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Abstract.3

A recent hydrographic section at 24.5◦N in the Atlantic and six months4

of observations from a moored array show that Antarctic Bottom Water (AABW),5

the densest and deepest watermass in the world oceans, has been warming.6

While Johnson et al., 2008 [@] showed that northward AABW transport at7

24.5◦N has been declining from 1981–2004, suggesting that the lower cell of8

the overturning circulation could halt in the near future, estimates from the9

latest hydrographic section in 2010 indicate a partial recovery of northward10

AABW transport. From six months of temperature and salinity observations11

at a deep moored array at 24–26◦N, we find that short-term variability be-12

tween April and November 2009 is of the same magnitude as the changes ob-13

served from hydrographic sections between 1981 and 2004. These observa-14

tions highlight the possibility that transport changes estimated from hydro-15

graphic sections may be aliased by short-term variability. The observed AABW16

transport variability affects present estimates of the upper meridional over-17

turning circulation by ±0.4 Sv (1 Sv = 106 m3s−1).18
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1. Introduction

The ocean meridional overturning circulation (MOC) is responsible for a large fraction of19

the poleward heat transport in the ocean [Trenberth and Caron, 2001, @]. In the Atlantic,20

it is characterized by northward flowing warm waters near the surface—concentrated in21

the Gulf Stream at 26◦N—and southward flowing cold waters between roughly 1000 and22

5000 m—called the North Atlantic Deep Water (NADW). The overturning strength—23

estimated using the techniques described in Cunningham et al., 2007 [@]—is 18.6±4.7 Sv24

between April 2004 to March 2009, with a strong annual cycle and subseasonal variability.25

Below this overturning circulation lies a deeper overturning cell; this lower cell is comprised26

of northward flowing Antarctic Bottom Water (AABW) at the bottom of the Atlantic27

which returns with the southward limb of the upper cell in the NADW. In the global28

context, the lower cell is of the same strength (roughly 20 Sv) as the upper overturning29

cell, though it carries less heat and only 6 Sv are in the Atlantic [Orsi et al., 1999, @].30

Recent observations have shown a warming of AABW both globally [Purkey and John-31

son, 2010, @] and in the South Atlantic [Johnson and Doney, 2006, @]. Along the pathway32

of AABW into the North Atlantic, progressive warming of AABW has been observed in33

the Vema Channel (at 31–28◦S and 39–40◦W, Zenk and Morozov, 2007 [@]), though ob-34

servations further north at the equator and 36◦W showed no warming [Limeburner et al.,35

2005, @]. In the North Atlantic, Johnson et al., 2008 [@] used a number of hydrographic36

sections to infer warming of AABW in the past several decades. Using four hydrographic37

sections at 24◦N they show relative to 1981, that the northward transport of AABW has38
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been monotonically decreasing through 2004 (hydrographic stations included in Fig. 1c,39

which shows 2 additional sections).40

From the same hydrographic sections, transports of the full MOC were also calculated,41

and similarly showed a monotonic decrease in the overturning strength on the order of42

30% [Bryden et al., 2005, @] suggesting a possible collapse of the MOC. However, esti-43

mates of overturning from a moored array by the joint Rapid Climate Change-Will the44

Atlantic Thermohaline Circulation Halt (RAPID-WATCH)/Meridional Overturning Cir-45

culation and Heatflux Array (MOCHA) project showed that the subannual variability46

of the MOC since 2004 encompassed the 30% reduction in strength [Cunningham et al.,47

2007, @] and the monthly timing of the hydrographic sections in 1981, 1992, 1998 and48

2004 corresponded to the peak to trough of the annual cycle of transports [Kanzow et al.,49

2010, @].50

What is the variability of AABW transport? Could the trends inferred by Johnson et al.,51

2008 [@] be similarly aliased by high frequency variability? To investigate these questions,52

deep moorings were deployed in the western basin of the North Atlantic as part of the53

larger RAPID-WATCH/MOCHA mooring array (mooring schematic in Fig. 1a). For the54

MOC calculation in the array, geostrophic transport per unit depth is estimated across55

26◦N using the dynamic height profiles from a series of moorings at the western boundary56

(WB), eastern boundary (EB) and mid-Atlantic ridge (MAR) [Cunningham et al., 2007,57

@]. However, these moorings only extended down to 4820 dbar. Below 4820 dbar, a fixed58

profile of transport per unit depth is used to represent AABW transport, summing to59

roughly 2 Sv [Kanzow et al., 2010, @] (updated through April 2009 in Fig. 1b). In 2009,60

two additional deep moorings were added below 4820 dbar to estimate the variability61
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missed between 70◦W and 52◦W and deeper than 5100 dbar. In §2, we describe the62

data and methodology. In §3 we examine the short-term variability of transport and63

temperature fluctuations, from the mooring array. In §4, we estimate transport and64

warming from the hydrographic sections—including a recent 2010 repeat of the 24◦N65

hydrographic section [King, B. A., 2011, @]—to put the mooring results in context and66

to revisit the calculation of Johnson et al., 2008 [@]. We conclude with a discussion of the67

impacts of these findings on the MOC and our knowledge about the global overturning68

circulation.69

2. Data and Methods

2.1. Moored array

Moorings used in this analysis are part of the RAPID-WATCH/MOCHA (hereafter70

referred to as RAPID) array at 24–28◦N in the Atlantic (See Fig. 1a & c for mooring71

positions). The array is used to estimate several components of the MOC including72

geostrophic transport between end point dynamic height moorings and absolute transport73

in the western boundary region from current meter arrays. When combined with the74

Gulf Stream transport through the Florida Straits and Ekman transports estimated from75

satellite wind products, these produce a meridional overturning streamfunction at 26◦N76

every 12 hours. (See Rayner et al, 2011 [@] for a review.)77

In this paper, we use the data from the two newly added deep moorings as well as78

two neighboring tall moorings, between 72◦W and 49◦W, between Florida and the mid-79

Atlantic ridge. The two deep moorings were WB6 in the west at 26.49◦N and 70.52◦W80

and MAR0 at the western flank of the MAR at 24.17◦N and 52.01◦W (Fig. 1a). The81

tall moorings were instrumented throughout the water column: WB5 at 26.50◦N and82
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71.98◦W, and MAR1 at 24.16◦N and 49.72◦W (Fig. 1a). WB6 is in the abyssal plain,83

whereas MAR0 is in a deep canyon of the mid-Atlantic ridge, chosen to have an open84

connection to the west at depth. WB6 and MAR0 were densely instrumented with five85

MicroCATs (Sea-Bird Electronics, Bellevue, WA, USA), self-logging instruments which86

measures temperature, conductivity and pressure, from 5100–5600 dbar: WB6 had four87

MicroCATs and MAR0 had five providing a nominal vertical resolution of about 100 m.88

The high vertical resolution was motivated in part by the previous deep deployment which89

suffered high instrument loss rates due to flooding. The tall moorings WB5 and MAR190

had MicroCATS every 500 dbar near the seabed. MicroCATs measured temperature and91

conductivity every 30 minutes, and data were subsampled to 12 hours and low-pass filtered92

with a ten-day filter. Bottom pressure recorders were also deployed, but as only one of93

the two bottom pressure recorders was successfully recovered, bottom pressure is not used94

in this study.95

MicroCAT temperature, conductivity and pressure are calibrated using a combination of96

Sea-Bird laboratory calibrations and pre- and post-cruise calibration dips using the vessel-97

mounted Seabird conductivity-temperature-depth (CTD). The purpose of the dips is to98

remove any trends due to sensor drift. For pressure, the signal varied due to drift as well as99

blowdown by large currents. While typical pressure variations due to blowdown were 100–100

200 dbar at WB5 near the surface, they were only 30 dbar below 4000 dbar. Pressure drifts101

were corrected using an exponential–linear fit to the entire record. On WB6 and MAR0,102

pressure drifts of the Paine pressure sensors were quite large—on the order of 20 dbar103

over the one year deployment, with some drifts towards increasing pressure while others104

drifted towards decreasing pressure. In addition, two MicroCATs that were deployed105
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adjacent to each other on the rope (separated by less than 1 m vertically) returned initial106

pressure readings that were 26 dbar apart. In this instance, pressures were adjusted using107

the relative spacing between instruments and the bottom depth. For WB6 and MAR0,108

the applied corrections ranged from -6 to 26 dbar. For a typical salinity of 34.85 and109

temperature of 1.8◦C at 5100 dbar, a ±5 dbar offset in pressure would result in ±0.0019110

offset in salinities, and a ±0.0001 kg m−3 offset in density.111

We estimate AABW transport between 70.5◦W (WB6) and 49◦W (MAR1) and below112

4100 dbar. Since WB6 and MAR0 only had instruments below 5000 dbar, the data from113

WB5 and MAR1 are used to extend the transport profiles between 4100 and 5100 dbar114

(WB) and 5300 dbar (MAR). At the western edge, in comparing temperature and salinity115

at 72◦W and 70.5◦W, we found that differences above 4700 dbar are very small (not116

shown), and so used data from WB5 at 4620 and 4100 dbar. At the mid-Atlantic ridge,117

we used data from MAR1 at 5160, 4640, and 4130 dbar. At the MAR, these estimates118

neglect transport in the bottom triangle (below 5300 dbar and between MAR0 and MAR1).119

To estimate this error, we calculated transport in the bottom triangles using hydrographic120

sections. Overall the transport neglected here was 0.0±0.1 Sv (see Table 1). Temperature121

and salinity profiles at the west and mid-Atlantic ridge are linearly interpolated onto a122

regular 20 dbar grid before density is calculated. Geostrophic transports are calculated123

between the two profiles, relative to 4100 dbar. This choice of level-of-no-motion will be124

justified below from hydrography. Below the deepest common level (5600 dbar), transport125

profiles are extrapolated to zero at 6300 dbar.126
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2.2. Hydrographic sections

Six hydrographic sections at 24◦N in the Atlantic are used from 1957, 1981, 1992, 1998,127

2004 and 2010. Table 2 contains details of the sections, and Fig. 1c shows the tracks.128

Latitudes at the western and eastern boundaries varied between early and later sections,129

and the 2010 section followed the Kane Fracture Zone, the deepest path across the MAR130

in the area (see the non-zonal segment of the red transect between 40 and 55 ◦W in131

Fig. 1c). As technology has improved, longitudinal resolution has increased: the 1957132

section occupied 38 stations, compared with the 2010 section that occupied 122 stations133

between 13◦ and 77◦W. The 2010 section also recorded the deepest measurements along134

the transect, reaching 6851 dbar (See Fig. 2 and Fig. 3).135

In order to compare AABW volumes and properties between sections with variable136

resolution and maximum bottom depths, data are gridded onto a uniform longitude–137

depth grid. In particular, early sections were sparsely sampled in longitude so that the138

station separation in 1957 was 162±48 km compared to 55±23 km in 2010. Data from139

each section is linearly interpolated onto a fine longitudinal grid (1000 points between 77140

and 13◦W) and a 1 dbar pressure grid. The 2004 section was limited by instrumentation141

to a maximum bottom depth of 6000 dbar, even though the water depth was closer to142

6400 dbar. The 2010 section, for which casts extended to within 10 m of the bottom,143

shows that profiles of temperature and salinity are well-mixed in the bottom 500 m in144

water depths greater than 4000 dbar (e.g., standard deviation of temperature less than145

0.025◦C and of salinity less than 0.003). For all stations with water depths greater than146

4000 dbar, temperature and salinity profiles are extended to the bottom depth using147

the deepest measurements in the profile. Bottom depth is used at 24.5◦N, rather than148
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along the track lines, to reduce variations due to latitudinal changes between section149

occupations. Bottom depth is estimated from ETOPO bathymetry [U. S. Department of150

Commerce and Atmospheric Administration, 2006, @]. As an example of the effect of151

filling the profiles on volume estimates, in 2004, roughly 20% of the water colder than152

1.8◦C is from the filled bottom of the profiles.153

Transports at 24◦N have been calculated with several combinations of geostrophic ref-154

erence levels (as described in Lavin et al., 1998 [@]) including 3200 dbar , 4000 dbar, a155

different reference level in the deep western boundary current region as the rest of the156

basin, and including a barotropic correction to ensure no net transport across the sec-157

tion. Here we calculate transport profiles from geostrophic meridional velocities using a158

4100 dbar zero-velocity reference level for the section east of the deep western boundary159

current area. This level-of-no-motion minimizes net transport in the eastern basin below160

the mid-Atlantic ridge (using a ridge depth of 4000 dbar). For the six hydrographic sec-161

tions, the net eastern basin transport (east of 46◦W and below 4000 dbar) was 0.0±0.3 Sv162

northward. Recent evidence from the RAPID observations suggest that the barotropic163

velocities are largest in the western boundary region—not uniformly distributed across164

the entire basin width [Johns et al., 2008, @; Bryden et al., 2009, @]. We can still enforce165

a mass balance between the geostrophic transport estimates, Ekman, Gulf Stream and166

Bering Strait transports, but for our purposes, this would be confined to the region west167

of 70.5◦W. Transport values for each year, with the 4100 dbar geostrophic reference level,168

are given in Table 3. A second set of transport calculations is done with a 3200 dbar169

reference level, as in Johnson et al., 2008 [@], with no barotropic velocity applied. In this170
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instance as well, it would be possible to apply the barotropic compensation to the west171

of the AABW transport region.172

3. Results: Moorings

3.1. AABW property variability

Temperature variations are typically vertically coherent. In April and May 2009, a large173

warm anomaly was visible at both mooring sites at WB6 and MAR0 (Fig. 4). In such weak174

stratification, these small temperature changes represent large vertical displacements of175

isotherms (roughly 150–300 dbar, not shown). A large cooling signal was also observed in176

September across four of the five instruments on WB6.177

These large warm fluctuations in WB6 persisted for about three weeks (late April to178

mid-May) with a peak-to-peak temperature range of over 0.1◦C at 5400 dbar (See Fig. 4a).179

The reverse event in September 2009 was quite brief by comparison (17 Sep–24 Sep). At180

MAR0, similar warm fluctuations were seen, both in January 2009 and a larger one in181

May 2009. The May event appears to be bottom intensified with the sharpest changes at182

5500 dbar (about 0.05◦C in a couple days, 6 May–8 May).183

The data also show a small, longer period warming trend in the deepest MicroCATs on184

MAR0 of 0.03◦C over the 360 day deployment, calculated as a linear fit to the data (See185

Fig. 4b). Salinities increased by roughly 0.04 over the same period (not shown). While186

we cannot conclude from the warming at MAR0 that the whole of AABW is warming,187

the deepest instruments on MAR1 also showed a warming (on the order of 0.015◦C). The188

warming at both locations may be due to a zonal repositioning of the sloping isotherms189

between MAR0 and the ridge, but it is also consistent with a longer term warming trend.190
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Comparing the data to the nearest hydrographic casts (Fig. 5a), we see that the θ − S191

range at WB6 lies most closely along the 2010 profile and that the warm, salty fluctua-192

tions are along the θ − S curve rather than a shift in the θ − S relationship. Variance in193

temperature and salinity are plotted as ellipses along the major and minor axes of vari-194

ability following Emery and Thompson, 2004 [@]. At MAR0, the 1981 casts were colder195

and saltier than both the more recent casts and the mooring data, even including vari-196

ability given by the standard deviations of temperature and salinity (Fig. 5b). The long197

term warming from hydrography, both at WB6 and MAR0 is stronger than the short-term198

variability observed at the mooring sites.199

3.2. AABW transport variability

Overall, the range in transports over the six-month period, below 4100 dbar, was 1200

to 3 Sverdrups, with a standard deviation of 0.4 Sv (Fig. 6). Comparing this to the201

previous decades, the range is larger over the six month deployment than between the202

six hydrographic sections, where transport ranged from 2.2 to 3.7 Sv (Table 1) though203

the mean is smaller. Note that the AABW transport estimates from hydrography in204

Table 1 are calculated differently than in the later section on hydrography where only205

water colder than 1.8◦C will be included. For comparison with the moorings, where the206

transport cannot be partitioned by temperature, the values in Table 1 include all water207

below 4100 dbar.208

Transport variability is dominated by changes at the deepest instruments on WB5 in the209

western boundary. These transports have been estimated for the overlap period between210

WB6 and MAR0, from Apr–Nov 2009 using transport profiles which have been extrapo-211

lated to zero below 5600 dbar. There were several increases in transport—which peaked212

D R A F T September 1, 2011, 2:06pm D R A F T



X - 12 FRAJKA-WILLIAMS ET AL.: VARIABILITY OF AABW

at the beginning of May, mid-June, and the beginning of August—that corresponded to213

increases in temperature at WB6 (Fig. 4a). There was also a large increase in transport214

in the last month (November) resulting from a general warming in the upper layers near215

the bottom of WB5. The gradual warming at both MAR0 and MAR1 results in a slow216

decline of AABW transport (until the November reversal).217

Transport profiles between 70.5◦W and 49◦W are shown in Fig. 7. Profiles have been218

averaged by month and the profiles calculated from the nearest hydrographic stations219

in 1981, 2009 (calibration casts) and 2010 are shown as well. The figure includes April220

through October, with November having been omitted as short (<2 weeks). The struc-221

ture and magnitude of transport profiles in the seven month mooring period matches the222

previous estimates. However, the local bottom depth at WB6 and MAR0 is at 5600 dbar.223

Transport per unit depth estimates from hydrography (§4.3) show that, for example, in224

2010, 0.6 Sv or 20% of the AABW transport was located below 5600 dbar. In addition,225

the transport between 49◦W and 46◦W is neglected. However, from the transport esti-226

mates between these two longitudes from hydrography (Table 1), we can see that this227

contribution is very small or nil.228

4. Results: Hydrographic sections

4.1. AABW property changes across decades

The six hydrographic sections show similar overall structure and properties of AABW229

from 1957–2010 (See Fig. 2 and 3). The water below 4500 dbar is cold (θ < 1.9◦C)230

and relatively fresh (S ∼34.89) compared with the overlying NADW (θ > 1.9◦C and231

S > 34.899). Comparing the sections, the contour choice highlights the change in the232

coldest watermasses: in 1957, no water colder than 1.5◦C was measured (Fig. 2). The233
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volume of water colder than 1.5◦C increased from nothing in 1957 to its peak in 1992234

before its near absence in 2010. This suggests that the volume of coldest AABW at 24◦N235

has fluctuated.236

By comparing the cross-sectional area of water colder than a particular isotherm, we can237

compare variations in volume between years (Fig. 8). The particular trends apparent are238

that below 1.54◦C, 1992 had the largest volume (estimated from cross-sectional area) of239

water which decreased monotonically through the 1998, 2004 and 2010 sections. However,240

at warmer isotherms, e.g., 1.7◦, the pattern is not the same. The volume of water colder241

than 1.7◦C was greatest in 1998, and somewhat less in subsequent sections. If we look at242

total AABW volume, defined as water colder than 1.8◦C (following Johnson et al., 2008243

[@]; Lavin et al., 2003 [@]), the most recent three sections, including 2010, had the largest244

volume of water. These changes indicate that rather than an overall contraction of AABW245

volume at 24.5◦N, the properties of AABW have shifted towards a slightly warmer mean246

temperature with a decrease in the volume of water colder than 1.5◦ since 1992, but a247

larger overall volume of water colder than 1.8◦ since 1998.248

4.2. AABW structure and volume

AABW, as delineated by the 1.8◦C, has isotherms that slope up from 70◦W to 55◦W,249

then deepening towards the MAR (see Fig. 9a). By the thermal wind relationship, the250

upwards slope to the east is indicative of northward flow below. West of 70◦W, isotherms251

follow bathymetry. The slope of the isotherms has zonal structure that persists in all252

six sections. From 70◦W to 66◦W, the slope is steepest, indicative of faster northward253

flow. From 66◦W to 61◦W, isotherms are nearly level, before they shoal again from 61◦W254

to 52◦W. This temperature structure follows structure of the bathymetry north of 24◦N255
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where a submarine ridge divides the deep western basin into a small basin to the west,256

and the larger basin to the east (See Fig. 1). The pattern of slopes in isotherms suggest257

a northward flow at the MAR, southward recirculation around 66–61◦W, and northward258

circulation between 70◦ and 66◦W.259

In addition, there appear to be small-scale—possibly eddy—features. In the 2004 sec-260

tion, there is a localized shoaling of isotherms at 70◦W. Considering the slope of isotherms261

from the western endpoint of AABW to 46◦W, the basin-wide slope is reduced for a west-262

ern end point of 70◦W, in an eddy and relatively enhanced for 70.5◦W. Since eddy fea-263

tures are likely to be transient, and not necessarily representative of large-scale changes264

in AABW transport, we avoid integrating transports from an end point within an eddy265

and use a western integration limit of 70.5◦W rather than 70◦W.266

The core of AABW (as given by the coldest temperatures measured at 5990 dbar, the267

deepest measurements common to all six sections) also changes position from section to268

section. Most years, the core is betwee 58.8–57.8◦W except in 1957 and 2010 when it269

moved west to around 61◦W (not shown). The vertical structure of temperature and270

salinity at the core stations reveals a large volume of weakly stratified water below about271

5200 dbar with a thermocline above. Temperatures in the most recent three sections warm272

more rapidly in the thermocline with distance from the bottom. Salinities shift more273

gradually between occupations, showing some variation in the most recent three sections.274

A small but progressively warming and salinification of the deep, weakly stratified layer275

is apparent from 1998–2010.276

The θ − S profiles from the core stations are shown in Fig. 10. Very little variation277

is apparent in the most recent three sections except that the extreme of the coldest,278
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freshest range is progressively disappearing. Again, the 2010 hydrographic section shows279

the absence of coldest, freshest water.280

The pattern of change between sections is shown in Fig. 11. Note that the latitude281

of sections deviated at the western boundary and the mid-Atlantic ridge (Fig. 1c); early282

sections were along a single latitude, 24.5◦N while later sections connected with the Florida283

Straits in the west (26.5◦N). Temperature comparisons in the western basin are only284

valid east of 68◦W. Johnson et al., 2008 [@] described a pattern of warming and cooling285

that indicated a decrease in the tilt of the isotherms between the 1981 to 2004 section286

(Fig. 11a). This pattern was not continued in 2010. Instead, since 2004, the entire volume287

of AABW below 5500 dbar has warmed (below the average position of the 1.6◦C isotherm,288

while above 4000 dbar or the 2.0◦C, the water has warmed. Between 4000 and 5500 dbar,289

the region between 65 and 68◦W and between 55–50◦W has warmed, and between the two290

has cooled. These changes will work to decrease the recirculation noted above, smoothing291

the isotherm depth in 2010 (as can be seen in Fig. 9a). From 1981–2010, above the 2◦C292

isotherm, the region east of 60◦W has warmed, while west of 60◦W has cooled. These293

changes will affect shear in the NADW layers, but due to our choice of reference level at294

4100 dbar, will not project onto AABW transport estimates here. The total effect since295

1981 has been a warming of the deepest layers of AABW (below 5500 dbar) and a cooling296

of the water below 4100 dbar.297

4.3. AABW transport across decades

The relative strength of AABW transport from the six hydrographic sections is mostly298

insensitive to the choice of longitudinal limits or reference level. The zonally-integrated299

transport of water colder than 1.8◦C from 46◦W to a variable western longitude limit, and300
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relative to a reference level of 3200 or 4100 dbar is shown in Fig. 12a and b, respectively.301

The x-axis represents the western limit of integration. From this we can see that for302

any western limit and either reference level, 1981 had the highest northward transport303

of AABW. Note that the values change slowly in most cases for a given year and have304

varying longitude limits. Two exceptions are the localized dips in transport for 1981 at305

71◦W and for 2004 at 70◦W. These may be local transient eddies which deflect isotherms306

and would then not be representative of the overall transports. The range between 1981307

and 2004 transports is larger when using a 3200 dbar reference level. Additionally, using308

the reference level of 3200 dbar, the magnitude of reduction in AABW transport from309

1981 to 2004 was accentuated by the particular choice of western longitudinal limits from310

Johnson et al., 2008 [@]. However, with few exceptions, the monotonic reducing trend311

in transports between 1981 and 2004 is apparent regardless of the choice of longitudinal312

limits or reference level.313

Similarly, for both reference levels and a range of longitudinal limits, the transport in314

2010 of water colder than 1.8◦C is similar to that observed in 1998, and about average315

for all the sections except for 1981. For our choice of a 4100 dbar reference level and a316

70.5◦W west limit, while total transport decreased monotonically from 1981 (3.7 Sv) to317

2004 (2.4 Sv), there was a resurgence of AABW in 2010 (2.8 Sv), giving an overall mean318

value of 2.8 for the six sections and standard deviation of 0.6 Sv.319

5. Discussion

From hydrographic sections between 1957 and 2010, and continuous mooring records320

in 2008–2009, we have estimated transport and property changes in AABW at 24.5N in321

the Atlantic. The coldest core of AABW (found between 57◦W and 61◦W) has warmed322
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since 1992; while the overall volume of AABW has not changed, the coldest vintages have323

disappeared. A similar warming trend was observed in the mooring records, consistent324

with the recent global warming of AABW estimated from hydrographic sections in Purkey325

and Johnson, 2010 [@], in the South Atlantic [Johnson and Doney, 2006, @] and through326

the Vema channel [Zenk and Morozov, 2007, @].327

There’re two main distinctions between our analysis of the mooring data and the hy-328

drographic data. Moorings allow us to observe the variability in transport on short time329

scales which has been shown to be important both in the RAPID project as a whole and330

now here for AABW. The ranges in transport estimated are large (2 Sv) and on the order331

of the range estimated from hydrographic sections. However, mooring data is spatially332

sparse and in this instance resulted in an estimate of AABW as the net northward trans-333

port below 4100 dbar and between 70.5–49◦W. Hydrographic data allow a more natural334

estimate of AABW delineated by density or temperature (used here). In comparing the335

two estimates (below 4100 dbar) and colder than 1.8◦C from hydrography, we see that336

our estimate of transport below 4100 dbar contracts the variability observed when using337

the full temperature data. (Table 1: column 1 shows a transport range of 2.2–3.7 Sv vs338

Fig. 9b which gives a range of 1.9–4 Sv.) This would suggest that our mooring estimate339

of AABW transport is actually an underestimate of the true variability.340

On comparing properties of AABW, the hydrographic data are superior. The short341

term variability in temperature from moorings is responsible for the fluctuations observed342

in transport, but it is difficult to conclude anything from the warming trend observed343

near the bottom at the MAR moorings. Without further information, the warming signal344

could be due to a movement in the isotherms delineating AABW or a change in the bulk345
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properties of AABW. In contrast, the warming signal from hydrographic sections is robust346

and shows that indeed, the deepest, coldest classes of AABW have been warming since347

1981 though the volume of water colder than 1.8◦C has increased.348

The warming observed both globally and in this observations may be due to a change349

in the source waters of AABW or in advection and mixing along the path from the source350

regions to 24◦N. Near the source, recent results have suggested that the export of AABW351

from the Weddell Sea has been changing: the coldest waters are no longer being exported,352

possibly due to a localised bottom Ekman effect [Jullion et al., 2010, @; Meredith et al.,353

2011, @]. Understanding changes along the path from the Southern Ocean is more difficult.354

If transport speeds were to slow, then the observed warming at more northerly latitudes355

may have resulted from the longer advective timescales which would allow for more mixing356

with warmer NADW along the pathway. Clearly, rates of transport are better identified357

using moorings, in order to capture the time variability of the process, but the short term358

variability observed by the six month mooring deployment may not be long enough to359

infer changes due to processes along the pathway from the Southern Ocean.360

One of the motivations for calculating AABW transport variability was to understand361

its impact on estimates of the MOC at 26◦N in the RAPID array. The current RAPID-362

WATCH calculation assumes a near steady 2 Sv of northward flowing AABW, peaking363

at 5500 dbar [Kanzow et al., 2010, @]. Based on the estimates here, the true value may364

range from 1 to 5 Sv. If the nominal 2 Sv transport currently used in the RAPID estimate365

of the MOC overturning were reduced to 1 Sv, the estimate of MOC overturning would366

increase by 0.2 Sv, transferring about 20% of the variability. If the AABW transport were367

increased to 5 Sv, the MOC overturning estimate would reduce by 0.6 Sv. While a 0.8368
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Sv range is within the error estimates for the MOC calculation, it is of the same order as369

other uncertainties now being quantified.370

The balance between the upper and lower MOC cells has been explored in modeling371

and paleo studies, which suggest a seesaw pattern of dominance shifting between northern372

hemisphere deep water sources (upper cell) and AABW (lower cell). However, global373

models are poorly constrained in the deep ocean due to a lack of observations [Saunders374

et al., 2008, @]. Besides allowing a direct estimate of deep transport at 26◦N, these deep375

moorings will provide temperatures, salinities and currents which can be used to improve376

models in their deepest layers.377
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Table 1. Deep transport estimates from hydrographic sections between longitude pairs.

Transports are calculated as a zonal-integral of geostrophic shear referenced to 4100 dbar between

the nearest stations to each mooring longitude. Unlike the transport estimates in Fig. 9b which

only considers transport of water colder than 1.8◦C, these estimates are for total transport below

4100 dbar. Transports in this table are for comparison with the mooring data, which cannot be

limited to water colder than 1.8◦C.
70.5–46◦W 70.5–49◦W 49–46◦W

WB6 to 46◦W WB6 to MAR1 MAR1 to 46◦W
[Sv] [Sv] [Sv]

1957 2.2 2.2 0.0
1981 3.7 4.0 -0.3
1992 3.2 3.2 0.0
1998 2.6 2.6 0.0
2004 2.6 2.6 0.0
2010 2.5 2.4 0.1

2.8±0.6 2.8±0.7 0.0±0.1

Table 2. Hydrographic Sections, number of stations that are east of 77◦W and the mean and

standard deviation of distance between stations.
Year Ship Dates Stations [#] Spacing [km]
1957 RRS Discovery II 6–28 Oct 38 162±48
1981 RV Atlantis 12 Aug–6 Sep 90 71±31
1992 BIO Hespérides 20 Jul–16 Aug 101 61±13
1998 RV Ronald H. Brown 23 Jan–24 Feb 121 55±23
2004 RRS Discovery 4 Apr–10 May 113 59±26
2010 RRS Discovery 5 Jan–19 Feb 122 55±23
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Table 3. Ekman, Florida Current and Bering Strait transports used for mass balance in

the hydrographic sections. Ekman and Florida Current transports for 2010 were the average

values from 2008. The barotropic velocity column is the amount of barotropic velocity which

was necessary to apply west of 70.5◦W in order to achieve mass balance across the section.

Ekman Florida Current Bering Strait barotropic
[Sv] [Sv] [Sv] [cm s−1]

1957 4.5 31.1 -0.8 0.0
1981 3.7 31.1 -0.8 -0.2
1992 4.6 30.3 -0.8 1.7
1998 5.2 34.0 -0.8 -0.4
2004 4.5 31.8 -0.8 0.2
2010 4.1 31.6 -0.8 -0.3
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Figure 1. Array setup at 24–27◦N in the Atlantic. (a) Potential temperature at 26◦N

in the Atlantic from the 2010 occupation of the line. Mooring locations from the RAPID-

WATCH/MOCHA program are given by the vertical lines. The two red vertical lines highlight

the deep moorings added for this study: in the abyss at 70.5◦W (WB6) and 52◦W (MAR0). (b)

Transport per unit depth east of the Bahamas calculated from the moorings. The solid thick

line is the mean while shading indicates the standard deviation between April 2004 and March

2009. The shear is divided into major water mass classes, including thermocline water, Antarctic

Intermediate Water, North Atlantic Deep Water and Antarctic Bottom Water. (c) Bathymetry

around 20–35◦N and station positions for six occupations of the hydrographic section, in 1957

(pale green), 1981 (light blue), 1992 (pink), 1998 (green), 2004 (dark blue) and 2010 (red).

Mooring positions are given by white diamonds. Note, the 2004 and 2010 sections follow the

same track except for near the mid-Atlantic ridge. 1957 and 1981 are across 24.5◦N, as is 1992,

with the exception of a deviation near the western boundary.
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Figure 2. Deep potential temperature sections from the six hydrographic cruises at 24.5–

26.5◦N in the Atlantic. Contours of potential temperature are at 0.1◦C intervals. Bathymetry is

shaded and represents the bottom depth from ETOPO along each the hydrographic section.

D R A F T September 1, 2011, 2:06pm D R A F T



FRAJKA-WILLIAMS ET AL.: VARIABILITY OF AABW X - 27

4000

4500

5000

5500

6000

6500
1957

4000

4500

5000

5500

6000

6500
1981

4000

4500

5000

5500

6000

6500

P
re

ss
ur

e 
[d

ba
r]

1992

4000

4500

5000

5500

6000

6500
1998

4000

4500

5000

5500

6000

6500
2004

4000

4500

5000

5500

6000

6500
20°W30°W40°W50°W60°W70°W

Longitude

2010
34.83 34.86 34.89 34.92

Figure 3. Deep salinity sections from the six hydrographic cruises at 24.5–26.5◦N in the

Atlantic. Contours of salinity are at 0.01 intervals. Bathymetry is shaded and represents the

bottom depth from ETOPO along each the hydrographic section.
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Figure 4. Potential temperature from WB6 (a) and MAR0 (b) from each moored MicroCat.

Pressure annotated are approximate averages for each record fromWB6 and the range for the four

instruments on MAR0 (5310, 4330, 5580 and 5660 dbar). Instruments were spaced at 100 dbar

intervals. Data have been calibrated and subsampled to 12 hourly intervals.
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Figure 5. Temperature and salinity from the six hydrographic sections at the two deep mooring

sites, (a) WB6 and (b) MAR0. Temperatures and salinities from the mooring deployments are

given by the red crosses, where the axes are standard deviations along the major and minor axes

of variance ellipses. Potential density (σ4) is contoured.
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Figure 6. Net transport below 4100 dbar between 70.5 and 49◦W estimated from mooring data

over the period where the WB6 and MAR0 deployments coincided. Below the deepest common

level (5600 dbar), each transport profile has been been extrapolated to zero at 6300 dbar.
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Figure 7. Transport profiles from moorings (gray) and hydrography (black) between 70.5

and 49◦W, relative to a level-of-no-motion at 4100 dbar. Hydrographic data from 2009 is from

CTD casts during the mooring deployment cruise. Estimates from hydrographic data use the

shear between the stations nearest the mooring locations, so transport estimates are limited to

the depth range above the deepest common level between the two stations. Mooring transport

estimates are averaged by month (April–October, November having been omitted since the record

is short). Dashed gray lines show transports linearly extrapolated to zero the 6300 dbar.
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Figure 8. Cumulative volume of water colder than a given temperature estimated as a cross-

sectional area across 24.5◦N between 77 and 20◦W from hydrographic sections. Before estimating

volume, station data were gridded onto a fine pressure–longitude grid and the bottom of each

profile was filled by continuing the deepest measurement down to bathymetry estimates across

24.5◦. Using bathymetry at 24.5◦N rather than at station positions reduces differences in volume

estimates due to varying cruise track positions. Water colder than 1.8◦C is called AABW.
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Figure 9. a) Depth of the 1.8◦C isotherm (in dbar) from the six hydrographic sections. The

bathymetry at 24.5◦N is shaded in light gray. The bathymetry at 27◦N is shaded in the hachure

pattern. Note the elevated bathymetry around 65-70◦W. (b) Cumulative transport of AABW

(water with θ < 1.8◦C) from the hydrographic sections, integrated from zero at 70.5◦W to the

east.
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Figure 10. θ−S plot from the coldest core of AABW for each hydrographic section. Contours

are potential density referenced to 4000 dbar (σ4).
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Figure 11. Temperature changes between (a) 1981 and 2004, (b) 2004 and 2010, and (c) 1981

and 2010, calculated as modern minus older. Red regions indicate warming while blue regions

indicate cooling. Temperatures were first gridded for each hydrographic section data onto a fine

pressure–longitude grid before differencing. Isotherms contoured are the mean isotherm depths

(in dbar) from the sections 1981, 1992, 1998, 2004 and 2010 at 0.5◦ intervals in solid black, and

between 1.5–2.0◦C at 0.1◦ intervals in dashed black.
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Figure 12. Effect of choice of reference level and longitude limits on AABW transport

estimate. (a) The zonal integral of transport from 46◦W to the western limit of integration (x-

axis), referencing geostrophic velocity to 3200 dbar. The vertical line is the western limit used

in Johnson et al., 2008 [@]. (b) The same as in (a) except referencing geostrophic velocity to

4100 dbar. The vertical line is the western limit used here.
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