nerc.ac.uk

A comparison of global estimates of marine primary production from ocean color

Carr, Mary-Elena; Friedrichs, Majorie A.M.; Schmeltz, Marjorie; Aita, Maki Noguchi; Barber, Richard; Behrenfeld, Michael; Bidigare, Robert; Buitenhuis, Erik T.; Campbell, Janet; Ciotti, Aurea; Dierssen, Heidi; Dowell, Mark; Dunne, John; Esaias, Wayne; Gentili, Bernard; Gregg, Watson; Groom, Steve; Hoepffner, Nicolas; Ishizaka, Joji; Kameda, Takahiko; Le Quere, Corinne; Lohrenz, Steven; Marra, John; Melin, Frederic; Moore, Keith; Morel, Andre; Reddy, Tasha E.; Ryan, John; Scardi, Michele; Smyth, Tim; Turpie, Kevin; Tilstone, Gavin; Waters, Kirk; Yamanaka, Yasuhiro. 2006 A comparison of global estimates of marine primary production from ocean color. Deep Sea Research II, 53 (5-7). 741-770. https://doi.org/10.1016/j.dsr2.2006.01.028

Full text not available from this repository. (Request a copy)

Abstract/Summary

The third primary production algorithm round robin (PPARR3) compares output from 24 models that estimate depth-integrated primary production from satellite measurements of ocean color, as well as seven general circulation models (GCMs) coupled with ecosystem or biogeochemical models. Here we compare the global primary production fields corresponding to eight months of 1998 and 1999 as estimated from common input fields of photosynthetically-available radiation (PAR), sea-surface temperature (SST), mixed-layer depth, and chlorophyll concentration. We also quantify the sensitivity of the ocean-color-based models to perturbations in their input variables. The pair-wise correlation between ocean-color models was used to cluster them into groups or related output, which reflect the regions and environmental conditions under which they respond differently. The groups do not follow model complexity with regards to wavelength or depth dependence, though they are related to the manner in which temperature is used to parameterize photosynthesis. Global average PP varies by a factor of two between models. The models diverged the most for the Southern Ocean, SST under , and chlorophyll concentration exceeding 1 mg Chl m-3. Based on the conditions under which the model results diverge most, we conclude that current ocean-color-based models are challenged by high-nutrient low-chlorophyll conditions, and extreme temperatures or chlorophyll concentrations. The GCM-based models predict comparable primary production to those based on ocean color: they estimate higher values in the Southern Ocean, at low SST, and in the equatorial band, while they estimate lower values in eutrophic regions (probably because the area of high chlorophyll concentrations is smaller in the GCMs). Further progress in primary production modeling requires improved understanding of the effect of temperature on photosynthesis and better parameterization of the maximum photosynthetic rate.

Item Type: Publication - Article
Digital Object Identifier (DOI): https://doi.org/10.1016/j.dsr2.2006.01.028
Programmes: BAS Programmes > Other Special Projects
ISSN: 0967-0645
Additional Information. Not used in RCUK Gateway to Research.: Full text not available from this repository
NORA Subject Terms: Marine Sciences
Biology and Microbiology
Date made live: 22 Aug 2007 12:30 +0 (UTC)
URI: https://nora.nerc.ac.uk/id/eprint/29

Actions (login required)

View Item View Item

Document Downloads

Downloads for past 30 days

Downloads per month over past year

More statistics for this item...