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a b s t r a c t

This paper investigates the potential for using quantitative applications of statistical mod-

els of habitat suitability based on marine animal tracking data to identify key feeding areas.

Presence-only models like Ecological Niche Factor Analysis (ENFA) may be applicable to

resolve habitat gradients and potentially project habitat characteristics of tracked animals

over large areas of ocean. We tested ENFA on tracking data of the northern gannet (Morus

bassanus) obtained from the colony at Bass Rock, western North Sea in 2003. A total of 217

diving events were selected for model development. The ecological variables of the model

were calibrated by using oceanographic structures with documented influences on seabird

distribution, derived from satellite and bathymetric data. The model parameters were

estimates of habitat marginality and specialisation computed by comparing the distribution

of the gannet in the multivariate oceanographic space encompassed by the recorded logger

data with the whole set of cells in the study area. Marginality was identified by differences

to the global mean and specialization was identified by the ratio of species variance to

global variance. A habitat suitability index was computed on the basis of the marginality

factors and the first four specialisation factors by allocating values to all grid cells in the

study area, which were proportional to the distance between their position and the position

of the species optimum in the factorial space. Although gannets were using a large sector of
ding, ENFA estimated high habitat suitability scores within a relatively
the North Sea for fee
U
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small coherent zone corresponding to a hydrographic frontal area, located east of the

colony. The model was evaluated by using Jack-knife cross-validation and by comparison

of the predicted core feeding area with results from historic field surveys. We discuss the

limitations and potentials for applying habitat suitability models to tracking data in the
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marine environment, and conclude that the inclusion of hydrodynamic variables seems to

be the biggest constraint. Overcoming this constraint, ENFA provides a promising method

for achieving improved models of the distribution of marine species with high research and

conservation priority. Due to the better coverage of entire feeding ranges, the limited influ-

ence of historic factors and the lack of bias from sampling design, marine animal tracking
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1. Introduction

Predictive geographical modelling has recently gained impor-
tance as a tool for estimating habitat suitability within a
wide range of biodiversity and management studies, including
studies in the marine environment (Leverette, 2004; MacLeod,
2005; Santos et al., 2006; Seoane et al., 2005). Parallel to the
development of habitat suitability modelling, tracking pro-
grams for marine animals have developed rapidly at national,
regional and international levels as a means to increase
knowledge of animal movements and habitat use in the ocean
(Block et al., 2001; Bonfil et al., 2005; Lowry et al., 1998; Schaffer
et al., 2005; Tuck et al., 1999; Weimerskirch et al., 2002; Weng
et al., 2005). Due to their potentially better spatio-temporal
coverage of entire feeding ranges tracking data as compared
to sightings and survey data may offer a less biased account
of the distribution of wide-ranging species at sea. Undoubt-
edly, the advancement of the technology of implanted or
satellite-linked data storage tags has improved the basis for
precise geo-location of tagged animals. In addition, the devel-
opment of better integrated systems for obtaining, analyzing
and mapping animal tracking data has improved the basis for
linking biological and physical data obtained from the tags
with physical oceanographical and marine biological data in
order to better understand the habitat requirements of marine
species (Block, 2005; Coyne and Godley, 2005). Unlike direct
observations or other human-inferred registrations of ani-
mals, tracking data effectively have no false positives, i.e.
quality-assured observations are all both accurate and valid
and hence should be applicable to predictive presence-only
models like PCA, Ecological Niche Factor Analysis (ENFA, Hirzel
et al., 2002), Bioclim (Farber and Kadmon, 2003), Genetic Algo-
rithm for Rule-set Prediction (GARP, Stockwell and Peters,
1999) and Domain (Carpenter et al., 1993). However, most anal-
yses of marine habitat characteristics based on marine tagging
data rely on isopleth-mapping in GIS and descriptive statis-
tics using overlays of satellite sea surface temperatures, water
depth, ocean colour and fish distribution. There is a lack of
quantitative applications of statistical models of habitat use,
which is probably related to the limitations and properties of
tracking information as presence-only data.

Ecological niche modelling as implemented in ENFA and
GARP provides a means for modelling the dimensions of
species’ ecological niches, described as the quantity that gov-
erns the limits of geographic distributions of species (Grinnell,
1917; MacArthur, 1972), and offers considerably improved ana-
U
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lytical and predictive possibilities by relating point occurrence
data to geographic information about the ecological and envi-
ronmental characteristics of a landscape. The ecological niche
model for a species is measured in terms of marginality (the
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han at-sea surveys for habitat suitability modelling.

© 2007 Elsevier B.V. All rights reserved.

difference between the mean of the distribution of the cells
representing species observations and the global cells) and
specialisation (the difference between the variance of the
species and the global cells). The niche model can then be
projected onto a landscape to identify geographical regions
that have conditions inside and outside the species’ niche,
producing a suitability map of a potential geographical dis-
tribution for the species. These properties may make ENFA
particularly suitable for predicting habitats of marine ani-
mals from tracking data, because the distribution and habitat
preferences of marine predators are typically non-random,
characterised by wide (often ocean-wide) ranges contrasting
to localised concentrations at the scale of less than 100 km,
often less than 50 km (Schneider and Duffy, 1985). ENFA has
been applied successfully to presence-only data in terrestrial
(Hortal et al., 2005; Zimmermann, 2004) and marine ecology
(Leverette, 2004) and has also been applied successfully to ter-
restrial telemetry studies (Freer, 2004).

Here we apply ENFA to tracking data for northern gannets
(Morus bassanus) breeding at Bass Rock, south-east Scotland
in 2003 and use satellite-derived hydrographical data and
bathymetric data known to influence the distribution of pis-
civorous seabirds as ecological variables. As the distribution
and feeding habitat of the northern gannet has been inten-
sively studied by surveys in the western part of the North Sea,
the Bass Rock tracking data provided a unique opportunity
to test the application of ENFA or other presence-only mod-
els with tracking data for obtaining improved estimates of the
distribution and feeding habitats of marine animals.

2. Methods

2.1. Study area

In early July 2003, northern gannets were tagged on Bass
Rock, a major breeding colony of the species located at the
entrance to the Firth of Forth, Scotland (Fig. 1). As the feed-
ing movements of the tagged birds extended up to 500 km
from Bass Rock, the study area comprised the entire North
Sea excluding the Skagerrak and the approaches to the English
Channel. Summer conditions in the area immediately east of
Bass Rock are characterized by the discharge of riverine water
through the Firth of Forth, mixed Scottish coastal water run-
ning southwards along the coast, a tidal mixing front located
approximately 50 km east of the British coast, seasonally strat-
ified Central North Sea water east of the tidal front and
ECOMOD 5012 1–9
itability modelling to tracking data of marine animals as a means of
el.2007.11.006

relatively shallow banks located within 30–50 km of the colony. 90

Analyses of satellite tracking data from Bass Rock strongly sug- 91

gest that individual northern gannets show site fidelity with 92

successive feeding trips to very similar locations (Hamer et 93

dx.doi.org/10.1016/j.ecolmodel.2007.11.006
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Table 1 – List of eco-geographical variables

Parameter Unit

Distance to Bass Rock Colony km
Distance to land km
Bathymetry of sea floor m
Slope of sea floor %
Eastern aspect of sea floor Range −1 to 1
Northern aspect of sea floor Range −1 to 1
North Sea water mass Frequency range 0–1
Scottish coastal water mass Frequency range 0–1
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ig. 1 – Study area with bathymetry and an indication of
he gannetry at Bass Rock.

l., 2001). The northern gannet is a piscivorous species, and
t feeds predominantly on sandeel (Ammodytes spp.), together

ith pelagic species like mackerel (Scomber scombrus) and her-
ing (Clupea harengus) (Hamer et al., 2000).

.2. Tracking data

he tracking data were collected by small GPS recorders (GPS-
Dlog, Earth & Ocean Technologies, Kiel, Germany) developed
uring the IMPRESS project (Camphuysen, 2005) and deployed
n 20 northern gannets during the chick rearing period in July
nd early August 2003. Compared to satellite transmitters, the
PS loggers provide greater accuracy and precision of records,
nd sample positions at a much higher rate, thus providing
higher spatial resolution (Hamer et al., 2007). As the sam-

ling interval of the GPS logger was set to record positions
very three minutes, the device allowed for detailed routing
f movements between the breeding colony and feeding areas
s well as small-scale feeding movements. In addition to posi-
ion, the loggers provided data on diving behaviour via an
ntegrated pressure sensor on a 2-s sampling interval, which
ogether with the high frequency of positional records made
t possible to separate diving events from movements more
ccurately. A total of 217 diving events were selected for model
evelopment, which overlapped satellite night-time images
f sea surface temperature. Diving events were computed as
resence values and converted to a 1 km × 1 km raster file by
ecording the sum of the diving events in each pixel. The res-
lution of the diving events raster file was determined by the
esolution of available satellite data (see below).

.3. Model variables

co-geographical variables consisted of geographic, topo-
raphic and pelagic variables (Table 1). The geographic
ariables were comprised of Euclidean distances to colony and
U

Please cite this article in press as: Skov, H., et al., Application of habitat su
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and, while topographic and pelagic variables were derived
rom a digital depth model and NOAA AVHRR SST data
the preparation of these data is described below). The eco-
eographical variables were developed and calibrated using
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Tidal shelf front Frequency range 0–1
Forth River plume front Frequency range 0–1

published data on environmental gradients in the distribu-
tion of piscivorous seabirds, which highlight the importance
of shelf fronts as a key habitat (Begg and Reid, 1997; Bourne,
1981; Decker and Hunt, 1996; Hémery et al., 1986; Kinder et al.,
1983; Leopold, 1987; Pingree et al., 1974; Schneider, 1982). GIS
grids were created in UTM 30 N (wgs 84) with a 1 km resolu-
tion covering the region defined by the coordinates 54◦N–59◦N,
3◦W–2◦E.

2.3.1. Topographic variables
2.3.1.1. Water depth. Water depth was derived using a digital
depth model in 1 km × 1 km resolution based on linear, ordi-
nary kriging with no constraints on the search ellipse using
the North Sea bathymetry of DHI Water & Environment and
data collected in relation to the IMPRESS project.

2.3.1.2. Bottom slope. Based on the depth grid, a grid with the
slope (in %) of the sea floor of the eastern part of the North Sea
was estimated by using the formula from Monmonier (1982).

2.3.1.3. Eastern and northern aspects. The eastern and north-
ern aspects were calculated by taking the sine and cosine,
respectively, of the direction of the maximum slope values.

2.3.2. Pelagic variables
Pelagic variables were discerned from the night-time NOAA
AVHRR SST images, which were cloud-free for the area. A
total of 17 cloud-free SST images overlapped the 217 div-
ing events by at least 3 h, and were retained for analysis.
Raw NOAA AVHRR satellite data (NOAA satellites 12, 14
and 16) were obtained from the Dundee Satellite Receiv-
ing Station. To avoid skin-effects on the classification of
surface structures only night-time images were used. Calibra-
tion followed algorithms described by NOAA/NESDIS in the
NOAA KLM User’s Guide www2.ncdc.noaa.gov/docs/klm/. Sea
surface temperatures were estimated using algorithms avail-
able on the NOAA/NESDIS web server http://noaasis.noaa.
gov/NOAASIS/pubs/SST. Rectified and calibrated image scenes
were examined in order to exclude pixels not qualifying to be
used in the calculation of the sea surface temperature such
as pixels over land, pixels with large satellite zenith angles
(>53◦) and pixels contaminated containing clouds. The cloud
ECOMOD 5012 1–9
itability modelling to tracking data of marine animals as a means of
el.2007.11.006

detection algorithms IR Gross Cloud Test, IR Uniformity Cloud 168

Test and IR Difference Cloud Test developed by the Common- 169

wealth Bureau of Meteorology were applied to exclude cloud 170

contaminated pixels. 171

dx.doi.org/10.1016/j.ecolmodel.2007.11.006
http://www2.ncdc.noaa.gov/docs/klm/
http://noaasis.noaa.gov/NOAASIS/pubs/SST
http://noaasis.noaa.gov/NOAASIS/pubs/SST
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Classification of water masses and fronts was made by a
combination of gradient analyses and surface temperature
characteristics. Water masses were classified using known
temperature ranges applying raster filter and re-classification
procedures. Frontal variables have generally been recognised
from satellite images by boundaries between water masses
(Fiedler and Bernard, 1987; Haney, 1989; Johannessen et al.,
1989). In general, surface fronts are defined as regions of high
horizontal gradients (Mann and Lazier, 1991). Technically, sur-
face fronts may be determined from SST images using edge
detection algorithms or slope analysis. However, these rou-
tines were found to create unsatisfactory classifications of
frontal variables due to the relatively large amount of noise in
the SST images. Better results in terms of contiguous frontal
patterns were generated using a gradient analysis followed
by re-classification procedures to define frontal pixels on the
basis of threshold slope values. Following re-classification
clusters of frontal pixels were combined into contiguous struc-
tures using group and re-classification procedures.

The following pelagic variables were classified: North Sea
water, Scottish coastal water, tidal shelf front and Forth River
plume front. The variables were classified for each image-GPS
logger data pair and the frequency of each variable class was
then calculated for the entire data set. The calculation of aver-
age frequency values took account of cloud cover by masking
clouded areas as ‘missing values’. Frequencies of occurrence
of water masses and fronts were coded using an index from 0
to 1 with 1 being equivalent of a frequency of 100%.

2.4. Model parameters

Selected gannet diving event records were collated into a GIS
layer as the total number of presences per pixel. Normalisation
of the eco-geographical GIS layers and modelling of covariance
matrix, Ecological Niche Factor Analysis (ENFA) and habitat
suitability scores were carried out using a combination of
ArcGIS version 9.0, Biomapper version 3.0 and Idrisi version
3.2. All topographic and hydrographical variables were nor-
malized through the ‘Box–Cox’ algorithm (Sokal and Rohlf,
1981), although ENFA is not considered very sensitive to the
frequency distribution of variables (Hirzel et al., 2002).

2.4.1. Analysis of habitat marginality and specialisation
Suitability functions were computed by comparing the distri-
bution of the gannet in the multivariate oceanographic space
encompassed by the recorded logger data with the multivari-
ate oceanographic space of the whole set of cells in the study
area (Hirzel, 2001). On the basis of differences in the gannet
and global ‘space’ with respect to their mean and variances,
marginality of gannet records was identified by differences to
the global mean and specialisation by a lower species vari-
ance than global variance. Thus, for large geographical areas
like the part of the North Sea studied here, ENFA approaches
Hutchinson’s concept of ecological niche, defined as a hyper-
volume in the multi-dimensional space of ecological variables
within which a species can maintain a viable population
U
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(Hutchinson, 1957).
Marginality (M) was calculated as the absolute difference

between the global mean (Mg) and the mean of the gannet log-
ger data (Ms) divided by 1.96 standard deviations of the global
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distribution (g)

M = |Mg − Ms|
1.96�g

,

while specialisation (S) was defined as the ratio of the stan-
dard deviation of the global distribution to that of the species
distribution:

S = �g

�s
.

To take account of multi-colinearity and interactions among
eco-geographical factors, indices of marginality and speciali-
sation were estimated by factor analysis; the first component
being the marginality factor passing through the centroid of all
gannet observations and the centroid of all background cells
in the study area, and the index of marginality measuring
the orthogonal distance between the two centroids. Several
specialisation factors were successively extracted from the
n − 1 residual dimensions, ensuring their orthogonality to the
marginality factor while maximising the ratio between the
residual variance of the background data and the variances
of the gannet occurrences. A high specialisation indicates
restricted habitat usage compared to the range of conditions
measured in the studied part of the North Sea. Obviously, ENFA
is highly sensitive to the location and size of study area, and
this was one of the reasons for choosing a large study area
covering most of the North Sea.

2.4.2. Habitat suitability modelling
A habitat suitability index was computed on the basis of the
marginality factors and the first four specialisation factors, as
a high proportion of the total variance was explained by the
first few factors, by comparison to a broken-stick distribution.
The habitat suitability algorithm allocated values to all grid
cells in the study area, which were proportional to the dis-
tance between their position and the position of the species
optimum in factorial space. We used the geometric mean algo-
rithm for habitat suitability computation, as it allows for an
improved estimation of habitat suitability in situations with
non-unimodal distributions (Hirzel and Arlettaz, 2003). In this
algorithm habitat suitability is calculated as the geometric
mean (�G) of the weighted Euclidean distances (ı) from any
point P of the environmental space to all species points (Oi):

�G(P) = N

√
�

N

i = 1
ı(P, Oi).

The mean distances range from 0 to infinity, and envelopes are
delineated encompassing hypervolumes with values below a
certain threshold. The habitat suitability index ranging from 0
to 100 is calculated based on the number of observation points
within each envelope.

2.4.3. Evaluation
As no independent data were available, the predictive accu-
racy of the suitability maps was evaluated by a Jack-knife
cross-validation procedure following the method described
ECOMOD 5012 1–9
itability modelling to tracking data of marine animals as a means of
el.2007.11.006

by Boyce et al. (2002), which produces a confidence interval 277

around the predicted accuracy of the habitat model. The gan- 278

net GPS logger locations were randomly partitioned into 100 279

mutually exclusive but identically sized sets, 99 partitions 280

dx.doi.org/10.1016/j.ecolmodel.2007.11.006
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ere used to compute a habitat suitability model and one par-
ition was used for validation. The process was repeated 100
imes, each time omitting a different partition.

The distribution of northern gannets in the modelled part
f the North Sea has been studied during ship-based surveys
arried out over the past 17 years (European Seabirds at Sea
atabase). To assess the application of ENFA we compared

he modelled area of high habitat suitability with the mean
istribution discerned from the cumulative historic survey
atabase for the summer period.

. Results

pplication of ENFA provided an overall marginality of m = 1.99
nd an overall specialization value of S = 2.61, showing that
ass Rock gannets’ feeding habitat in 2003 differed markedly
rom the mean conditions in the studied part of the North Sea.
he five factors retained accounted for 95% of the sum of the
igenvalues (that is 100% of the marginalization and 95% of the
pecialization, Table 2). Marginality accounted for 17% of the
otal specialization, while the first two specialization factors
ccounted for 64% of the total specialization, indicating that
annets are moderately restricted in the range of conditions
hey utilize in the study area. It is also evident from the plot of
eeding events in Fig. 2 that gannets use a wide range of areas
n the North Sea for feeding.

Marginality coefficients showed that gannets were linked
o the dynamic habitat variables and the distance to Bass Rock,
hereas the topographic variables proved of little or no impor-

ance to gannet habitat (Table 2). Gannet feeding was clearly
inked to both of the two coastal water masses and the front
etween them as well as the tidal shelf front towards the
tratified North Sea water mass which was of limited impor-
ance (Fig. 3). The marginality and specialization scores lead
o habitat suitability scores ranging from 0 to 100, the upper
3 reflecting suitable habitat (Fig. 4). The pixels indicating high
abitat suitability all lie within a coherent zone correspond-

ng to the area of the Forth River front and the Scottish coastal
U
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ater in proximity to Bass Rock and the entire area of the tidal
helf front, extending along the east coast of Scotland.

A profile of the variation of the modelled habitat suitabil-
ty scores from the Forth River across the colony at Bass Rock

Table 2 – Amount of specialisation explained by the first five fa

Eco-geographical variable Marginality (17%) Spec. 1 (3

Scottish coastal water 0.499 0.029
Distance Bass Rock −0.492 0.104
Forth river front 0.432 −0.012
Tidal shelf front 0.387 −0.032
North sea water −0.280 −0.002
Distance land −0.277 −0.475
Bathymetry 0.091 −0.858
Northern aspect −0.032 0.026
Eastern aspect 0.087 0.000
Slope of sea floor 0.008 0.160

Eco-geographical variables are sorted by decreasing absolute values of coef
for is given in parentheses.
gannets (Morus bassanus) in July 2003 overlapping NOAA
AVHHR images.

and into the North Sea shows that the zone of suitable habi-
tat lies approximately 25 km east of the colony and extends
some 50 km eastwards into the North Sea (Fig. 5). The profile
also shows that the suitability drops sharply when approach-
ing Bass Rock to the west of the “suitable habitat” zone and
the North Sea water to the east. The small drop in the centre
of the high-suitability zone approximately 50 km from Bass
Rock is probably a bias introduced by the heterogeneity of the
ECOMOD 5012 1–9
itability modelling to tracking data of marine animals as a means of
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NOAA satellite data created by extensive cloud cover on most 328

days. 329

The results of the Jack-knife cross-validation procedure 330

(Boyce et al., 2002) revealed a narrow confidence interval 331

ctors

9%) Spec. 2 (25%) Spec. 3 (11%) Spec. 4 (3%)

0.185 −0.144 0.472
−0.221 0.187 0.379

0.040 −0.037 0.060
0.064 −0.011 0.084
0.058 0.068 0.701
0.741 −0.525 −0.316

−0.229 0.571 0.120
−0.002 0.003 −0.017
−0.051 0.012 −0.118

0.551 0.580 −0.056

ficients on the marginality factor. The amount of variation accounted
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Fig. 3 – NOAA AVHHR SST image taken at 13 July 2003 0230

332

333

334

335

336

Fig. 5 – Variation of modelled habitat suitability scores
(mean and 95% confidence interval) with distance (km)
along an east-running line from the Scottish coast across
the colony at Bass Rock and 250 km into the North Sea.
Suitable habitat scores are indicated by the value of 67
(stipled line).
with indications of typical positions for the main water
masses and surface frontal features.

around the predicted habitat suitability profiles, indicating
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a satisfactory predictive capacity of the model (Fig. 5). The
interpretation of the suitability scores in relation to the
regional oceanography is consistent with the experience of
field ornithologists, and the modelled zone of high habitat

Fig. 4 – Habitat suitability scores computed by ENFA for
diving northern gannets in July 2003.

Fig. 6 – Average densities of gannets (no. of birds per km2)
observed by ship-based surveys off the Scottish coast
during the summer period (May–August) between 1987 and
2004 (based on data from the European Seabirds at Sea
Database). Densities are indicated at a spatial resolution of

20 km.
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suitability to a large degree overlapped with the area char- 337

acterized by high densities of feeding gannets from historic 338

survey data (Camphuysen, 2005, Figs. 4 and 6). Compared to 339

the survey data, the modelled area of high habitat suitability 340
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roved to resolve a more well-defined and coherent feeding
rea.

. Discussion and conclusion

he ENFA model provided a confident delineation of a coher-
nt, yet complex pattern of potential feeding habitat of
annets from Bass Rock in 2003 based on the GPS logger data.
lthough gannet feeding was recorded by the tagging data
ver a wide range of the North Sea, the modelled coherent
one of high habitat suitability values clearly fitted the loca-
ion of most fixes at the Forth River front and the Scottish
oastal water in proximity to Bass Rock and the entire area of
he tidal shelf front extending along the east of Scotland. The
ombination of a wide range of conditions and a tendency to
oncentrate in areas of specific oceanographic variables (i.e.
he tidal shelf front) may be typical for a piscivorous seabird.
his characteristic was further underlined by the combina-

ion of a low marginality factor and a relatively low tolerance
alue. A wide range of seabird species have been recorded in
levated densities at tidal mixing fronts like this one. In the
orthern hemisphere these variables seem to be of particu-

ar importance to sub-surface and pursuit diving species like
anx shearwater (Puffinus puffinus), common guillemot (Uria

alge) and razorbill Alca torda specialising on schooling fish
Begg and Reid, 1997; Decker and Hunt, 1996; Kinder et al., 1983;
eopold, 1987; Schneider, 1982).

These results indicate that ecological niche analyses with
racking data using marginality/tolerance weighting have the
apacity to provide satisfactory and precise predictions of
istribution patterns and feeding habitats of animals in the
cean. Due to the better coverage of entire feeding ranges, the

imited influence from historic factors (Leathwick, 1998) and
ack of bias from sampling design (Guisan and Zimmermann,
000) tracking data may provide better data than surveys for
abitat suitability modelling. Provided important habitat vari-
bles are known and available for a large region in a raster
IS format ENFA may be used to extract suitability gradients

or marine species to much the same extent as for terrestrial
pecies.

Computation of reliable specialisation and marginality
actors in ENFA rely heavily on a representative sample of
bservations (tracking data) in relation to the distribution of
he species. Accordingly, samples from populations located at
he extreme of the species’ range may not reflect the typi-
al diversity of habitat types and hence may provide habitat
radients with limited scope for extrapolation. Even more
mportantly, samples from a small part of the actual foraging
ange associated with a breeding colony may bias the output
rom ENFA. The part of the North Sea which we included in the

odel corresponds more or less to the entire feeding range
f gannets from this colony (Hamer et al., 2001), and thus the
redicted habitat suitability is likely to represent an un-biased
stimate of the area-use by gannets breeding at Bass Rock in
003.
 U
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groups including Procellariiformes, Laridae and Alcidae have doc-
umented maximum values at the scale of 10–50 km (Briggs
et al., 1987; Schneider and Duffy, 1985). Gradients at smaller
scales generally reflect species-specific foraging and flocking
dynamics (Schneider, 1990). As maximum foraging ranges may
be very large and the animals have to travel large distances
between feeding aggregations, the majority of tagging data
may reflect animals moving between feeding areas. As a con-
sequence, post-processing of tagging data to retrieve data on
feeding activities is an important pre-requisite for modelling
of habitat suitability on the basis of comparisons of global and
species means and standard variations of distributions of eco-
variables in the multi-dimensional space. As in this case study,
the application of high-frequency loggers allowed for identi-
fication of potentially feeding birds on the basis of distances
between individual fixes and diving depths.

One of the primary requirements for producing reliable
habitat suitability modelling is the availability of input data on
eco-variables with high accuracy and resolution (Guisan and
Zimmermann, 2000). In the marine environment, most habi-
tat modelling has been carried out using topographical and
seascape characteristics rather than hydrodynamic variables
as ecovariables (Leverette, 2004; MacLeod, 2005). Our results
indicate that the inclusion of hydrodynamic variables poten-
tially may increase the predictive power of ENFA models for
marine animals. Most of the topographic variables had only
a minor influence on the marginality factor. The use of SST
data allowed for the classification of surface hydrographical
variables and estimation of their frequencies at different loca-
tions in the study area. However, hydrodynamic modelling will
provide an improved basis for resolving potentially important
dynamic variables. Pycnocline depth and other structures of
the water column have been documented as important feed-
ing habitats to diving marine birds (Briggs et al., 1988; Haney,
1991; Hunt and Harrison, 1990; Hunt et al., 1990; Skov and
Durinck, 2000), hence characteristics of surface waters may
be insufficient to generate habitat characteristics for diving
predators. In addition, modelling of frontal characteristics is
now possible at even very small scales (Langenberg, 1997), and
often provide the only means to resolve the inherent short-
term variability of hydrographic structures like fronts.

Other, more process-related variables such as prey con-
centrations, are often mentioned as potential predictors of
marine animal distributions (Williams et al., 2006). However,
the response pattern of seabirds to the distribution of prey
indicates that seabirds often react to prey abundance at geo-
graphical scales considerably larger than that of a single
prey patch, and the adaptations to predictable oceanographic
structures shown for several species indicate that optimisa-
tion of prey detection in seabirds principally occurs within
the coarse-scale boundaries of the oceanographic structures
(Fauchald et al., 1999). This is corroborated by the observa-
tions of stronger seabird-prey associations in frontal regions
(Decker and Hunt, 1996).

Based on the above it seems that the biggest restric-
tions regarding the potential application of ENFA models to
ECOMOD 5012 1–9
itability modelling to tracking data of marine animals as a means of
el.2007.11.006

marine tagging data are due to the nature of the sampled 453

data, for example in terms of size, behavioural characteris- 454

tics and coverage in relation to the main distribution and 455

foraging ranges of the species in question. However, these 456
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restrictions are related to the amount of available resources
rather than constraints of ENFA models. A major constraint,
however, seems to be the availability of concurrent 3D hydro-
dynamic model data. Even if these constraints are overcome,
it is important to be cautious regarding the use of ENFA for
more than descriptive purposes. The estimated habitat suit-
ability and the weighting of the different eco-variables on the
main factors in ENFA do not provide any information to sup-
port quantitative judgements of causal relationships between
the species’ distribution and individual parameters. Yet, the
potential of ENFA as a means to project habitat gradients to
vast areas of ocean using logger data is great and promises
to be able to greatly assist activities for mapping and mod-
elling marine biodiversity, e.g. in relation to the delineation of
marine protected areas. In fact, the outline of the core habi-
tat on the basis of an ENFA model based on 1 year of tagging
data has provided a clearer overview of the contiguous zone
used by gannets from Bass Rock as compared to historic sur-
vey data (Camphuysen, 2005, Fig. 6). ENFA’s prime potential is
the use of tagging data by allowing extrapolation of data from
regional to basin scale to allow for the identification of pri-
ority areas for further research and conservation. Similarly,
ENFA could also be used with other presence-only datasets,
such as records in the international biodiversity databases
and records of catches of particular species as a means for
predictive modelling.
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