nerc.ac.uk

A simplified method for cloning of short interfering RNAs from Brassica junea infected with Turnip mosaic potyvirus and Turnip crinkle carmovirus

Ho, T.; Pallett, D.; Rusholme, R.; Dalmay, T.; Wang, H.. 2006 A simplified method for cloning of short interfering RNAs from Brassica junea infected with Turnip mosaic potyvirus and Turnip crinkle carmovirus. Journal of Virological Methods, 136. 217-223. https://doi.org/10.1016/j.jviromet.2006.05.016

Full text not available from this repository.

Abstract/Summary

RNA silencing is a plant defense mechanism in which virus infected plants produce short interfering RNAs (siRNAs) derived from viral RNA, that attack the virus at the post-transcriptional level. In a previous study on Cymbidium ringspot tombusvirus (CymRSV) infection in Nicotiana benthamiana, siRNAs (determined by cloning and sequencing) predominantly originated from the sense (+) strand of the viral RNA, suggesting that the majority of siRNAs are produced through the direct cleavage of the virus single strand (ss) RNA by the plant Dicer-like enzyme. To test whether this asymmetry in strand polarity is a generic rule for all plant viruses, siRNAs from Brassica juncea, either singly infected by Turnip mosaic potyvirus (TuMV, the family Potyviridae), or doubly infected with TuMV and Turnip crinkle carmovirus (TCV, the family Tombusviridae) were investigated. A simplified siRNA cloning method was developed, using a single ligation reaction to attach both 5′ and 3′ adapters to the target short RNAs followed by one-step RT-PCR amplification. In the TCV infection, as for the CymRSV infection, siRNAs were produced predominantly (97.6%) from the +ss RNA. However, for TuMV infections, siRNAs were derived from both strands (+/−, 58.1–41.9%), indicating the presence of alternative siRNA production mechanisms.

Item Type: Publication - Article
Digital Object Identifier (DOI): https://doi.org/10.1016/j.jviromet.2006.05.016
Programmes: CEH Programmes pre-2009 publications > Biodiversity
UKCEH and CEH Sections/Science Areas: _ Pathogen Population Ecology
ISSN: 0166-0934
NORA Subject Terms: Botany
Biology and Microbiology
Chemistry
Date made live: 12 Sep 2008 13:40 +0 (UTC)
URI: https://nora.nerc.ac.uk/id/eprint/4013

Actions (login required)

View Item View Item

Document Downloads

Downloads for past 30 days

Downloads per month over past year

More statistics for this item...