Process-based modelling of timothy survival in winter

M. Van Oijen¹, S.M. Thorsen², A.H.C.M. Schapendonk³, M. Höglind²

CEH-Edinburgh, Bush Estate, Penicuik EH26 0QB, United Kingdom, E-mail: mvano@ceh.ac.uk
²Bioforsk, Saerheim, Norway, ³Plant Dynamics, Wageningen, The Netherlands

Introduction

Timothy (*Phleum pratense, L.*) is the most widely grown silage/hay grass species in Scandinavia. Timothy is winter hardy, but does suffer from (1) frost and (2) anoxia due to ice-encasement.

Tolerance

The major tolerance mechanism is hardening, which can be quantified as the LT50 (Lethal Temperature for 50% of the plants in standard testing).

Model development 1998-2008

1. Grassland model LINGRA (Schapendonk et al. 1998).
2. Review of literature on timothy (Höglind et al., 2001). Model simulations showing the key role of tillering dynamics and the formation and loss of leaves from tillers.
3. Measurements and modelling of tillering and leaf dynamics (Van Oijen et al. 2005)
4. We now have expanded the model to include simulation of snow and frost dynamics, and damage and tolerance mechanisms.

Results and Conclusions

The model was tested for sites in southern and middle Norway. The dynamics of tillering death and carbohydrate content (Figure below) showed reasonable correspondence with literature and observations.

However, the simulations of LT50 were not satisfactory: they showed less short time-scale variability (days, weeks) than the measurements. In the model, hardening is only controlled by ambient temperature and plant carbohydrate concentration. In reality, more factors may be involved. Experiments to resolve this are underway.

References

