysis and algorithmic 
procedures typically require uniform datasets.  To 
overcome the difficulty associated with the 

computational analysis of a non-uniform dataset 
the option exists to reprocess the data into a 
uniform form.  One method of achieving this is by 
down-sampling the dataset to a uniform time step 
(i.e. taking the points that correspond to the lowest 
common sampling rate within the dataset) at the 
cost of a loss of data resolution. 

There may exist however, as exampled in the 
case study dataset, the situation where there is no 
global timing grid that a base sample rate can be 
affixed to, i.e. data logged at hourly intervals that 
correspond with the top of an hour in one section 
of the dataset do not necessarily correspond to the 
top of an hour in other sections of the dataset that 
are sampled at an hour.  In the case study dataset 
this is primarily due to logging hardware requiring 
restarts at various points in the experimental 
history, leading to an arbitrary interval between 
two logging cycles. 

An alternative to this approach is to define an 
appropriate assigned and arbitrary global sample 
rate for the dataset and to interpolate the defined 
points using the original non-uniform data.  
However a high percentage of the original data 
could be abandoned in favour of the ‘created’ data 
using this method.  There is also the risk that detail 
present in the original dataset will be lost in the 
created dataset, particularly local maxima and 
minima if they do no coincide closely with an 
interpolated point. 

Neither of these approaches were considered 
entirely satisfactory therefore an adaption of 
relevant algorithms to a non-uniform applicability 
was undertaken. 

Generalisation of algorithms to non-uniform input 
Time-series analysis can be considered as the 
measurement or exploitation of the fact that 
proximate datum points in a time-series are 
interconnected to (or non-independent of) each 
other (Box and Jenkins 1976).  Approaching time-
series analysis with this in mind helps ensure that 
any modification/generalisation of existing 
algorithms towards non-uniform application 
preserve the intent of the original algorithms and 
the mathematics underpinning them. 

Processes that involve moving windows across a 
time-series, i.e. processes that allow the analyst to 
specify the scale over which the non-independence 



of points is assumed to occur, can be utilised.  
These can be implemented by either collating a 
fixed number of points around the centre of the 
window or by collating all the points that fall within 
a fixed time span around the centre of the window. 

 
 
 
 
 
 
 
 
 
Figure 1 – Comparison of time-series windowing 
methodologies. 

When a time-series has been sampled uniformly 
the two approaches are equivalent, however when 
applied to a time-series that is non-uniform, the 
method using a window fixed in time maintains the 
scale over which the observation is made.  Figure 1 
depicts a comparison of the two ‘windowing’ 
methods when applied to a time-series at the point 
the sample rate changes.  It can be seen that the 
approach using a fixed number of points places a 
forward bias on the actual time indices of the time-
series. 

Basic time windowing applications and implications 
Applying time windowing to a weighted moving 
average algorithm requires a continuous user 
defined weighting function in place of pre-defined 
fixed weighting constants used in the fixed number 
of points windowing method. 

This allows the modified algorithm to adapt to 
non-uniformities in the input time-series by deriving 
weight as a function of each point’s time relative to 
the centre of the window.  Information such as the 
local mean, standard deviation and characterising 
values of the window can be calculated. 
Spike identification can be achieved by comparing 
the absolute deviation of a point from its local 
mean (excluding the point in question) to a 
threshold defined as a multiple of the local standard 
deviation around the point (again excluding the 
point itself).  Exceeding that threshold classes the 
point as a spike, either suggesting rapid process 

evolution or possible measurement error at that 
point.  

 
 
 
 
 
 
 
 
 
Figure 2 – Evolution of spike threshold with 
different levels of spike frequency and signal noise. 

The time windowing implementation of point 
gathering to determine the local parameters that 
are required to make such a comparison ensure 
that the observed density of spikes with time will be 
unaffected by a change in sample rate, assuming 
the frequency or likelihood of spike occurrence is 
not a function of the sample rate and that the data 
is sampled at a greater rate than the underlying 
process evolution of interest. 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
Figure 3 – (a) Local standard deviations of a time-
series.  An isolated peak is highlighted as a small 
scale event candidate.  (b) Detailed view of time-
series at section highlighted in (a). 



Comparatively, using a fixed number of points 
will result in variation in the threshold 
determination with changes in sample rate.  
Figure 2 depicts spike threshold evolution along a 
time-series with varying local environments as 
determined by time windowing. 

Information quantification / parameterisation  
Quantification or parameterisation of local aspects 
of a dataset with respect to time can potentially 
expose information about the system it represents.  
Examples include quantification of local standard 
deviation of the signal, as discussed in the previous 
section, to characterise the noise and/or rate of 
change within the time-series with time. This 
method uses the time windowing method for point 
gathering discussed in the previous section. 

Isolated peaks in the local standard deviation or 
changes in the inherent amount of noise within the 
system can indicate events within the dataset that 
are candidates for scientific investigation, with their 
relative prominence suggesting possible relevance.  
Figure 3 depicts an arbitrary data series, with the 
local standard deviation with time.  The large peak 
in standard deviation corresponds to the large ramp 
in time-series magnitude.  The local standard 
deviation peak, highlighted as an ‘Anomalous Noise 
Peak’, corresponds to a small scale event in the 
time-series which is shown in more detail in Figure 
3b.  The effect identified by the local peak is 
unlikely to appear significant when observed at the 
macro scale of the dataset as a whole, however, 
could indicate a second order process occurring. 

Aggregation of the derived local standard 
deviation series across sensor types can be 
performed allowing a visual indicator of 
synchronisation with in a group of sensors.  The 
result of this process is shown in Figure 5. 

Frequency domain analysis 
Cyclic information over a domain, i.e. frequency 
components along with their amplitudes and 
phases, can be quantified with application of a 
Fourier Transform (FT) analysis.  Application to a 
time-series requires a Discrete Fourier Transform 
(DFT).  The standard DFT process converts a time-
series into a power series consisting of a discrete 
set of frequency locations defined by the time-
series length and sample rate. 

The mathematical representation of a DFT is 
shown in Equation 1 (Bagchi and Mitra 1999), 
where P(k) is the power series of the time-series F 
with points at n or tn (represented by a complex 
number) at frequencies that are n multiples of k/N, 
N is the number of points in the time-series and 
0 ≤ k ≤ N-1. 

 
 
 
 
 
 
 
 
 
Figure 4 – Diagrammatic depiction of NDFT process 
on trending (upper) and non-trending (lower) time-
series. 

To overcome the requirement for a uniform 
sample rate in the time-series a modification to 
Equation 1 can be applied, resulting in an 
implementation of a Non-uniform Discrete Fourier 
Transform (NDFT).  This modification is shown in 
Equation 2. 

 

(1) 

 

 

 (2) 

 

The modification replaces the terms 2πk/N with 
the term ω (=2πh) allowing the power series to be 
specified arbitrarily over a range of frequencies (h) 
and references each point’s relevant time indices 
(tn).  The algorithm implementing the NDFT 
(Equation 2) allows for calculation of the zero 
frequency component, P(0), and subsequent 
normalisation of the time-series to zero average 
magnitude.  Normalisation of the signal in such way 
may help reduce distortion (aliasing) of the power 
series. 

Local peak detection algorithms can be used in 
an iterative manner to highlight local maxima in the 
resulting power series with the frequency, 



 
Figure 5 – Comparison of local standard deviations with time across multiple temperature sensors installed in 
the Lasgit experiment.  Vertical lineation indicates synchronicity in events or system behaviour changes. 

amplitude and phase information associated with 
these identified peaks easily obtainable. 

NDFTs can however present a positive bias in 
amplitude calculations due to aliasing effects (a 
type of distortion present in NDFTs).  Additionally, 
frequency domain filtering (normally achieved 
through excluding unwanted frequency content and 
performing an Inverse Fourier Transform) is 
hampered by the arbitrary nature of the frequency 
domain investigated.  Fourier transform procedures 
in general also benefit from input data with no 
overall trend associated with them as detailed 
diagrammatically in Figure 4.  The peak in the lower 
transform is more defined due to an absence of low 
frequency ramping present in the conversion 
resulting from the trending time series (a).  The 
frequency peak is distinguishable in both power 
series in Figure 4.  However as the trending of the 
input time series increases, the low frequency 
ramping in the power series will obscure greater 
portions of the frequency domain. 

Non parametric data inspection techniques 
Non-parametric data inspection of a time-series 
consists of analysing the form of a time-series 
without categorising it with a mathematical 
relationship, i.e. not defining a continuous function 
to model it. 

Scientific investigation of a time-series may 
require separation of a number of underlying 
contributions to the time-series.  Singular Spectrum 
Analysis (SSA) is an analysis method capable of 
decomposing a time-series into a collection of 
mathematically independent component time-
series that sum to the original input. 

The process (as described in Golyandina et al. 
2001) involves mapping a time-series F = (f0, ···, fN-1) 
of length N into ”a sequence of [K (=N-L+1)] 
multidimensional lagged vectors” of length L, such 
that when collected into a matrix, X, they yield: 

 

 

(3) 

 

 

Subsequently decomposing X into a series of 
components such that X = X1 + ··· + XL.  The 
decomposition is achieved by performing a Singular 
Value Decomposition (SVD) (e.g. Golyandina et al. 
2001).  Each component Xi is associated with an 
eigenvalue (λ) and eigenvector (U) of the matrix XXT 
such that Xi = √λiUiVi

T and Vi = XTUi/√λi. 
Computationally the eigenspace solution that 

forms the majority of the work can be achieved 
using the Jacobi eigenvalue algorithm (Golub and 



van der Vorst 2000).  To produce a derived time-
series component, Fi, from each component matrix, 
Xi, the average of the elements of the matrix along 
the diagonals defined by indices i+j = constant, i.e. 
the off diagonal, is taken.  The form of the derived 
time-series components is determined by the SSA 
process with no user defined specification other 
than number of decomposition components.  
Components of the input time-series typically have 
decreasing magnitude as the magnitude of the 
eigenvalue they are associated with decreases.  
Dependent upon form, they are typically 
characterised as either trends, oscillatory 
components or noise.  Measurements of the 
independence of each component from the others 
can be performed, as can statistical tests on 
residual components, to confirm only noise 
remains.  This can aid understanding of the meaning 
of each component or set of components. 

The trends determined by SSA can also 
potentially be used to pre-process the original 
signal (e.g. be subtracted from the original signal) in 
order to improve frequency domain analysis or can 
be used to examine physical processes. 

Application of data analysis toolkit 
The developed toolkit has been applied to the case 
study (Lasgit) dataset as described earlier and an 
initial analysis of the dataset and assessment of the 
toolkit was performed. 

Exposed/highlighted and quantified phenomena 
Application of the spike identification algorithm to 
the Lasgit dataset was performed utilising a 48 hour 
window and a threshold of 3σlocal.  The 3σlocal 
threshold was chosen to coincide with the upper 
limit of the empirical 68-95-99.7 rule for normally 

distributed data. This limits false positive detection 
of spikes to 0.3% assuming the noise is normally 
distributed.  The 48 hour window was chosen to 
ensure a large enough population from which to 
calculate the standard deviation at lower sample 
rates that occur within the Lasgit dataset. The 
algorithm identified 117 165 spikes (approximately 
0.8% of the recorded datum points), with a notable 
concentration of those occurring in the 
temperature records, and within them 
concentrated during the annual minimum 
temperature regions. 
Aggregation of the local standard deviations into 
time-series (Figure 7) identifies second order events 
as indicated in Figures 3a and 3b, with second order 
features in the time-series being highlighted. 

 
 
 
 
 
 
 
 
 
Figure 7 – Second order events identified in a radial 
pressure record from the Lasgit dataset. 

Further aggregation of local standard deviation 
series into groups (defined by sensor type or 
proximity for example) allows for a visual 
assessment of the independence of each time-
series. Figure 5 shows the ranked standard 
deviation with time of each temperature sensor 
installed at the Lasgit experiment.  Vertical lineation 
indicates synchronised behaviour.  The abrupt 

 
Figure 6 – Comparison of original time-series with derived component time-series and residual derived 
components. 



changes in standard deviation level indicated by the 
red lines in Figure 5 coincide with entries in the 
experimental log describing ‘over-pressurisations’ 
of the experiments fluid injection system. 

Additional behaviours and events can be 
identified and associated in other sensor sets using 
this method, e.g. the reciprocating nature of the 
injection pumps and the closure of pressure relief 
holes close to the experiment. 

Frequency domain analysis performed on the 
temperature sensors confirmed an annual 
temperature cycle in all down-hole positions.  Phase 
(offset from air temperature cycle) and amplitude 
of the temperature cycles with depth is shown in 
Figure 8.  The only time-series in which a daily 
frequency component was detected was the air 
temperature record of the tunnel. 

 
 
 
 
 
 
 
 
 
Figure 8 – Annual temperature cycle phase and 
amplitude information with respect to depth. 

Signal component identification using SSA was 
performed on a reduced resolution version of the 
dataset to reduce the computational burden during 
the initial investigation phase.  Representative daily 
values were calculated and a vector length of 365 
days was applied (corresponding to an annual 
scale). 

Figure 6 compares a radial pressure record from 
Lasgit with the sum of the first two components and 
presents the residual of the original series without 
the first two components.  The presence of two 
trending components may be an indicator that two 
processes are driving the time-series in question. 

Frequency content is observable in the residual 
along with anomalies that coincide with closure of 
the pressure relief holes near the experimental 
setup.  The presence of this anomaly is more 
pronounced in other sensor types.  Analysing the 
dataset post pressure relief hole closure may 
produce more informative components due to the 

SSA process not attempting to account for a 
significant imposed change in system behaviour. 

Conclusions 
A toolkit has been developed to analyse long-term, 
large-scale datasets, particularly of the nature 
arising from geomechanical and geoenvironmental 
experiments.  The toolkit has been designed to 
support the scientific observer, reducing the 
subjectivity of observations through qualitative 
processes. 

The toolkit is capable of performing a range of 
analyses on non-uniform datasets including: event 
candidate detection; quantification and 
parameterisation/characterisation of time-series 
data; frequency domain analysis; non-parametric 
trend and component derivation; and system 
synchronisation/association visualisations. 

The toolkit was applied to the Lasgit dataset as a 
case study and an initial analysis was undertaken.  
The toolkit highlighted possible events in individual 
time-series records and synchronisations across 
sensor types at specific points in time.  A correlation 
of temperature cycles within the system 
(characterising both amplitude and phase) with 
depth was also achieved. 
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