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ABSTRACT 
 

This report describes scientific activities on RRS Discovery cruise 332, “Arctic Gateway”, in 

the vicinity of WOCE hydrographic section AR7 between Canada, Greenland and Scotland 

during late summer 2008.  Hydrographic work comprised 74 CTD/LADCP stations and one 

tow of the Moving Vessel Profiler.  Water samples were captured for on-board measurement of 

salinity, dissolved oxygen, inorganic nutrients, calcite, particulate organic carbon and 

chlorophyll.  Samples were also captured for storage for later on-shore analysis of oxygen 

isotope fraction, chlorofluorocarbons, sulphur hexafluoride and alkalinity / total carbon 

dioxide.  Continuous underway measurements comprised:  navigation;  currents, using vessel-

mounted ADCPs (75 and 150 kHz);  meteorology;  sea surface temperature and salinity;  and 

bathymetry.  Mooring operations comprised the recovery of two current meter moorings off 

Cape Farewell;  two other moorings were deemed lost;  an instrument from a fifth mooring, not 

recovered at the time, was later found intact in west Scotland.  Additionally, a party from the 

Royal NIOZ were engaged in a programme of recovery and redeployment of Dutch moorings.  

UK funding for D332 was provided by the Natural Environment Research Council under its 

Oceans2025 programme. 
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1 INTRODUCTION 

Sheldon Bacon 

This cruise was planned as (i) an enhanced occupation of the whole WOCE AR7 hydrographic 

section, and (ii) recovery / servicing of several NOCS and NIOZ moorings in the same region.  WOCE 

AR7 – Canada to Greenland to Ireland/Scotland – seemed worth doing in this way because in the now 

quite long history of this section, I can’t find any occurrence of its having been occupied in its entirety 

in one go.  It has usually been split into its western part, the Labrador Sea (AR7W), and its eastern part 

(AR7E), crossing the Irminger Basin, the Iceland Basin, the Rockall-Hatton Plateau and the Rockall 

Trough.  Also these sections have typically been occupied at different times of year – Spring for 

AR7W and Summer for AR7E.  This means that ambiguities in the measured circulation and issues of 

supposed continuity of the boundary currents around Cape Farewell have been obscured by 

asynopticity.  By reason of guarding against the possibility that a time-delay might be to blame for any 

such observed discontinuity, we added a “box” section around Cape Farewell so that the fate of any 

waters entering or leaving the boundary current system could be determined. 

As it proved, this was an extremely difficult cruise by reason of time lost due to mechanical problems, 

but much more severe was the loss of time due to extraordinarily foul weather.  The cruise can be seen 

as a game of three halves.  The first 10 days or so were conducted in quite fine weather and we 

completed the Labrador Sea section and part of the “box”.  The next 10 days were spent partly 

engaged in mooring operations, finishing the “box” and beginning AR7E while spending a lot of time 

hove to awaiting the passage of weather systems.  The final 10 days were a near-total washout, 

including the need to flee (!) from the fast-approaching remains of Hurricane Ike (!).  My estimate of 

total time lost, based on 32 work days (not including three days’ passage to and from the work area), 

was (for me) an unheard-of 52%.  As can be seen in figure 1, this meant that while we conducted all 

mooring operations and completed all western stations important for measuring the outflow of fresh 

Arctic waters, we made no measurements at all in the Iceland Basin or over the Rockall-Hatton 

Plateau, and only a few stations in the Rockall Trough right at the end of the cruise.  A summary of the 

downtime follows.  However, an important aim of the cruise was achieved:  the synoptic measurement 

of the magnitude and fate of Arctic outflows.  Publications in refereed journals will follow. 

Mechanical problems 

Early in the cruise (straight after station 13), the main hydro winch was taken out of commission.  

Without going into the technical issues, it was decided that the main hydro winch posed an 

unreasonable risk to the CTD package, with possible safety issues for personnel in the event of further 

such events.  The spare (Lebus) winch was commissioned to serve in its stead.  It worked quite 
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steadily but suffered scrolling problems on one of the final casts.  There was also a late CTD cable 

retermination needed (final 2 days), the CTD oxygen sensor failed during cast 71, which cross-talked 

into spoiling the conductivity sensor output, so the fault had to be diagnosed and the station repeated.  

The ship’s engine problems (loss of power) in the final work day caused loss of time for repair. 

Foul weather 

For several weeks there was a well-established blocking high over Scandinavia.  In conjunction with 

the Azores High (in its usual position), North Atlantic depressions were being channelled away from 

the usual storm track (roughly Maine to Scotland/Norway) and onto a displaced and rotated storm 

track, such that depressions were running east of north from Maine up the Irminger Basin and through 

Denmark Strait.  Also they were moving and developing slowly.  The depressions were bypassing the 

Labrador Sea during the beginning of D332, so we were able to make quite steady progress through 

the western part of the cruise, although we were slowed by reduced overnight vessel speeds as a 

precaution against the possibility of encountering sea ice, and also by fog.  Unrelenting foul weather in 

the final 10 days of the work time caused loss of all measurements in the Iceland Basin and over the 

Rockall-Hatton Bank. 

Miscellaneous 

The incorrect cruise dates on the Irish Diplomatic Clearance note cost half a day in reorienting the 

final work days.  The Naval gunfire exercise in the region of the eastern Rockall Trough, of which we 

were notified the evening before it was due to start, caused redesign of the cruise track and cost half a 

day (inclusion of a long dog-leg);  also we were subsequently informed that the exercise had been 

cancelled. 

Lost time 

The mechanical problems caused 2 lost days, due to cast 13 recovery, problem solving, Lebus 

commissioning (electrical connections, mechanical and electrical termination, load testing) and 

associated issues.  Foul weather (strong winds), due to unusual conditions outlined above (including 

the tail-end of Hurricane Ike), caused the loss of 12.5 days in total.  Fog in the Labrador Sea west of 

Greenland necessitated slow steaming day and night, and cost another day.  Also the Lebus winch is 

more susceptible to wind and sea state than the main hydro winch.  It can be difficult to use it even in 

low winds if a contrary swell is running, causing the vessel to roll on station, which in turn adversely 

affects wire tension.  The average veer and haul rates of the Lebus winch are lower over an entire cast 

than the standard 60 metres per minute of the main winch:  typically lower by 25%.  I estimate that a 

day was lost due to reduced winch speed, therefore. 
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Timing summary 

The total of lost work time stands at 16.5 days.  This cruise was of 35 days’ duration, of which 32 

were work days and 3 passage (2 out of Canada, one into Glasgow).  Therefore 16.5 days lost out of 

32 is equal to 52% of total work time. 

I do not attempt to subdivide the downtime into categories because there were so many difficulties 

experienced during the cruise that issues often overlapped:  eg, Irish permission to work, Naval 

gunfire exercise, ship’s engine problems, Lebus scrolling, CTD sensor failure, heavy swell over 

Rockall Bank, all influenced the last few scheduled work days. 
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Figure 1: 

Track of RRS Discovery 

cruise 332 (red);  CTD 

station positions (orange 

circles);  moorings 

(orange plus symbols).  

The first station, right 

outside St. John’s, is off 

the chart to the south-

west.  The cruise began 

in St. John’s, 

Newfoundland, and 

ended in Glasfgow. 
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2 MOORING OPERATIONS 

Dave Childs, Ben Poole, Steve Whittle 

The objectives of the Mooring Team were to recover the Cape Farewell mooring array that was 

deployed in 2006; the array was started in 2005 then recovered and redeployed in 2006.  This was the 

final year for this array; all moorings that will be recovered will have been deployed for a period of 

two years. 

For all mooring recovery work Steve Whittle handled all the back deck work, whilst Ben Poole 

operated the double barrel winch, with Dave Childs operating the reeling winch.  Additional support 

on deck was supplied by Leighton Rolley who provided assistance as and when needed. 

All mooring recovery work was started at the earliest opportunity in daylight hours to provide as much 

daylight working as possible, to assist in the sighting of moorings once on the surface.  Both Ben 

Poole and Dave Childs worked full CTD shifts whilst CTD watches were being maintained, these 

were however stopped as mooring operations were under way, giving the scientists a break from 

sampling.   

All recovered instrumentation will be downloaded and serviced on board then it is intended to return 

all instruments to NOCS for post deployment calibration. 

These are the proposed moorings for recovering on D332, with their corresponding NMF ID numbers.  

These moorings were deployed during August 2006 on board Discovery, for cruise D309: 

 

MOORING F  2006/31 

MOORING B 2006/32 

MOORING C 2006/33 

MOORING A 2006/34 

MOORING H 2006/35 

 

Instrumentation used throughout the mooring array consisted of Aanderaa RCM 7 and 8 current 

meters, and Aanderaa RCM 11 current meters.  As the RCM 11 instruments were all supplied new for 

the D309 no pre-cruise calibrations had been undertaken, thus calibration casts were carried out on 

CTD stations during D309. 

For each attempted recovery the IXSEA deck unit TT801 and transducer were taken to the hanger and 

set-up so that the transducer could be deployed overboard by the starboard CTD gantry.  All releases 

used throughout this mooring array were IXSEA AR861's. 
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Once we were informed by the bridge that we were on station we placed the transducer overboard and 

started to interrogate the release, using the telemetry mode.  This established communication with the 

release and also provided additional information such as release range, battery condition and the 

release position, this being either vertical or horizontal.   

Upon successful communication with the release, and permission with the bridge, the release 

command was sent.  Once received, the release operated, releasing itself from the anchor weight.   

Periodically, a check on the release’s depth was made to track the ascent rate, which was then used to 

calculate a rough time that the mooring might be on the surface; this information was then passed to 

the bridge. 

Unfortunately, not all moorings responded when interrogated, and weather and time constraints 

prohibited dragging operations, therefore we were unable to recover three moorings.  This obviously 

resulted in the loss of instruments, releases and data.  

Notes were made at each mooring site of all the events that took place with times being recorded in 

GMT.  This was then used to produce a log of events, which follows in this report. 

2.1 Diary of NOCS Mooring Operations 

Mooring operations began on Tuesday the 9th of September 2008 and continued until the following 

Sunday.  Additional mooring operations were carried out in the recovery and deployment of several 

moorings for NIOZ, these are not detailed in this report, except to say that all of the Mooring Team 

were on deck throughout all of the NIOZ mooring operations to assist, again with Steve Whittle 

working on the back deck, Ben Poole operating the double barrel winch and Dave Childs operating the 

scrolling winch. 

Tuesday 9 September 

Mooring F – Recovery 

The ship arrived on station 16:55 GMT then when the ship was hove-to, the transducer was placed 

overboard, with the first attempt of establishing communication with the release sent at 16:56 GMT. 

Straight away we received a reply from release, giving a range of 1072m.  A release command was 

sent at 16:57 GMT, and the release responded with release OK.  Further commands were sent to the 

release to check on its ascent rate.  By 17:00 GMT the release was at a depth of 970m, indicating that 

the mooring was on its way up to the surface.  However, additional ranges received indicated that the 

mooring had stopped surfacing and for some reason had stopped at a depth of approximately 960m.   
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Over a period of several hours the range of the release was checked, but its depth remained fairly 

constant, allowing for the drift of the ship.  At 21:00 GMT it was decided to abandon the attempted 

recovery of this mooring, due to the fact that it appeared that something was stopping the mooring 

surfacing.  We then steamed overnight to the next NIOZ site, with the intention of returning to the 

mooring site for dragging operations, however time, weather and ship restraints prohibited this.  It is 

thought that maybe the ADCP Buoy had broken away from the mooring with the Argos beacon failing 

causing the remaining rope to fall to the sea bed and possibly getting tangled in the anchor. 

Wednesday 10th September 

Mooring C – Recovery 

Today we arrived on station at the NIOZ mooring site at 10:00 GMT where we assisted in their 

mooring operations.  After the first NIOZ mooring was successfully recovered, we moved off to the 

second NIOZ mooring site, and again their mooring was successfully recovered without any problems. 

For the NOCS mooring recovery we steamed to the NOCS Mooring Site C arriving on station at 19:00 

GMT.  Communication with the release was first attempted at 19:05 GMT but no reply was received.  

Further commands were sent to interrogate the release, however no reply was received.  At 20:24 

GMT the decision was made to move off from the current station and head off towards the next 

mooring site, with the option of returning at a later point in the cruise for possible dragging operations, 

again this did not happen due to time and weather constraints. 

We arrived at Mooring Site B overnight, and then interrogated the release to see if we could get a 

reply.  The release responded with a range of 2807m, 11.2 battery voltage, and the release was in the 

vertical position.  The decision was then made to hold off until first light on Thursday, so that the 

mooring could be released and recovered in daylight. 

Thursday 11th September  

Mooring B – Recovery 

Mooring H – Recovery 

At 07:48 GMT permission was given by the bridge to attempt the recovery of Mooring B.  With the 

transducer over the side at 07:49 GMT the first release command was sent with a reply received, 

giving a release depth of 2754m, and a release OK confirmation.  At 07:51 GMT the release was 

ranged again, this time giving a depth of 2697m confirming that the mooring was on its way up.  By 

07:52 GMT the range was 2635m, and by 08:21 GMT the mooring was in sight and on the surface.   

By 09:10 GMT the mooring was completely recovered and inboard. 
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Throughout the day the weather and sea conditions continued to deteriorate, however the recovery of 

mooring H went ahead.  We arrived on station at 10:36 GMT with the ship hove-to an initial attempt 

to communicate with the release gave us a range of 2438m, with additional ranges of 2390m, 2293m, 

2101m confirming the mooring was on its way to the surface.  Additional ranges showed the mooring 

continuing to surface.  By 11:48 GMT the mooring had been fully recovered without incident. 

After the successful recovery of mooring H we steamed to Mooring Site A, once on station and hove 

too we attempted to communicate with the release, however the transducer was pulled aft reducing the 

deployed depth of the transducer.  After several attempts at trying to communicate with the release we 

were unable to do so, and decided to wait until weather and sea state conditions improved. 

Friday 12th September 

No science due to bad weather 

Ship hove-to in rough weather.  All on-deck science off until further notice.  Due to the bad weather 

mooring recovery operations were unable to continue so the day was spent cleaning and servicing all 

recovered instruments.  

Saturday 13th September 

Mooring A – Recovery  

Bad weather overnight and into the first part of Saturday stopped mooring recovery again.  However at 

11:30 GMT the ship was on station at Mooring Site A.  Attempted communication with the release 

started at 11:33 GMT with no reply from the release being received.  Further attempts were made at 

11:34 GMT, again with no response being received.   

It was then decided to send a blind release command at 11:35 GMT; however we still had no response 

from the release.   

In order to allow time for the release to operate and for the mooring to rise to the surface on the 

assumption that the release could have operated but failed to send a confirmation we held station for a 

period of an hour, during which time lookouts were in position on the bridge and around the ship.  

Additional commands were sent to the release to see if it was rising; however we received no reply 

from the release.   A decision was then made made to abandon the attempted recovery of Mooring A 

and to start to steam towards the next NIOZ mooring site.  No dragging operations were undertaken 

again due to weather and time restrictions. 
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Whilst steaming to the next mooring site all data was downloaded from the RCM DSU units, and 

saved for later use.  All data recorded by the instruments will remain on the DSU's as an additional 

backup.  After the end of the cruise all the recovered instruments will be returned NOC for post 

deployment calibration at the National Marine Facilities Sea Systems Calibration Laboratory.  

The table below summarises the data obtained from the recovered instrumentation used on the 

mooring array. 

 

Instrument Serial Number Detected Sampling Interval Number of Records 

RCM 522 60 Minutes 19009 

RCM 524 60 Minutes 19009 

RCM 525 60 Minutes 19009 

RCM 527 60 Minutes 19010 

RCM 9589 120 Minutes 9746 

RCM 10280 120 Minutes 51 

RCM 12293 120 Minutes 8965 
 

For the final mooring operation of the day we assisted in the NIOZ mooring deployment which 

commenced 00:54 GMT.  All of the mooring was deployed without any problems; the anchor was 

released from the ship at 03:25 GMT. 

Sunday 14th September 

NIOZ Mooring Recovery 

For the NIOZ mooring recovery we were on deck for 10:00 GMT to prepare the deck.  The ship was 

on station at 12:00 GMT.  All communication with the release was handled by the NIOZ mooring 

team.  Upon successful release the mooring was on surface and insight by around 12:40 GMT.  All of 

the mooring was successfully recovered without incident. 



 21 

2.2 Recovered Equipment 

With the successful recovery of Mooring B and Mooring H the following items were recovered: 

Mooring B [59° 20.005N, 40° 49.151W] 

Equipment Recovered Serial Number 

RCM 8 9598 

RCM 8 10280 

RCM 11 524 

RCM 11 525 

Acoustic Release AR861 311 

15 Glass N/A 

Mooring H [59° 26.333N, 41° 09.347W] 

Equipment Recovered Serial Number 

RCM 8 12293 

RCM 11 522 

RCM 11 527 

Acoustic Release AR861 360 

15 Glass N/A 
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2.3 Unrecoverable Moorings 

However, with the unsuccessful recovery of Mooring A, Mooring C and Mooring F the following 

instrumentation and hardware was not recovered.  All wire, links, shackles and recovery lines were 

also lost. 

Mooring A         [59° 33.169N, 33° 54.050W] 

Equipment Lost Serial Number 

RCM 8 8248 

RCM 11 514 

RCM 11 528 

Acoustic Release AR861 355 

13 Glass N/A 

Mooring C         [59° 11.104N, 40° 21.205W] 

Equipment Lost Serial Number 

RCM 8 6750 

RCM 8 9681 

RCM 11 524 

RCM 11 526 

Acoustic Release AR861 310 

13 Glass N/A 

Mooring F         [59° 47.075N, 42° 17.308W] 

Equipment Lost Serial Number 

45 inch ADCP Buoy N/A 

75 kHz ADCP 1767 

Argos Beacon 59619 / 733435 

RCM 8 12356 

RCM 8 12363 

Acoustic Release AR861 257 

5 Glass N/A 
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Both available time and weather conditions prevented dragging operations and the decision was made 

to abandon the moorings and to move on to the next station for either other mooring recoveries or 

CTD stations. 

Note added by SB at time of writing:  as mentioned in the Acknowledgements, by great good fortune 

and the considerable goodwill of two Scottish fishermen, the ADCP from Mooring F was recovered 

from Coll in 2009 and returned to NOCS. 

2.4 Instrument Problems 

Aanderaa RCM 8 SN 10280 only had 51 records, indicating a fault with the instrument.  A new 

battery was fitted to this instrument prior to it's deployment, however the instrument had stopped 

logging, so an initial conclusion was that a fault with the instrument had caused the battery to drain 

much faster than normal.  Tests will be carried out back at NOC to try and identify a fault. 

Aanderaa RCM 8 SN 12293 was recovered with a missing rotor, upon looking at the instruments 

recorded data it was found the rotor had come off during recovery, so no data was lost. 

2.5 NIOZ MMP Mooring Operations and Observations 

On recovery of the two MMP moorings, when the MMP instrument was downloaded it was seen that 

several hundred successful up and down profiles had been completed throughout the period of 

deployment, which was one year.  Whilst this instrument has not proved too successful on NOC 

moorings, it is thought that this could be due to the diameter of the mooring wire used.  On inspection 

of the NIOZ mooring they have used a wire with a diameter of 7mm with a plastic covering of 2mm 

thickness, brining the total diameter of the wire to 9mm mm and this seems to have given them 

excellent results with all deployments.  See below for further information. 

2.6 NIOZ mooring activities 

Femke de Jong, Sven Ober 

The three moorings that were deployed by the R.V. Pelagia in September last year were successfully 

recovered during this cruise;  positions are given in Table 2.1. One of the moorings, Loco 2-5, has 

been redeployed as mooring Loco 2-6. The mooring operations were carried out smoothly and safely 

by Lorendz Boom, the ship’s crew and the technicians of NOCS. 
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Mooring Action Date Lat Lon Echo Depth 

Loco 2-5 

Irm 5 

Loco 2-6 

Loco 3-5 

Recovery 

Recovery 

Deployment 

Recovery 

10 Sept ʼ08 

10 Sept ʼ08 

14 Sept ʼ08 

14 Sept ʼ08 

59° 11.91ʼ N 

59° 14.75ʼ N 

59° 11.91ʼ N 

59° 14.67ʼ N 

39° 31.87ʼ W 

39° 39.79ʼ W 

39° 31.91ʼ W 

36° 22.20ʼ W 

3045 m 

3036 m 

3053 m 

3036 m 

Table 2.1: Positions of the moorings serviced during RRS Discovery Cruise 332. 

The two Loco moorings are part of the “Long-term OCean Observations” project and have gathered 

hydrographic data from the Irminger Basin for the fifth consecutive year. The following instruments 

were contained in the moorings. A downlooking RDI Long Ranger Acoustic Doppler Current Profiler 

(ADCP) fitted in the upper float (at ~120 m depth) measuring at 20 min intervals. A McLane Moored 

Profiler (MMP) fitted with a FSI CTD, which measures daily profiles between 200 and 2400m depth. 

A second RDI Long Ranger ADCP at 2500 m depth, also measuring at 20 min intervals.  And a SBE 

Microcat CTD, recording every 5 min, was fitted to the cable near the bottom weight at 3050 m depth. 

Almost all the instruments in both moorings worked properly during the full deployment period.  The 

McLane Moored Profilers apparently experienced only slight troubles with bio-fouling on the cable 

this year and recorded full depth profiles for most of the deployment. 

Figure 2.1: One year of vertical salinity profiles for the moorings Loco 2-5 (left) and Loco 3-5 

(right). The colour scale ranges from 34.75  psu (dark blue) to 35.1 psu (dark red). 

The conductivity sensor on the Loco 2-5 MMP started to drift significantly during the second half of 

the deployment (Fig. 2.1), but this will be corrected with the help of the calibration CTDs taken by the 

Discovery. The sensor itself will be sent to the manufacturer for check, maintenance and calibration. 

Only one recovered instrument seemed to have has a serious problem during the deployment. The 

topmost ADCP in Loco 3-5 contained data with dates and settings that were inconsistent with its 
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programming for this particular mooring. The cause of this problem is as yet unclear and will be 

subject of analysis at NIOZ as soon as possible.  

Figure 2.2: Velocity vectors at 120 m depth from Loco 2-5 (top) and vertical profiles of the 

magnitude of velocity from Loco 2-5 (bottom, red colours are high velocities, blue colours are low 

velocities.). 

The remaining three ADCPs functioned properly. Their data records show mainly barotropic velocity 

profiles (Fig. 2.2) with tidal currents on short time scales. Several storms passed during winter forcing 

currents with velocities up to 45 cm/s (red areas Fig. 2.2). 

2.7 Sediment traps and BOBO-lander 

Santiago R. Gonzalez 

The sediment traps in the Irminger Sea and the BOBO lander on Gardar Drift were deployed within 

the VAMOC (Variability of Atlantic Meridional Overturning Circulation) programme;  a Netherlands, 

Norway, UK collaboration within RAPID. The main research questions are:  How did the Atlantic 

Meridional Overturning Circulation change on glacial-interglacial timescales, and did changes take 

place in the same way every time?  These changes can be derived from the bottom sediments.  Within 

this project the Royal NIOZ is mainly studying the present on-going sedimentation in relation to the 

present water circulation.  For this purpose moored sediment traps were deployed alongside the 

moored LOCO 2 CTD-profiler in the Irminger Sea.  These enable approximately biweekly 

observations of particle flux, both pelagic and resuspended.  With the successful recovery of the IRM-

5 sediment trap mooring on 10 September 2008, the mooring programme within VAMOC has, after 5 

successive years, come to an end.  Laboratory analyses of the samples at the NIOZ are ongoing and 

will include the new samples. 
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An important aspect of the VAMOC project is the study of drift deposits.  These are deposits with 

extremely high sedimentation rates of sediments that arrive more or less horizontally.  A modified 

BOBO-lander was deployed on Gardar Drift, in September 2007.  At the specific site present 

sedimentation rates amount up to 2.3 mm/yr (Boessenkool et al., GRL, 2007).  Sediments consist 

dominantly of resuspended lithogenous matter that is transported within the Iceland-Scotland 

Overflow waters.  The lander was fitted with three sediment traps and sensors to measure current 

velocity above the lander, temperature, salinity, turbidity and with a passive sampler for organic 

contaminants.  Its successful recovery from the very soft seafloor at 19 september 2008 and its 

functioning well during the very long deployment provide a tremendous boost to the VAMOC project. 

The collected sediments and measured data will be analysed at the NIOZ and are expected to provide 

new insights into the development of drift deposits and will be used for proxy calibration. 
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3 CTD 

3.1 CTD Operations 

Dougal Mountifield 

A total of 74 CTD casts excluding aborted casts were completed during the cruise. These included 3 

casts for calibration of the NIOZ MMP moorings. All casts used the 24-way stainless steel frame. 

There were no major operational issues with the CTD suite during the cruise. However one RDI 

WH300 LADCP (s/n 4908) failed due to flooding during cast 36 and a SBE43 dissolved oxygen 

sensor (s/n 43-0619) failed during cast 71. Failed instruments were replaced with spares prior to the 

subsequent cast. The deepest cast was to 3590m. 

3.1.1 CTD frame configuration 

The 24-way stainless steel frame configuration was as follows: 

• Sea-Bird 9/11 plus CTD System 

• Sea-Bird SBE-32 24 way rosette pylon on NMF 24 way frame 

• 24 by 20L custom OTE external spring water samplers 

• Sea-Bird SBE-43 Oxygen Sensor 

• Chelsea MKIII Aquatracka Fluorometer 

• Chelsea MKII Alphatracka 25cm path Transmissometer  

• Wetlabs BBRTD 660nm Backscatter Sensor 

• NMF LADCP Pressure Case Battery Pack 

• RD Instruments Workhorse 300 KHz Lowered ADCP (Downward-looking configuration) 

• RD Instruments Workhorse 300 KHz Lowered ADCP (Upward-looking configuration) 

• Benthos Altimeter 

• NMF 10kHz Pinger 

The pressure sensor was located 13cm below the bottom of the water samplers, and 120 cm below the 

top of the water samplers. 

3.1.2 Sea-Bird CTD configuration 

The Sea-Bird CTD configuration for the stainless steel frame was as follows: 

• SBE 9 plus Underwater unit s/n 09P-19817-0528 

• Frequency 0—SBE 3P Temperature Sensor s/n 03P-4381 (primary) 

• Frequency 1—SBE 4C Conductivity Sensor s/n 04C-3160 (primary) 
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• Frequency 2—Digiquartz Temperature Compensated Pressure Sensor s/n 73299 

• Frequency 3—SBE 3P Temperature Sensor s/n 03P-4380 (secondary) 

• Frequency 4—SBE 4C Conductivity Sensor s/n 04C-3153 (secondary) 

• SBE 5T Submersible Pump s/n 05T-3609 

• SBE 5T Submersible Pump s/n 05T-3607 

• SBE 32 Carousel 24 Position Pylon s/n 32-31240-0423 

• SBE 11 plus Deck Unit s/n 11P-24680-0587  

The auxiliary A/D output channels were configured as below: 

• V0 --- SBE 43 Oxygen s/n 43-0619 (43-0709 from cast 72 onwards) 

• V1 --- Unused – obsolete oxygen temperature 

• V2 --- Benthos Altimeter s/n 874 

• V3 --- Chelsea MKIII Aquatracka Fluorometer s/n 88163 

• V4 --- Unused – usually used for 2PI PAR 

• V5 --- Unused – usually used for 2PI PAR 

• V6 --- Wetlabs BBRTD backscatter s/n 168 

• V7 --- Chelsea MKII Alphatracka 25cm path Transmissometer s/n 2642-002 

The additional self-logging instruments were configured as follows: 

• RDI Workhorse 300 KHz Lowered ADCP (downward-looking master configuration) s/n 4275 

• RDI Workhorse 300 KHz Lowered ADCP (upward-looking slave configuration) s/n 4908 

• RDI Workhorse 300 KHz Lowered ADCP (spare) s/n 1855 used as upward-looking slave from cast 

37 onwards. 

The LADCPs were powered by the NMF battery pack s/n WH001. Battery pack WH005 was available 

as a spare, but was not used. 

3.1.3 Wetplug Y-cables 

NMF Seabird 9+ CTD systems are in the process of being converted to ‘wet-pluggable’ style 

underwater connectors. This should improve the reliability of the systems, most notably in cold water. 

A reduction in the frequency of sensor spiking events is expected. The conversion to wet-pluggables 

also makes the Break-Out Box (BOB) pressure case redundant using Y-cables instead. During the first 

CTD cast it became obvious that the labelling of the Y-cable pairs was transposed. This transposes the 

even and odd analogue channels. The CON file was edited to swap V2 with V3 and V6 with V7. 

Hence the altimeter, fluorimeter, BBRTD and transmissometer are not on the historically used 

channels. Please see the con file for clarification. The old con file was deleted and the new one copied 
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over the existing CTD001.con. Hence there is only one con file is the same for all casts. The wetplug 

connectors proved to be very reliable with no major spiking events. No connectors required pulling for 

servicing during the cruise. 

3.1.4 Discovery CTD Winch Wire Jump 

During the early part of the upcast on cast CTD013 whilst hauling at constant speed, a rumbling noise 

was heard coming from the winch room. The winch operator stopped the winch at 2289m and went to 

investigate. The wire had jumped out of the traction winch groove on the bottom sheave of the 

outboard load side and was running on the bolt heads alongside the traction sheave. The wire has been 

deformed by running on the bolt heads and some wear had occurred to the bolt heads. Once the CTD 

was eventually recovered, the CTD winch was no longer used. Notably the wire jumped on the 

outboard side of the winch whilst hauling. The outboard load was 1.5T and the sea-state was very 

calm. The Chief Engineer and the E.T.O completed some static deck load tests and confirmed the 

correct operation and calibration of the CTD load cell. Following instruction from NOC, no further 

tests were attempted. 

3.1.5 Commissioning of Portable Hydrographic Winch (PHW) 

The hangar top PHW was commissioned after the failure of the ship’s CTD winch. Most of this was 

straightforward, but the deck cable run for CTD telemetry between the winch and the main lab could 

not be located. There is a junction box in the main lab and a fixed cable run terminating in another 

junction box in the funnel. No documentation could be located on board. It was only after receiving a 

detailed description from NOC of the location of the funnel junction box that it could be found. By 

this time a coax cable had been run from the main lab along the hangar top to the winch. After a few 

casts this cable was damaged in the slip ring junction box by strain causing the braid to cut into the 

core insulation. The coax was re-terminated in the junction box with a better arrangement for strain 

relief. No further problems were experienced with the deck cable. 

After a few casts a birds cage occurred during haul. The scrolling was reset and no further problems 

occurred until one of the last casts were the scrolling stopped completely, it was found that the clutch 

had disengaged due to missing springs. Once again the scrolling was reset and no further problems 

occurred. The springs are to be fitted during the port-call at Govan. 

Use of the winch started by limiting haul and veer speeds and limiting the number of bottles fired. 

Records of outboard loads were recorded on the CTD rough log sheets. As confidence was gained in 

the winch, speeds were increased until 60m/min became the norm. Also the number of bottles fired 

was increased until all 24 were used. The main operational limitation of the PHW is the long wire run 

from the winch through the goal posts to the first 90 degree sheave. In swell this run can become very 
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slack whilst veering in the first few hundred metres of water. Hence speeds were limited to 20m/min 

until a sufficient weight of wire had been deployed to reduce the slack generation. Because of this it is 

estimated that CTD casts took approximately a half-hour longer than using the ship’s CTD winch. 

3.1.6 Removal of CTD Stabilising Fin 

Following stored torque in the PHW cable causing a cat’s-paw to foul a sheave after cast CTD014, the 

wire had to be cropped and re-terminated. The fin on the CTD was subsequently removed to assess 

whether this would improve package rotation. The secondary T&C sensors and the associated pump 

were refitted on the 9+ underwater unit. Hence prior to cast CTD015 secondary sensors were fin 

mounted, but 9+ mounted from CTD015 onwards. 

An initial look at LADCP compass data from several casts indicates the following:  

With the fin fitted, the CTD rotates steadily and slowly on the downcast, and likewise on the up-cast. 

It is likely that there are no net rotations. However just below and most obviously above the surface, 

several rotations occur that are not subsequently taken out. Notably these rotations occur in a very 

short unconstrained length of wire. 

Without the fin fitted, the CTD rotates steadily and quickly on the downcast, and rather sporadically 

on the upcast. It is difficult to determine visually whether there are net stored turns by the time the 

CTD is held at 5-10m prior to recovery. However the rotations just below and just above the surface 

are notably less than with the fin on. 

One explanation could be that near surface swell, and or wind could be affecting the finned CTD 

frame more than the finless. Another point to note is that due to the location of instruments on the 

CTD frame, the frame was not well balanced. It had a cant of perhaps 10-15 degrees. This may have 

created a windmill effect with the fin fitted. 

Regardless, it was found that as far as net torque in the CTD wire goes, the situation was better 

without the fin on. 

Further detailed analysis of LADCP compass data will be undertaken. 

3.1.7 CTD Wire Terminations 

An existing recent load-tested mechanical termination was used at the start of the cruise, but with a 

new wet-pluggable electrical splice. When the PHW was commissioned for the repeat of station 13, 

the 8mm wire had a new termination fitted, and a new electrical splice. Following the cat’s-paw after 

station 14, a new mechanical termination and electrical splice was made. The PHW wire had to be un-
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rigged to allow the deck pull testing of the CTD winch for load cell assessment. To allow the wire to 

be pulled up, the mechanical termination had to be removed. However, the electrical pig-tail fouled 

and the electrical splice was damaged. A new electrical splice was made once the mechanical 

termination had been refitted. During recovery of the CTD package at the end of cast 72 damage was 

seen to the outer armour on the CTD wire. About 8m of wire was removed and a new mechanical 

termination and electric splice was made. 

Hence during the cruise four mechanical terminations and associated load-tests were completed. Four 

electrical splices were also made. No electrical splice failures occurred in the water, and no CTD 

telemetry errors occurred. 

3.1.8 Sensor Failures 

The only CTD sensor failure during the cruise was the dissolved oxygen sensor SBE43-0619.  This 

failed very early during the downcast of CTD071. Unusually this also had an effect on both 

conductivity channels, but none on either temperature or pressure. The DO sensor is an analogue 0-5V 

sensor, whereas the T, C and P sensors are frequency devices, hence the failed sensor was probably 

pulling down the instrument power supply and the conductivity cells may be particularly sensitive to 

supply voltage. A repeat of this station was made as CTD073. A new con file was created for the new 

DO sensor (s/n 43-0709) with suffix ‘_spareDO’. Details of both oxygen sensors used are contained in 

the configuration file, see Appendix 1 to Section 3. 

3.1.9 Altimetry 

The Benthos altimeter worked very reliably, obtaining a good bottom return within 80m of the bottom 

in low sediment areas and 35m from the bottom when a lot of sediment was present. The NMF pinger 

was also used both as a backup and as a double check on proximity to the bottom.  The pinger was 

visualised using the EA500 PES display. In calm seas the CTD was worked to around 10m from the 

bottom. This was increased to approximately 15m from the bottom in swell. During shelf stations in 

large currents, it was not possible to work the CTD close to the bottom. Rapid shallowing of 200-800 

m was observed in the matter of minutes on occasion. 

3.1.10 Further Documentation 

A sensor information sheet ‘D332 Sensor Information.doc’ and calibration & instrument history sheets 

were included in the main cruise archive in electronic format (Adobe Acrobat & Microsoft Word). 

Original copies of all log sheets were supplied to the PSO in addition to the copies that NMF will 

retain and also supply to BODC. Electronic copies of all instrument work histories and calibration 

sheets were also supplied.  See also Appendix 3 to Section 3. 
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3.2 CTD Data Processing 

Elizabeth Kent, Katherine Gowers, Rosalind Pidcock 

As far as possible, the processing route for CTD data followed that used on RRS Discovery 309 in 

August/September 2006 (see D309 cruise report:  Bacon, 2006). 

The CTD package comprised the following instruments:  Seabird 911+ CTD with dual temperature 

and conductivity sensors;  Seabird carousel type SBE 32;  RDI 300kHz workhorse ADCPs, one 

upward looking and one downward looking;  Chelsea instruments Alphatracka (transmissometer) and 

Aquatracka (fluorometer);  Wetlabs light back sensor type BBRTD;  Benthos altimeter type 915T;  

twenty four 20 litre Ocean Test Equipment water bottles.  The Seabird primary T/C duct had an inline 

seabird oxygen sensor type SBE 43 fitted and was mounted on the stabilising vane for casts 1-14. The 

first cast (14) with the Lebus Portable Hydrographic Winch showed excessive rotation of the package 

and subsequently the vane was removed, necessitating attaching of the primary sensors to the main 

body of the CTD.  74 full casts were completed (see Station List below). 

Station List: 

Station 
number 

Code Date 2008 
JDAY HHMMSS 

Latitude Longitude 

001 S 233 175411 052 35.629 ˚W 047 30.895 ˚N 

001 B 233 180237 052 35.669 ˚W 047 30.875 ˚N 

001 E 233 181937 052 35.734 ˚W 047 30.894 ˚N 

002 S 234 164703 049 00.068 ˚W 051 00.038 ˚N 

002 B 234 173025 048 59.762 ˚W 050 59.536 ˚N 

002 E 234 181543 048 59.353 ˚W 050 59.069 ˚N 

003 S 235 233937 055 32.270 ˚W 053 40.544 ˚N 

003 B 235 234506 055 32.179 ˚W 053 40.542 ˚N 

003 E 236 000415 055 31.898 ˚W 053 40.570 ˚N 

004 S 236 014533 055 26.317 ˚W 053 47.752 ˚N 

004 B 236 015659 055 26.341 ˚W 053 47.809 ˚N 

004 E 236 021709 055 26.321 ˚W 053 47.840 ˚N 

005 S 236 045850 055 14.738 ˚W 053 59.220 ˚N 

005 B 236 050543 055 14.674 ˚W 053 59.232 ˚N 

005 E 236 052205 055 14.540 ˚W 053 59.267 ˚N 

006 S 236 084525 055 00.960 ˚W 054 13.022 ˚N 

006 B 236 085149 055 00.953 ˚W 054 12.953 ˚N 

006 E 236 091141 055 00.940 ˚W 054 12.730 ˚N 

007 S 236 113814 054 45.263 ˚W 054 29.304 ˚N 

007 B 236 114727 054 45.210 ˚W 054 29.254 ˚N 

007 E 236 120641 054 45.391 ˚W 054 29.149 ˚N 
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Station 
number 

Code Date 2008 
JDAY HHMMSS 

Latitude Longitude 

008 S 236 142545 054 29.281 ˚W 054 45.809 ˚N 

008 B 236 143554 054 29.239 ˚W 054 45.877 ˚N 

008 E 236 145733 054 29.078 ˚W 054 46.051 ˚N 

009 S 236 163619 054 17.048 ˚W 054 56.718 ˚N 

009 B 236 164745 054 16.926 ˚W 054 56.723 ˚N 

009 E 236 171822 054 16.638 ˚W 054 56.761 ˚N 

010 S 236 184118 054 07.637 ˚W 055 06.092 ˚N 

010 B 236 190152 054 07.177 ˚W 055 06.089 ˚N 

010 E 236 194307 054 06.497 ˚W 055 06.116 ˚N 

011 S 236 204524 054 03.032 ˚W 055 11.148 ˚N 

011 B 236 211334 054 02.491 ˚W 055 11.088 ˚N 

011 E 236 221047 054 01.817 ˚W 055 10.782 ˚N 

012 S 237 000709 053 56.790 ˚W 055 15.364 ˚N 

012 B 237 005447 053 56.358 ˚W 055 15.114 ˚N 

012 E 237 022148 053 56.124 ˚W 055 14.582 ˚N 

013 S 238 083241 053 48.278 ˚W 055 25.349 ˚N 

013 B 238 094255 053 47.326 ˚W 055 25.633 ˚N 

013 E 238 113349 053 45.689 ˚W 055 25.649 ˚N 

014 S 238 133336 053 36.618 ˚W 055 37.117 ˚N 

014 B 238 150105 053 36.145 ˚W 055 37.388 ˚N 

014 E 238 165401 053 35.989 ˚W 055 37.938 ˚N 

015 S 239 041658 053 24.278 ˚W 055 51.101 ˚N 

015 B 239 053120 053 24.451 ˚W 055 51.408 ˚N 

015 E 239 071037 053 24.787 ˚W 055 51.753 ˚N 

016 S 239 094228 053 07.202 ˚W 056 07.152 ˚N 

016 B 239 110732 053 06.426 ˚W 056 07.063 ˚N 

016 E 239 130629 053 05.798 ˚W 056 07.235 ˚N 

017 S 239 162924 052 40.561 ˚W 056 32.458 ˚N 

017 B 239 175005 052 40.338 ˚W 056 32.588 ˚N 

017 E 239 194049 052 40.474 ˚W 056 32.597 ˚N 

018 S 239 230154 052 14.160 ˚W 056 56.869 ˚N 

018 B 240 003204 052 13.847 ˚W 056 56.387 ˚N 

018 E 240 025725 052 13.782 ˚W 056 56.111 ˚N 

019 S 240 083835 051 47.501 ˚W 057 22.625 ˚N 

019 B 240 095817 051 47.279 ˚W 057 22.792 ˚N 

019 E 240 120717 051 46.453 ˚W 057 22.484 ˚N 

020 S 240 151900 051 19.897 ˚W 057 47.932 ˚N 

020 B 240 164414 051 20.567 ˚W 057 47.740 ˚N 

020 E 240 200111 051 22.476 ˚W 057 47.084 ˚N 

021 S 240 231619 050 54.011 ˚W 058 12.784 ˚N 
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Station 
number 

Code Date 2008 
JDAY HHMMSS 

Latitude Longitude 

021 B 241 005259 050 54.048 ˚W 058 12.436 ˚N 

021 E 241 033455 050 54.968 ˚W 058 12.336 ˚N 

022 S 241 090922 050 25.078 ˚W 058 38.386 ˚N 

022 B 241 102617 050 25.751 ˚W 058 38.156 ˚N 

022 E 241 123843 050 26.855 ˚W 058 37.982 ˚N 

023 S 241 161756 049 56.125 ˚W 059 03.446 ˚N 

023 B 241 174649 049 56.972 ˚W 059 03.299 ˚N 

023 E 241 200317 049 57.635 ˚W 059 02.983 ˚N 

024 S 241 230933 049 28.859 ˚W 059 28.622 ˚N 

024 B 242 005743 049 28.769 ˚W 059 28.256 ˚N 

024 E 242 033059 049 28.906 ˚W 059 27.946 ˚N 

025 S 242 074857 049 09.086 ˚W 059 44.574 ˚N 

025 B 242 090053 049 09.074 ˚W 059 44.888 ˚N 

025 E 242 105713 049 08.831 ˚W 059 45.343 ˚N 

026 S 242 130616 048 53.436 ˚W 059 58.831 ˚N 

026 B 242 143017 048 53.774 ˚W 059 58.662 ˚N 

026 E 242 161301 048 53.772 ˚W 059 58.349 ˚N 

027 S 242 180838 048 40.973 ˚W 060 10.261 ˚N 

027 B 242 191132 048 42.564 ˚W 060 10.540 ˚N 

027 E 242 205542 048 46.204 ˚W 060 11.335 ˚N 

028 S 242 224142 048 35.268 ˚W 060 18.580 ˚N 

028 B 243 001132 048 38.473 ˚W 060 19.278 ˚N 

028 E 243 022134 048 42.258 ˚W 060 20.029 ˚N 

029 S 243 044645 048 32.014 ˚W 060 19.951 ˚N 

029 B 243 053929 048 34.021 ˚W 060 20.245 ˚N 

029 E 243 071121 048 37.139 ˚W 060 21.661 ˚N 

030 S 243 092543 048 28.901 ˚W 060 20.558 ˚N 

030 B 243 094756 048 29.775 ˚W 060 20.969 ˚N 

030 E 243 103533 048 31.579 ˚W 060 21.554 ˚N 

031 S 243 113408 048 27.578 ˚W 060 22.100 ˚N 

031 B 243 115737 048 28.374 ˚W 060 22.458 ˚N 

031 E 243 123213 048 29.357 ˚W 060 22.808 ˚N 

032 S 243 141247 048 22.459 ˚W 060 26.537 ˚N 

032 B 243 141955 048 22.484 ˚W 060 26.580 ˚N 

032 E 243 143545 048 22.585 ˚W 060 26.672 ˚N 

033 S 243 174343 048 13.361 ˚W 060 33.859 ˚N 

033 B 243 174849 048 13.381 ˚W 060 33.875 ˚N 

033 E 243 175829 048 13.423 ˚W 060 33.960 ˚N 

034 S 243 185448 048 10.327 ˚W 060 36.366 ˚N 

034 B 243 190025 048 10.440 ˚W 060 36.415 ˚N 
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number 

Code Date 2008 
JDAY HHMMSS 

Latitude Longitude 

034 E 243 190931 048 10.800 ˚W 060 36.464 ˚N 

035 S 244 192515 050 24.882 ˚W 058 38.536 ˚N 

035 B 244 204520 050 24.578 ˚W 058 38.712 ˚N 

035 E 244 231411 050 24.206 ˚W 058 38.669 ˚N 

036 S 245 022646 049 29.574 ˚W 058 27.082 ˚N 

036 B 245 034455 049 28.402 ˚W 058 27.032 ˚N 

036 E 245 055515 049 26.748 ˚W 058 26.760 ˚N 

037 S 245 103648 048 59.812 ˚W 057 53.868 ˚N 

037 B 245 121336 048 59.917 ˚W 057 53.891 ˚N 

037 E 245 143508 049 1.175 ˚W 057 54.167 ˚N 

038 S 245 184050 048 29.993 ˚W 057 21.064 ˚N 

038 B 245 195041 048 29.581 ˚W 057 21.109 ˚N 

038 E 245 214951 048 29.131 ˚W 057 21.624 ˚N 

039 S 246 015819 047 59.726 ˚W 056 47.933 ˚N 

039 B 246 031940 047 59.624 ˚W 056 47.844 ˚N 

039 E 246 051411 047 59.170 ˚W 056 47.664 ˚N 

040 S 246 065919 047 29.946 ˚W 056 48.028 ˚N 

040 B 246 081526 047 29.878 ˚W 056 47.927 ˚N 

040 E 246 100212 047 29.893 ˚W 056 47.910 ˚N 

041 S 246 120152 046 59.861 ˚W 056 47.941 ˚N 

041 B 246 133035 047 00.016 ˚W 056 48.348 ˚N 

041 E 246 152353 047 00.085 ˚W 056 48.570 ˚N 

042 S 246 183309 046 00.031 ˚W 056 48.017 ˚N 

042 B 246 193909 045 59.976 ˚W 056 48.185 ˚N 

042 E 246 212950 046 00.229 ˚W 056 48.604 ˚N 

043 S 247 005907 044 59.534 ˚W 056 48.066 ˚N 

043 B 247 022627 044 58.240 ˚W 056 48.228 ˚N 

043 E 247 041810 044 57.313 ˚W 056 48.538 ˚N 

044 S 247 071822 044 0.173 ˚W 056 48.066 ˚N 

044 B 247 082451 044 0.577 ˚W 056 48.080 ˚N 

044 E 247 100706 044 0.826 ˚W 056 48.286 ˚N 

045 S 247 131209 043 18.280 ˚W 057 06.080 ˚N 

045 B 247 142307 043 18.371 ˚W 057 06.278 ˚N 

045 E 247 155014 043 18.236 ˚W 057 06.257 ˚N 

046 S 247 184143 042 37.081 ˚W 057 23.693 ˚N 

046 B 247 194220 042 37.279 ˚W 057 23.540 ˚N 

046 E 247 212547 042 37.302 ˚W 057 22.815 ˚N 

047 S 248 003703 041 55.375 ˚W 057 41.474 ˚N 

047 B 248 015657 041 55.187 ˚W 057 41.338 ˚N 

047 E 248 034025 041 54.134 ˚W 057 41.249 ˚N 
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number 

Code Date 2008 
JDAY HHMMSS 

Latitude Longitude 

048 S 248 063102 041 13.291 ˚W 057 59.227 ˚N 

048 B 248 073103 041 13.124 ˚W 057 58.909 ˚N 

048 E 248 091134 041 12.270 ˚W 057 58.404 ˚N 

049 S 248 121609 040 32.076 ˚W 058 16.951 ˚N 

049 B 248 132949 040 32.121 ˚W 058 16.356 ˚N 

049 E 248 150723 040 31.755 ˚W 058 15.919 ˚N 

050 S 248 175529 039 49.950 ˚W 058 35.012 ˚N 

050 B 248 185359 039 49.883 ˚W 058 34.842 ˚N 

050 E 248 202959 039 49.847 ˚W 058 34.744 ˚N 

051 S 248 232821 039 08.789 ˚W 058 52.676 ˚N 

051 B 249 005838 039 07.705 ˚W 058 52.547 ˚N 

051 E 249 025501 039 05.857 ˚W 058 52.390 ˚N 

052 S 249 053453 038 26.713 ˚W 059 10.520 ˚N 

052 B 249 063452 038 25.470 ˚W 059 10.386 ˚N 

052 E 249 081545 038 23.897 ˚W 059 10.032 ˚N 

053 S 249 110844 037 45.550 ˚W 059 28.356 ˚N 

053 B 249 122614 037 44.922 ˚W 059 28.150 ˚N 

053 E 249 142325 037 44.876 ˚W 059 28.163 ˚N 

054 S 249 171715 038 35.759 ˚W 059 36.563 ˚N 

054 B 249 181411 038 35.236 ˚W 059 36.481 ˚N 

054 E 249 194831 038 35.197 ˚W 059 37.085 ˚N 

055 S 249 223425 039 23.246 ˚W 059 41.174 ˚N 

055 B 249 235005 039 22.435 ˚W 059 40.939 ˚N 

055 E 250 020138 039 21.623 ˚W 059 40.799 ˚N 

056 S 250 044002 040 13.051 ˚W 059 46.079 ˚N 

056 B 250 053049 040 13.030 ˚W 059 46.057 ˚N 

056 E 250 071325 040 12.834 ˚W 059 45.781 ˚N 

057 S 250 164805 040 46.016 ˚W 059 49.188 ˚N 

057 B 250 180333 040 45.766 ˚W 059 49.278 ˚N 

057 E 250 194314 040 45.711 ˚W 059 48.934 ˚N 

066 S 252 134007 043 07.118 ˚W 059 57.099 ˚N 

066 B 252 135308 043 07.450 ˚W 059 56.804 ˚N 

066 E 252 141015 043 08.072 ˚W 059 56.480 ˚N 

065 S 252 152258 042 50.345 ˚W 059 58.044 ˚N 

065 B 252 152656 042 50.363 ˚W 059 57.995 ˚N 

065 E 252 154020 042 50.507 ˚W 059 57.907 ˚N 

064 S 252 171500 042 30.299 ˚W 059 59.719 ˚N 

064 B 252 171938 042 30.294 ˚W 059 59.719 ˚N 

064 E 252 173612 042 30.316 ˚W 059 59.633 ˚N 

063 S 252 184647 042 11.189 ˚W 059 57.722 ˚N 



 37 

Station 
number 

Code Date 2008 
JDAY HHMMSS 
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063 B 252 185817 042 11.270 ˚W 059 57.631 ˚N 

063 E 252 192847 042 11.341 ˚W 059 57.460 ˚N 

062 S 252 201939 042 06.325 ˚W 059 57.187 ˚N 

062 B 252 205024 042 06.419 ˚W 059 57.157 ˚N 

062 E 252 214200 042 06.318 ˚W 059 56.780 ˚N 

061 S 252 225246 042 02.504 ˚W 059 56.688 ˚N 

061 B 252 234416 042 02.524 ˚W 059 56.531 ˚N 

061 E 253 012601 042 03.294 ˚W 059 56.124 ˚N 

060 S 253 031304 041 51.938 ˚W 059 55.535 ˚N 

060 B 253 035039 041 52.669 ˚W 059 55.016 ˚N 

060 E 253 050404 041 53.375 ˚W 059 54.056 ˚N 

059 S 253 074551 041 31.500 ˚W 059 53.684 ˚N 

059 B 253 082546 041 31.757 ˚W 059 53.593 ˚N 

059 E 253 094441 041 31.919 ˚W 059 53.346 ˚N 

058 S 253 111235 041 12.798 ˚W 059 51.910 ˚N 

058 B 253 121107 041 13.456 ˚W 059 51.742 ˚N 

058 E 253 133601 041 13.638 ˚W 059 51.276 ˚N 

067 S 257 204433 039 32.125 ˚W 059 11.233 ˚N 

067 B 257 215414 039 33.185 ˚W 059 10.891 ˚N 

067 E 257 233117 039 34.006 ˚W 059 10.549 ˚N 

068 S 258 151523 036 22.465 ˚W 059 14.703 ˚N 

068 B 258 160940 036 22.223 ˚W 059 14.610 ˚N 

068 E 258 172146 036 22.302 ˚W 059 14.952 ˚N 

069 S 258 215217 034 56.105 ˚W 059 11.999 ˚N 

069 B 258 230622 034 56.417 ˚W 059 11.386 ˚N 

069 E 259 010014 034 56.573 ˚W 059 10.805 ˚N 

070 S 259 063612 032 59.820 ˚W 059 01.086 ˚N 

070 B 259 072202 032 59.380 ˚W 059 00.964 ˚N 

070 E 259 084912 032 58.871 ˚W 059 00.475 ˚N 

071 S 266 100755 011 31.958 ˚W 057 28.186 ˚N 

071 B 266 112059 011 31.344 ˚W 057 27.930 ˚N 

071 E 266 121346 011 30.970 ˚W 057 28.146 ˚N 

072 S 266 192333 012 14.095 ˚W 057 30.498 ˚N 

072 B 266 202513 012 13.739 ˚W 057 29.821 ˚N 

072 E 266 214327 012 13.864 ˚W 057 28.991 ˚N 

073 S 267 032148 011 32.011 ˚W 057 29.070 ˚N 

073 B 267 042542 011 31.447 ˚W 057 29.165 ˚N 

073 E 267 052714 011 30.935 ˚W 057 29.230 ˚N 

074 S 267 071735 011 5.094 ˚W 057 27.265 ˚N 

074 B 267 080006 011 5.478 ˚W 057 27.510 ˚N 
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074 E 267 084246 011 5.575 ˚W 057 27.797 ˚N 

Note: S, B and E denote the start, bottom and end of the cast respectively. 

Our first CTD station was an occupation of the Canadian “Station 27” just outside St. John’s;  station 

2 was a deep test;  stations 3 to 34 were AR7W;  stations 35 to 52 were the outside of the “box”;  

AR7E began with station 53 off Cape Farewell. 

3.2.1 Data Processing using the SeaBird Software on the data-logging PC 

Following each cast the logging was stopped and the data saved to the deck unit PC.  The logging 

software produces four files per CTD cast in the form D332nnn with the following extensions: .hex 

(raw data file), .con (data configuration file), .bl (contained record of bottle firing locations), and .hdr 

(a header file). 

These files were manually backed up onto the UNIX network by copy and paste to the file location 

/data32/d332/ctd/raw.  The raw data files were then processed using SeaBird’s own CTD data 

processing software, SBE.DataProcessing-Win32: v.7.18.  SeaBird CTD processing routines were 

used as follows.  

DatCnv: The Data Conversion routine, DatCnv, read in the raw CTD data file (D332nnn.hex).  

This contained the raw CTD data in engineering units output by the SeaBird hardware on 

the CTD rosette.  DatCnv requires a configuration file that defines the calibrated CTD 

data output so that it is in the correct form to be read into the pstar format on the UNIX 

system.  The output file (D332nnn.cnv) format was set to binary and to include both up 

and down casts. A second output file (D309nnn.ros) contained bottle firing information, 

taking the output data at the instant of bottle firing. The numbers of bottles fired is 

recorded in the  

AlignCTD: This program read in D332nnn.cnv and was set to shift the Oxygen sensor relative to the 

pressure data by 5 seconds compensating for lags in the sensor response time. Input and 

output files are the same. 

WildEdit: A de-spiking routine, the input and output files again were D332nnn.cnv. The data was 

scanned twice calculating the standard deviation of a set number of scans, setting values 

that are outside a set number of standard deviations (sd) of the mean to bad data values. 

On this cruise, the scan range was set to 500, with 2 sd’s on the first pass and 10 sd’s on 

the second.  
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CellTM: The effect of thermal ‘inertia’ on the conductivity cells was removed using the routine 

CellTM.  It should be noted that this routine must only be run after WildEdit or any other 

editing of bad data values as this routine uses the temperature variable to adjust the 

conductivity values, and if spikes exist in the former they are amplified in the latter. The 

algorithm used was: 
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 where α, the thermal anomaly amplitude was set at 0.03 and β, the thermal anomaly time 

constant was set at 1/7 (the SeaBird recommended values for SBE911+ pumped system). Δ 

is the sample interval (1/24 second), dt is the temperature (t) difference taken at a lag of 7 

sample intervals. ccor,i is the corrected conductivity at the current data cycle (i), cmeas,i  the 

raw value as logged and ctmi  is the correction required at the current data cycle, ∂c∂t is a 

correction factor that is a slowly varying function of temperature deviation from 20 °C. 

Translate: Finally, the D332nnn.cnv file was converted from binary into ASCII format so that it could 

be read into pstar format.  

The .cnv and .ros files were then copied to /data32/cd332/ctd/raw so that data processing could be 

continued using PEXEC routines. 

3.2.2 Data Processing on the UNIX system 

The following c-shell UNIX scripts were used to process the data.  Scripts were modified from 

versions used on D309 to allow for 3 digit cast numbers, although this eventually proved to be 

unnecessary. Latitude and longitude are now available as part of the CTD data stream. 

ctd0: This script read in the SeaBird processed ascii file (.cnv) and converted it into pstar format, 

also setting header information. Information from the header was extracted from the SeaBird 

ascii file where possible.  The latitude and longitude of the ship when the CTD was at the 

bottom were typed in manually and added to the header, although later in the cruise this 

information was omitted and the position read in from latitude and longitude values in the 
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data stream.  The output file contained the data averaged to 24hz.  The output file was 

ctd332nn.24hz.  

ctd1: This script operated on the .24hz file and used the PEXEC program pmdian to remove 

residual spikes from all of the variables.  The data were then averaged into a 1hz file using 

pavrge.  Absent data values in the pressure data were interpolated across using pintrp. 

Salinity, potential temperature, sigma0 and sigma2 (referenced to 2000 db) were calculated 

using peos83 and finally a 10 second averaged file was also created.  The output files were 

ctd332nn.1hz and ctd332nn.10s respectively. 

ctd2: This script carried out a head and tail crop of the .1hz file to select the relevant data cycles 

for just the up and down casts of the CTD.  Before running ctd2, the .1hz files were 

examined in mlist to determine the data cycles for i.) the shallowest depth of the CTD rosette 

after the initial soaking at 10m, ii.) the greatest depth, and iii.) the last good point before the 

CTD is removed from the water.  These values were then manually entered at the correct 

screen prompts in ctd2.  The data were then cut out with pcopya and the files ctd332nn.ctu 

created.  Finally, the data were averaged into two decibar pressure bins creating the files 

ctd332nn.2db. Position information was extracted for the start data cycle of the downcast file 

and written to the header. 

ctd3: The script ctd3 was used to produce plots from the .ctu files. 

fir0: This script converted the .ros file into pstar format.  It then took the relevant data cycles from 

the .10s averaged file (secondary output from ctd1) and pasted it into a new file fir332nn 

containing the mean values of all variables at the bottle firing locations. 

samfir: This script created the file, sam332nn containing selected variables from fir332nn so that the 

results from the bottle sampling analysis could be added.  Modification to the standard 

processing was needed to convert the oxygen variable from ml/l output from the SeaBird 

system to µmol/kg. Further modifications were required on D332 as not all bottles were fired 

on all casts due to the problems encountered with the winch. The changes involved inserting 

a bottle number variable into the file, reading in the number of each bottle fired from the .bl 

file (this information isn't in the .ros file) then using ppaste with a control variable rather 

than assuming that the record numbers in the donor and recipient files match. 

Once salinity bottle data had been processed and excel files were created for each ctd. The following 

scripts were then run: 
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sal0: Read in the sample bottle excel files, that had been saved as tab delimited text only files, and 

converted some PC unique characters into UNIX friendly characters.  Then sal0 created pstar 

format files with pascin: output file sal332nn.bot 

sal1: (previously passal). Pasted bottle file (sal332nn.bot) values into sam332nn files. 

sal2: (previously botcond). Calculated conductivity for bottle salinities using peos83 and primary 

temperature. 

SeaBird claim that the correct in-situ calibration for their conductivity sensors is a linear function of 

conductivity with no offset.  Plots of conductivity difference against conductivity added support to this 

and therefore parith and allav were used to calculate the mean square of the conductivity values and 

the mean product of the bottle and CTD conductivity values; to solve thus, 

 

! 
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and 

! 

cond2
bot

 is the sample bottle conductivity determined with the secondary temperature variable. 

ctdcondcal: This script was used to calibrate the .ctu and .2db files and re-calculate salinity, 

potential temperature and sigma0/sigma2.  A and B were set to 1.00004361 and 

0.99998671 respectively. 

Residual conductivity differences were -0.0001 for both sensors with standard deviations of 0.0010 for 

the primary (cond2) and 0.0011 for the secondary (cond) conductivity sensor (see figure 3.1).  

Statistics quoted are for samples at 250db or deeper and following removal of all differences greater 

than abs(0.004) to remove outliers. 
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Figure 3.1:  CTD primary (black, cond2) and secondary (red, cond) post-calibration conductivity 

differences (bottle minus CTD). 

3.3 Salinometry 

Dougal Mountifield 

One Guildline Autosal 8400A and one 8400B salinometer were available for use having serial 

numbers 56747 and 65764. Unit s/n 65764 was used for all samples with unit s/n 56747 being 

reserved as a spare. 

Both salinometers were located in the Constant Temperature (C.T.) lab and operated at 24°C bath 

temperature in 24°C ambient lab temperature. The CTD and underway samples were taken and run 

using the Softsal PC by the science party.  

3.4 CTD Oxygen Sensor Calibration 

Elizabeth Kent 

Stage 1:  to complete the station sample files (sam332nnn) containing the upcast CTD sensor data 

collected as each bottle was fired, by adding to the file the measured bottle oxygen concentration 

determined by chemical analysis from the separate data files.  Bottle oxygen text files are converted to 

pstar files using exec oxy0.  Fixing temperatures and oxygen concentrations for primary samples and 

duplicate samples (tfixa, botoxya, tfixb, botoxyb) are pasted into the station sample 

files using exec oxy1 (previously pasoxy).  Sample oxygen concentrations in µmol/l are converted to 
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concentrations in µmol/kg by calculating sample seawater density at the time of fixing using the 

relevant tfix temperature variable and CTD salinity in exec oxy2 (previously botoxy). 

Stage 2:  replacing the upcast CTD oxygen data with the “good” downcast values.  The oxygen sensor 

suffers from a hysteresis effect that offsets upcast oxygen concentration from downcast (clear water) 

oxygen concentration. This was done by tracing water masses between the up and down casts along 

density, potential temperature (and/or pressure) surfaces using Pexec program pbotle within script 

pbotle.exec, which also calculates the (bottle minus downcast CTD) oxygen differences described 

below. Figure 3.2 shows the bottle minus sensor differences for both the pbotle-derived values and the 

upcast measured values as a function of station number. 

Stage 3:  the differences between bottle oxygen concentration (Obot) and equivalent downcast CTD 

oxygen concentration (OdCTD) were calculated and, after the removal of outliers, regressed as a linear 

function of pressure (equation O1).  Taking Obot to represent the true value of seawater oxygen 

concentration and assuming this fit adequately explains the remainder of the data points, equation O1 

can be employed to calibrate the downcast CTD oxygen profiles to “true” oxygen concentrations. 

 

! 

O
bot
"O

dCTD
= a + bP  (O1) 

where a and b are offset and slope parameters of the linear fit.  Various other functional forms were 

investigated on D298, including (e.g.) higher-order pressure polynomials, and the incorporation of 

oxygen concentration as a parameter, but the simple form shown above proved to be the most efficient 

form of calibration. 

For stations 1-70 parameters were: a = 16.662 ; b = 0.001558. The fit was performed after selection to 

include only (bottle-sensor) values between 10 and 30 µm/kg and for differences between the upcast 

and the pbotle-derived values to be less than 10. 

For stations 72-74 there was not enough data to perform a separate calibration of the new oxygen 

sensor, however there was no evidence of significantly different behaviour to the previous sensor. The 

same calibration parameters were applied to these final 3 stations as to the previous stations. Figure 

3.3.  
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Figure 3.2:  Bottle - sensor oxygen differences (µmol/kg) as a function of D332 station number. 

Black & red: downcast sensor values interpolated to upcast using pbotle; Green and blue: upcast 

sensor values. Black and green are for the main bottle oxygens, red and blue are the duplicates. Note 

the change of sensor after failure on station 71. 

 

Figure 3.3:  Bottle - sensor oxygen differences (µmol/kg) as a function of pressure. Green points 

are uncalibrated data for stations 1-70, pink for stations 72-74. Red shows the differences after 

application of the calibration for stations 1-70, blue shows differences for stations 72-74. 
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Appendix 1 to Section 3:  SeaBird sensor types, serial numbers and calibration dates 

Date: 08/20/2008 
 
Instrument configuration file: NO_PAR_0528.con 
 
Configuration report for SBE 911plus/917plus CTD 
------------------------------------------------ 
 
Frequency channels suppressed : 0 
Voltage words suppressed      : 0 
Computer interface            : RS-232C 
Scans to average              : 1 
NMEA position data added      : Yes 
NMEA depth data added         : No 
NMEA time added               : No 
NMEA device connected to      : deck unit 
Surface PAR voltage added     : No 
Scan time added               : Yes 
 
1) Frequency 0, Temperature 
 
   Serial number : 03P-4381 
   Calibrated on : 28 May 2008 
   G             : 4.42348689e-003 
   H             : 6.44714876e-004 
   I             : 2.25407335e-005 
   J             : 1.94949471e-006 
   F0            : 1000.000 
   Slope         : 1.00000000 
   Offset        : 0.0000 
 
2) Frequency 1, Conductivity 
 
   Serial number : 04C-3160 
   Calibrated on : 11 April 2008 
   G             : -1.04273433e+001 
   H             : 1.43276583e+000 
   I             : -1.40115694e-003 
   J             : 1.85833637e-004 
   CTcor         : 3.2500e-006 
   CPcor         : -9.57000000e-008 
   Slope         : 1.00000000 
   Offset        : 0.00000 
 
3) Frequency 2, Pressure, Digiquartz with TC 
 
   Serial number : 0528 
   Calibrated on : 8 April 2008 
   C1            : -5.087539e+004 
   C2            : 2.199664e-002 
   C3            : 1.589010e-002 
   D1            : 3.721700e-002 
   D2            : 0.000000e+000 
   T1            : 3.011152e+001 
   T2            : -2.857091e-004 
   T3            : 4.528990e-006 
   T4            : -5.484500e-011 
   T5            : 0.000000e+000 
   Slope         : 0.99983000 
   Offset        : -1.48410 
   AD590M        : 1.282870e-002 
   AD590B        : -9.075590e+000 
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4) Frequency 3, Temperature, 2 
 
   Serial number : 03P-4380 
   Calibrated on : 28 May 2008 
   G             : 4.37168057e-003 
   H             : 6.54126629e-004 
   I             : 2.31636698e-005 
   J             : 1.73538404e-006 
   F0            : 1000.000 
   Slope         : 1.00000000 
   Offset        : 0.0000 
 
5) Frequency 4, Conductivity, 2 
 
   Serial number : 04C-3153 
   Calibrated on : 11 April 2008 
   G             : -1.03236967e+001 
   H             : 1.32204184e+000 
   I             : -3.64745984e-004 
   J             : 9.69340165e-005 
   CTcor         : 3.2500e-006 
   CPcor         : -9.57000000e-008 
   Slope         : 1.00000000 
   Offset        : 0.00000 
 
6) A/D voltage 0, Oxygen, SBE 43 [casts 1-71] 
 
   Serial number : 43-0619 
   Calibrated on : 13 June 2008 
   Equation      : Murphy-Larson 
   Coefficients for Owens-Millard:  
   Soc           : 3.6760e-001 
   Boc           : 0.0000 
   Offset        : -0.5025 
   Tcor          : 0.0010 
   Pcor          : 1.35e-004 
   Tau           : 0.0 
   Coefficients for Murphy-Larson:  
   Soc           : 3.67600e-001 
   Offset        : -5.02500e-001 
   A             : -2.54820e-003 
   B             : 2.17030e-004 
   C             : -4.06960e-006 
   E             : 3.60000e-002 
   Tau           : 2.07000e+000 
 
6) A/D voltage 0, Oxygen, SBE 43 [casts 72-74] 
 
   Serial number : 43-0709 
   Calibrated on : 28 May 2008 
   Equation      : Murphy-Larson 
   Coefficients for Owens-Millard:  
   Soc           : 3.6760e-001 
   Boc           : 0.0000 
   Offset        : -0.5025 
   Tcor          : 0.0010 
   Pcor          : 1.35e-004 
   Tau           : 0.0 
   Coefficients for Murphy-Larson:  
   Soc           : 4.29400e-001 
   Offset        : -4.95700e-001 
   A             : -1.33110e-003 
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   B             : 1.51160e-004 
   C             : -3.22560e-006 
   E             : 3.60000e-002 
   Tau           : 1.58000e+000 
 
7) A/D voltage 1, Free 
 
8) A/D voltage 2, Fluorometer, Chelsea Aqua 3 
 
   Serial number : 088163 
   Calibrated on : 20 March 2008 
   VB            : 0.076200 
   V1            : 1.972200 
   Vacetone      : 0.125600 
   Scale factor  : 1.000000 
   Slope         : 1.000000 
   Offset        : 0.000000 
 
9) A/D voltage 3, Altimeter 
 
   Serial number : 874 
   Calibrated on : September 2000 
   Scale factor  : 15.000 
   Offset        : 0.000 
 
10) A/D voltage 4, Free 
 
11) A/D voltage 5, Free 
 
12) A/D voltage 6, Transmissometer, Chelsea/Seatech/Wetlab CStar 
 
    Serial number : 161-2642-002 
    Calibrated on : 4 September 1996 
    M             : 22.9952 
    B             : -0.5749 
    Path length   : 0.250 
 
13) A/D voltage 7, User Polynomial 
 
    Serial number : BBRTD-168 
    Calibrated on : 10 October 2006 
    Sensor name   : WETLabs Backscatter 
    A0            : -0.00023613 
    A1            : 0.00298900 
    A2            : 0.00000000 
    A3            : 0.00000000 
 

Appendix 2 to Section 3: CTD processing summary 

 
Script Input Output Notes 

SeaBird 
processing 

D332nnn.hex 
D332nnn.hdr 
D332nnn.bl 
D332nnn.ros 

D332nnn.cnv Processing would have been much easier if 
oxygen was output directly in µmol/kg in addition 
to the ml/l chosen on D332.  
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Script Input Output Notes 

ctd0 ctd332nnn.cnv ctd332nnn.24hz Reads in raw data from SeaBird file, converts to 
Pstar and sets some header information. Asks for 
position information but on D332 this was 
available in the raw files from the NMEA stream 
and was inserted automatically as part of script 
ctd2. 

ctd1 ctd332nnn.24hz ctd332nnn.1hz 
ctd332nnn.10s 

Some automatic QC then averages to 1hz and 10s. 

ctd2 ctd332nnn.1hz ctd332nnn.ctu 
ctd332nnn.2db 

Requests datacycle numbers for start, bottom and 
end of cast, .ctu file is full cast, .2db file is 
downcast only (binned on pressure after sorting).  

fir0 D332nnn.ros 
D332nnn.cnv 
ctd332nnn.10s 

fir332nnn Reads in ctd information at the bottle firing times 
from the .ros file. The .cnv file is used to set some 
header information. Times only are taken from the 
.ros file and the ctd sensor data is merged on from 
the .10s file. 

samfir d332sam.master 
fir332nnn 
D332nnn.bl 
twentyfour 
ctd332nnn.24hz 

sam332nnn Generates a sample file for a cast by copying the 
blank sam.master file. On D332 some casts did 
not fire all bottles so modifications were required 
to ensure that the samples were assigned to the 
correct positions. This required the pasting of the 
numbers 1-24 from a pstar file (twentyfour) 
containing 1 variable called Botnum. This then 
allowed ppaste to be used with a control variable 
of bottle number (available only in the .bl file not 
in the .ros file used to generate the firing file). The 
.24hz file is used for header information. ctd 
sensor information comes from the .10s file via 
fir332nnn. ctd oxygen was converted from ml/l to 
µmol/kg (better to output these units directly from 
the SeaBird processing. 

sal0 sal332nnn.txt sal332nnn.bot Reads bottle salinities in from text file (converted 
from excel spreadsheet). 

sal1 sal332nnn.bot 
sam332nnn 

sam332nnn Pastes bottle salinities into cast sample file. 

sal2 sam332nnn sam332nnn.ccal Calculates conductivities from bottle salts using 
ctd temperatures. 

oxy0 oxy332nnn.txt oxy332nnn.bot Reads bottle oxygens in from text file (converted 
from excel spreadsheet). Oxygens in µmol/l. 

oxy1 oxy332nnn.bot 
sam332nnn 

sam332nnn Pastes bottle oxygens into cast sample file. 

oxy2 sam332nnn sam332nnn.oxy2 Converts bottle oxygens from µmol/l to µmol/kg. 
To do this need density at oxygen fixing 
temperature.  
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Script Input Output Notes 

oxy3 sam332nnn.oxy2 
ctd332nnn.2db 

sam332nnn.ocal Runs pexec program pbotle to associate upcast 
oxygen values affected by hysteresis to the less-
affected downcast values. Various issues with this 
on D332. Oxygens from the .2db file were 
converted to µmol/kg in a temporary file. pbotle 
will not work with absent data so the sample file 
was "datpiked" to remove absent data, then 
required padding back to 24 datacycles after 
pbotle had been run. This was done using a script 
padfile which repeatedly appends a blank file with 
the same variables as the sample file until the file 
has 24 data cycles. 

nut0 nut332nnn.txt nut332nnn.bot Reads bottle nutrients in from text file (converted 
from excel spreadsheet).  

nut1 nut332nnn.bot 
sam332nnn 

sam332nnn Pastes bottle nutrients into cast sample file. 

 

On D332 calibrations were performed on the files ctd332nnn.2db. This resulted in the .2db files 

having different numbers of variable and variable names prior to, and subsequent to, calibration. This 

procedure is not recommended. In future it would be better to produce calibrated files with a unique 

file suffix, indicating that calibration had taken place. 



 50 

Appendix 3 to Section 3:  Sensor Information 

RRS Discovery cruise 332.  Updated on board at end of D332.  Checked by Dougal Mountifield, 

24/09/2008. 

SENSOR / 
SYSTEM TYPE  SERIAL No  Service / Cal  Cruise Notes  

WH-LADCP  1855   Spare Used as uplooker after failure of 4908  

WH-LADCP  4275   Master (upwelling)  

WH-LADCP  4908   Slave (downwelling) Failed returned to NOC  

SBE3 Temperature  4381 28/05/08 + 6mths  Primary (frame)  

SBE3 Temperature  4380 28/05/08 + 6mths  Secondary (fin mounted)  

SBE3 Temperature  4592 28/05/08 + 6mths  Spare (Ti)  

SBE4 Conductivity  3160 11/04/08 + 6mths  Primary (frame) returned for cal post cruise  

SBE4 Conductivity  3153 11/04/08 + 6mths  Secondary (fin mounted) returned for cal 
post cruise  

SBE4 Conductivity  3272 13/06/08 + 6mths  Spare (Ti)  

SBE43 Oxygen  0619 13/06/08  Primary (frame), A/D voltage 0 Failed, 
returned NOC  

SBE43 Oxygen  0709 28//05/08  Spare Fitted to CTD after failure of 0619  

SBE5 Pump  3609   Primary (frame)  

SBE5 Pump  3607   Secondary (fin mounted)  

SBE5 Pump  2279   Spare  

SBE9+  19817-0528   Main (frame)  

Digiquartz 
pressure sensor   

0528 08/04/08+ 3 yrs  Main (frame)  

SBE9+ (Ti)  39607-0803   Spare (Ti)  

Digiquartz 
pressure sensor   

0803 27/05/08 + 3 yrs  Spare  

SBE11+ deck unit  29817-0495   Spare  

SBE11+ deck unit  24680-0587   Main  

SBE32 carosel  32-31240-0423   Main  

SBE32 carosel (Ti)  32-34173-0493   spare (Ti)  

Salinometer  65764 25/09/07 + 1 yrs  Main – returned NOC at end of cruise 

Salinometer  56747 18/03/08 + 1 yrs  Spare – returned NOC at end of cruise 

Altimeter - Benthos 
PSA/916T  

874   Main, A/D voltage 2  

Altimeter - Tritech 
PA200  

6196 112522   Spare  

Altimeter - Tritech 
PA200  

6198 118171   Spare  

Sonardyne beacon  234002 001 16/05/08  Spare  

Sonardyne beacon  234002 002 06/03/08  Main  

Pinger 10kHz  B7   Main  
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Pinger 10kHz  B8   Spare  

Transmissometer, 
Chelsea Alpha 
Mk2  

2642-002   Main, A/D voltage 7  

Transmissometer, 
Chelsea Alpha 
Mk2  

161048 28/05/08  Spare  

Fluorometer, 
Chelsea Aqua 3  

88195   Spare  

Fluorometer, 
Chelsea Aqua 3  

88163 20/03/08  Main, A/D voltage 3  

24x 10l OTE water 
bottles  

1A-24A     

24x 10l OTE water 
bottles  

1B-24B     

24x 20l OTE water 
bottles  

     

24x 20l OTE water 
bottles  

     

WetLabs BBRTD  167 13/05/08 + 2yrs  Spare  

WetLabs BBRTD  168 10/10/06 + 2yrs  Main, A/D voltage 6  
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4 LOWERED ADCP 

Dougal Mountifield and Sheldon Bacon 

As noted in section 3.1, the following three LADCPs were used during D332: 

• RDI Workhorse 300 KHz Lowered ADCP (downward-looking master configuration) s/n 4275 

• RDI Workhorse 300 KHz Lowered ADCP (upward-looking slave configuration) s/n 4908 

• RDI Workhorse 300 KHz Lowered ADCP (spare) s/n 1855 used as upward-looking slave from cast 

37 onwards. 

The LADCPs were powered by the NMF battery pack s/n WH001. Battery pack WH005 was available 

as a spare, but was not used. 

The LADCP data were processed after the cruise at NOCS. 

4.1 Set-up 

Prior to each deployment the BBtalk terminal session was logged to a file named with the format 

CTDxxxm.txt for the down-looking master and CTDxxxs.txt for the up-looking slave, where 

xxx was the CTD cast number. 

Then the following commands were sent: 

PS0 – to check that the deck cables were connected to the correct unit 

TS? – time set, offset from GPS clock noted and time reset if greater than a few seconds. 

RS? – to check flashcard space and re ErAse if necessary 

PA and PT200 – pre-deployment and built in self tests 

A few minutes before the CTD was deployed the command files (see below) were sent and BBtalk 

file logging stopped. Deployment and end of pinging times were recorded on the rough log sheets. 

After pinging was stopped, the number of deployments in the recorder was queried with RA? And 

the most recent file downloaded in the default RDI-xxx.000 name format. The file was then 

renamed to the form CTDxxxm.000 for the master and CTDxxxs.000 for the slave. All 

filenames were noted on the rough log sheets. 

The battery was fully charged at 58V until it was drawing 100mA between each cast. Every few 

casts the battery was vented. 

For casts 8, 9, 14, 33 and 54 there is no slave data due to the command file being sent with the 

unit at 115,200 baud rate causing a communications buffer overflow in workhorse unit. 
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During CTD036 the up-ward looking slave LADCP s/n 4908 failed. The unit was dismantled and 

evidence of a low pressure leak via the transducer potting was found. The receiver board had salt 

water on it and severe corrosion. The unit was replaced with s/n 1855 from CTD037 onwards. 

Down-looking Master Command File: 

PS0 
CR1 
CF11101 
EA00000 
EB00000 
ED00000 
ES35 
EX11111 
EZ0011111 
TE00:00:01.00 
TP00:01.00 
LD111100000 
LF0500 
LN016 
LP00001 
LS1000 
LV250 
LJ1 
LW1 
LZ30,220 
SM1 
SA001 
SW05000 
CK 
CS 

Up-looking Slave Command File: 

PS0 
CR1 
CF11101 
EA00000 
EB00000 
ED00000 
ES35 
EX11111 
EZ0011111 
TE00:00:01.00 
TP00:01.00 
LD111100000 
LF0500 
LN016 
LP00001 
LS1000 
LV250 
LJ1 
LW1 
LZ30,220 
SM2 
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SA001 
ST0 
CK 
CS 

4.2 LADCP Processing 

LADCP data were processed using the Lamont-Doherty Earth Observatory software (version 7b, 

2002;  Visbeck, 2002).  At the time of writing, all D332 LADCP data reside in this NOCS Unix 

directory: 

/noc/ooc/cfer/d332_sea/ladcp/proc 

in folders for each station, named D332nnn (nnn = station number).  The data live in Matlab files 

called D332nnn{run_letter}.save.mat.  The variable {run_letter} labels the six passes made through 

the data, the labels for which are p1 to p6.  Plot files (postscript) corresponding to the printed figures 

in the paper folders are called D332nnn{run_letter}.ps.  A description of the six passes follows.  The 

CTD data were the .1hz station files, and navigation information was from bestnav – the abnv3321 file 

with 10 s timebase. 

Pass 1 (p1):  Not for use.  QC only, inspecting both uplooker (Slave) and downlooker (Master), with 

no CTD, no navigation, no VM-ADCP, no bottom-track.  Determined that uplooker was either on 3 

beams, or broken, or (after replacement) still of questionable quality.  All subsequent passes use the 

downlooker only. 

Pass 2 (p2):  Not for use.  Run includes CTD and navigation but with barotropic calculation disabled. 

Pass 3 (p3):  For use.  Run includes CTD, navigation and bottom-track, with barotropic calculation 

enabled.  All stations (1-74) good, but warnings for 31 (increased error due to shear / inversion 

difference), and 56 (7 minute bottom time difference between CTD and LADCP). 

Pass 4 (p4):  For use.  Repeat of p2 but with barotropic calculation enabled (run includes CTD and 

navigation). All stations good, time warning on 56 repeated. 

Pass 5 (p5):  Possibly for use (although probably no good).  Run includes CTD, navigation, bottom-

track and VM-ADCP, but with barotropic calculation from navigation disabled (obeying instructions 

in script).  Station 1, no VM-ADCP data;  repeat of station 56 time warning;  no warnings issued for 

29 and 30 but profiles poor.  All others good. 

Pass 6 (p6):  For use.  Repeat of p5 but with barotropic calculation enabled.  Run includes CTD, 

navigation, bottom-track and VM-ADCP.  All stations good (but repeat of time warning on 56). 
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Summary: 

The processing method for inclusion of VM-ADCP creates one mean station VM-ADCP profile.  The 

LADCP is only near the surface for a relatively short period at the start and end of most casts, so there 

is a potential mismatch between the two data sources, therefore I don’t much trust the runs including 

VM-ADCP (p5, p6).  My personal preference is therefore: 

Probable best:  p3 (CTD, nav, bottom-track) 

Second best: p4 (CTD, nav) 

Third best: p6 (CTD, nav, bottom-track, VM-ADCP) 

Of the others, p1 and p2 are QC only and of no scientific use.  p5 does not include explicit barotropic 

calculation from navigation and is probably not useful.  The advantage of withholding the VM-ADCP 

data is that it provides an independent check of the LADCP data. 

Subsequently, tidal velocities were removed from the p3 version of the D332 LADCP data using 

predictions from the Oregon State University's TOPEX/Poseidon Global Inverse Solution TPXO7.1 

(Egbert, 1994, 2002).  Consult Dr. N. P. Holliday (NOCS) for further information. 



 56 

5 MOVING VESSEL PROFILER 

Roz Pidcock, John Allen, Dougal Mountifield 

5.1 Overview 

The ODIM Brooke Ocean MVP300-1700 Moving Vessel Profiler (MVP) system has recently been 

completed overhauled and updated. The bearings, sheaves, brake actuator, hydraulic pump and boom 

rotator motor have been replaced. New control limit switches and control cables have been fitted. The 

powerpack motor and winch hydraulic motor have been overhauled and new brake linings fitted. The 

system features a new hydraulic control system and new control box and topside interface unit and all 

firmware and software has been updated and installed on new industrial PCs. Also a new design of 

tow-rope has been fitted that should have a longer lifetime than previously experienced.  

One 8.5 hour tow was completed. The tow was conducted at 4kts. Profiling started on the East 

Greenland shelf off Cape Farewell heading eastwards, and ended in deep off-shelf water profiling to 

300 m. Until off the shelf, the maximum depth was set manually every few casts to work 30-50m from 

the bottom. There were no problems, but spiking from the cable counter during haul was observed. 

Also there was one cast which automatically aborted with an emergency stop. It is thought that this 

may also be a cable counter issue. A spare cable counter is carried in the spares kit for the MVP and 

will be fitted before the next use. A full suite of instruments including the fish multiplexer is also now 

carried in the spares kit along with 2 complete spare sets of tow-fish instrument cables. 

The small Multi Sensor Free Fall Fish (MSFFF-I) was used with the following instrumentation: 

AML Micro CTD s/n: 7027 

AML Micro DO s/n: 7517 

Chelsea Minitracka II Flurorimeter s/n: 175222 

Satlantic OCR-507 ICSW Irradiance s/n: 136 

Satlantic OCR-507 R10W Radiance s/n: 074 

PML Tilt/Roll s/n: PMLTR02 (P01) 

All these sensors were interfaced using the underwater Data Telemetry Modem (DTM) multiplexer 

s/n: 10113. 

Most of the tow was conducted at night, so it is unlikely that there will be any useful light data. 

However the Satlantic serial messages are logged into the raw file mixed with the multiplexer data and 

a separate data extractor program is required before it can be used with Satlantic software. Please 

contact NMF-SS for this software if required. 
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Table 5.1: Summary of MVP tow. 

Tow 
no. 

start 
date 

start 
time 

stop 
date 

stop 
time duration distance run 

  GMT  GMT  start (km) end (km) total (km) 
Tow 1 30/08/08 21:38 31/08/08 06:14 0 d 8 h 36 m 2235 2282 47 

5.2 Data 

The MVP carried an AML micro CTD (Conductivity, Temperature, Depth) instrument, a Chelsea TG 

MiniTracka II fluorimeter, an AML micro DO oxygen sensor with an Idronaut sensing head (does not 

include temperature sensor) and two Satlantic (OCR507) light sensors (one PAR and one TIR).  See 

above for further details. 

The data were recovered, in near real time, through the Brooke Ocean Technology (BOT) software on 

a PC in the main lab.  A series of files are created after each down/up cycle.  The principal file 

containing most of the data had the suffix ‘.m1’.  Eight other files were written, most duplicating some 

of the data streams in the ‘.m1’ file but in a specific format for feeding into other instruments.  The 

PAR and TIR data were not in the ‘.m1’ file and only seem to be present in a raw counts instrument 

file.  No attempt was made to read the PAR or TIR data in during the cruise, but the raw files were 

archived with all the other cruise data for later reference if required. 

With the exception of the ‘user variables’ channels, the data in the ‘.m1’ files are in engineering units 

‘calibrated’ using pre-set coefficients stored in the BOT software.  The fluorimeter and the oxygen 

sensor were connected to the ‘user variables’ channels, ANLG1 and ANLG2 respectively.  The 

sensors sample at 25 Hz, and each data file (.m1) is time stamped with GPS time in the header only.   

Owing to the short duration of this cruise, no attempt was made at in-situ calibration of either 

fluorescence or oxygen on board; however an initial calibration was made for salinity, this is described 

later. 

5.3 Processing Steps 

The processing followed that developed by JTA on D306 and D309 in the summer of 2006.  The PC 

files were transferred to the ship’s UNIX computer system by ftp over the ship’s ethernet. 

mvpexec0 

This read the ‘.m1’ data files, 59 files in total, e.g D332_0000.m1 – D332_0059.m1, into PSTAR 

format files.  Having a file number ‘0000’ caused mvpexec0 to fall over and it was easier to rename 

this file number ‘0100’ rather than effect a rather tortuous fix to the script.  The start time was 
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extracted from the header information and placed in the PSTAR headers, then a relative 25Hz time 

variable for each PSTAR file was created.  Variables were calibrated as appropriate, and a temperature 

difference variable was created.  The data were despiked and 1Hz averaged files were created.  Finally 

the script appended the 1Hz files into a 1Hz survey file, e.g. mvp33201.raw. 

mvpexec1 

The main steps to mvpexec1 were firstly pcalc to apply a temperature lag correction (see below) 

which, having experimented with a number of corrections, turned out to be 0.28.  Secondly peos83 

was run to calculate potential temperature, salinity and density. 

No editing of surface spiking was required as the MVP controls had been set such that the vehicle 

never got closer than 2-3 metres from the surface even allowing for the overshoot in the profile, and 

the tow was made in very calm water conditions.  Further editing for spikes, and salinity offsets due to 

fouling of the conductivity cell was carried out by inspection with plpred, none appeared necessary at 

this stage. 

5.4 Temperature Correction 

It is necessary to make a correction for the small delay in the response of the CTD temperature sensor 

for two reasons.  Firstly, to obtain a more accurate determination of temperature for points in space 

and time. But, more importantly to obtain the correct temperature corresponding to conductivity 

measurements, so that a sensible calculation of salinity can be made. 

A lag in temperature is apparent in the data in two ways.  There is a difference between up and down 

profiles of temperature (and hence salinity) because the time rate of change of temperature has 

opposite signs on the up and down casts.  The second manifestation is the “spiking” of salinity as the 

sensors traverse maxima in the gradients of temperature and salinity.  The rate of ascent and descent of 

the MVP is greater (up to ~ 6 ms-1 during descent and at the beginning of ascent) than that of a 

lowered CTD package, thus the effects of the temperature lag are more pronounced.  Thus, the 

following correction was applied to the temperature during mvpexec1 before evaluating the salinity 

T
corr

= T
raw

+! ."T  

where !T  is defined above and ! is constant. 

The best value of !  was chosen so as to minimise the difference between up and down casts and noise 

in the salinity profile.  The best value was found to be 

! 

" = 0.28 second, rather larger than the values 

of 0.15 and 0.12 used on D309 and D306 respectively. 
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5.5 Salinity calibration 

During the MVP tow, 13 surface salinity samples were taken from the ship’s non-toxic water supply at 

the tap on the thermosalinograph house in the water bottle annex.  Comparison of salinities from these 

surface samples and the MVP salinity over the 4-6 dbar pressure range for the duration of the tow 

indicated that the MVP salinity was ~ 0.1 low. 

The next stage in verifying/determining the temperature and salinity calibration for the MVP involved 

creating a scatter T/S (temperature vs. salinity) plot for the CTDs completed on the reverse section 

into the Greenland coast (end of WOCE line AR7W) immediately prior to the MVP section – i.e. 

CTDs 027-034: and comparing this with a similar scatter plot for the MVP data.  Matching up distinct 

water mass points in these plots showed a good calibration for temperature but again an offset of +0.1 

in salinity (Figure 5.1). 

 

Figure 5.1:  T/S scatter plots, MVP data (red dots and x-axis notation) offset +0.1 and plotted over 

CTD data (blue dots). 
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Finally the thermosalinograph (TSG) was calibrated for this 9 hour period to the salinity bottle 

samples (

! 

TSG = TSG + 2.933) and then these data were compared to the MVP salinity over the 4-6 

dbar pressure range.  This also supported the MVP salinity being low by 0.1, however this maybe little 

better than the accuracy of this short term calibration of the TSG. 

Therefore a calibration of the MVP was made for salinity such that: 

! 

S = S(MVP) + 0.1 

however, over this short tow, with few inter-calibration points available, the error in this calibration 

should be considered to be around the 0.02-0.03 level. 

5.6 Early results 

The MVP tow was made at high spatial resolution (~ 1 km per up/down cast) at a vessel speed of ~ 4 

knots.  The contoured parameters, created after gridding the MVP data in 8 metre by 1 km bins 

(pgrids), are presented in figure 5.2.  The dominant feature is the tongue of high temperature water at 

80-100 m water depth.  The fluorescence and oxygen signals suggest this water has been subducted 

from the surface, probably further south, which may indicate significant instability of the strong west 

Greenland current. 

The oxygen data indicates that there may be problems with this kind of oxygen sensor on such a tow 

vehicle or with its position in the tow vehicle.  Although generally matching the fluorescence signal, 

the vertical streaking suggests a large effective time lag.  The position of the oxygen sensor, hidden 

away in the rear of the tow vehicle, may entirely account for this.  The strange looking increase in 

implied oxygen concentration over the whole water depth towards the end of the tow (deeper water) 

also looks suspiciously like an impending instrument failure, possibly membrane failure. 
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Figure 5.2: Contour plots of temperature (a), salinity (b), density (c), fluorescence (d) and oxygen 

(e) for the MVP tow across the Greenland shelf towards the Labrador Basin.  Salinity has had the 

initial calibration described in the text applied.  Fluorescence and oxygen remain, however, in raw 

instrument units. 
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6 NAVIGATION 

Roz Pidcock, Leighton Rolley, John Allen 

With the gradual replacement of the old RVS Level ABC system complete, all navigation streams 

were logged on D332 by the Ifremer TECHSAS system. Position, gyro-heading and ship’s attitude 
information were transferred from the National Marine Facilities (NMF) TECHSAS data stream to 

PSTAR files daily and processed as described below. These data provide not only important 

information about the ship’s movements but are also required to correct initial estimates of water 

velocity made by the vessel-mounted Acoustic Doppler Current Profiler (ADCP) for the ship’s 

direction, speed and attitude. This, in effect, removes the ship’s motion from the measurements, 

allowing accurate water velocities to be obtained.  

The extensive NMFSS scripts to read the netcdf format TECHSAS file streams have been developed 

alongside the implementation of the system and most errors and wrinkles have been worked out.  

However, a residual problem with the reading precision of position data (nclistit) was noticed on D328 

and still persisted on D332. It is recommended that this be addressed as soon as practical, an extra 2 

characters should be sufficient.  The number of characters for position is constant, and currently if 

degrees of latitude or longitude are less than ten then the precision is 10-6 (i.e. ~ 10 cm resolution – 

and indeed this appears to be the limit of the netcdf data), however where degrees of latitude or 

longitude exceed 10 then the precision read reduces to 10-5 (i.e. only ~ 1 m resolution), and should the 

longitude exceed 100 degrees then the precision read would decrease to 10-4 (i.e. ~ 10 m resolution !!). 

6.1 Ship’s position and navigation data 

The ship’s primary navigational systems were the GPS Trimble 4000 and the Ashtec GPS G12. The 

former provides the most accurate position, determined on previous cruises to be ~1.0 m. Figure 6.1 

shows the positional accuracy of the GPS 4000 system whilst in port. As a result of the nclistit issue, 

as described above, the resolution in both latitude and longitude is 1m. Despite being less than ideal, 

this was sufficient to enable a calculation of ship's velocities to better than 1 cms-1, and therefore 

below the instrumental limits of the RDI ADCP systems. 
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Figure 6.1. Positional data in port at the beginning of the cruise for the gps4000 system 

Trimble GPS 4000 and Ashtec GPS G12 data (converted to RVS format as gps_4000 and gps_g12) 

were transferred and processed daily using the steps detailed below. The NMFSS bestnav combined 

(10 second) clean navigation process was operational on D332, using the GPS 4000 system as its 

primary navigation source. Data were transferred daily from the NMF bestnav file to the PSTAR 

absolute navigation file abnv3321 for use in PSTAR processing. 

The ship’s gyro instrument is the most reliable direction indicator on the ship and provides essential 

information for referencing the ADCP velocities to earth coordinates. Gyro data were transferred daily 

using the script gyroexec0.  

The PSTAR execs used for processing navigation data streams were: 

navexec0: transferred the NMF bestnav data stream to PSTAR format daily. Ship’s velocities and 

distance run were calculated from position calculated after appending to the master file abnv3321 

gps4exec0: transferred the NMF TECHSAS gps_4000 data stream to PSTAR format. 

Data with pdop (position dilution of position) outside the range 0-7 should have been removed. 

However, these data are not transferred through TECHSAS. This needs to be fixed. Further edits were 

made to remove outliers and gaps interpolated before the file was appended to the master file 

gp433201 and distance run calculated. A 30 second average file gp433201.30sec was also created.  
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gpsg12exec0: identical to gps4exec0 but transferred the NMF gps_g12 data stream to PSTAR format 

and no 30 second file is created. 

gyroexec0: transferred data from the NMF gyronmea stream to PSTAR format. Headings outside the 

range 0-360° were deleted and the file appended to the master gyr33201 file. 

It was discovered that an fdiff and pedita sequence in the gp4exec0 script to remove duplicate times 

was being immediately reversed by a subsequent pintrp command. Duplicate times tend not to be too 

problematic. However, should it be decided in the future that duplicate times should be taken out 

completely, they can be removed by applying the datpik command to remove data where the outcome 

of fdiff (deltat) is between -0.5 and 0.5. Pintrp can then be run to interpolate over any real time gaps. 

6.2 TECHSAS Logging Problems 

During the cruise, problems were experienced with the TECHSAS primary logging system that caused 

it to hang for periods of a few seconds to up to a few hours. Large dropouts of 3.6 hrs, 2.2 hrs, 3.3 hrs 

and 1.6 hrs occurred whilst we were still alongside or just leaving port in St Johns, (see computing and 

instrumentation section of this report for details).  During such dropouts, gaps were experienced in the 

gps_4000, gps_g12 and adu2 (3-D Ashtech) data streams.  

This was solved by stitching data from the secondary TECHSAS system (TECHSAS II) into the gaps 

in the original gps_4000, gps_g12 and adu2 streams. Again, for more information refer computing and 

instrumentation section of this report. The new streams were named gps40003, gpsg123 and adu3. 

The gps_4000 stream with data substituted into the gaps was read in daily alongside the original 

stream. This meant it was available should we choose to reprocess any of the other datasets with the 

more complete navigation. This would be most applicable to the ADCP data. However, we were 

fortunate that the biggest time gap (2.5 hrs) after the ones early in the cruise whilst still in port 

occurred whilst we were hove-to in bad weather and therefore it was not crucial to reprocess ADCP 

data for this period. 

6.3 Ships heading and attitude 

The ship’s attitude was measured every second by the 3D GPS Ashtech navigation System, or ADU2. 

Four antenna, two on the boat deck, two on the bridge top, measured the phase difference between 

incoming satellite signals from which the ship’s position, heading, pitch and roll were determined. The 

data is logged in two streams; ADU2 GPPAT containing position, heading and diagnostics and ADU2 

PASHR containing pitch and roll information.  Ashtech data were read from the NMF TECHSAS 

stream into PSTAR and used to calibrate the gyro heading information as follows: 
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ashexec0: transferred data from the RVS gps_ash stream to pstar. 

ashexec1: merged the ashtech data from ashexec0 with the gyro data from gyroexec0 and calculated 

the difference in headings (hdg and gyroHdg); ashtech-gyro (a-ghdg). 

ashexec2: edited the data from ashexec1 using the following criteria: 

 heading 0 < hdg < 360 (degrees) 

 pitch -5 < pitch < 5 (degrees) 

 roll -7 < roll < 7 (degrees) 

 attitude flag -0.5 < attf < 0.5 

 measurement RMS error 0.00001 < mrms < 0.01 

 baseline RMS error 0.00001 < brms < 0.1 

 ashtech-gyro heading -7 < a-ghdg < 7 (degrees) 

The heading difference (a-ghdg) was then filtered with a running mean based on 5 data cycles and a 

maximum difference between median and data of 1 degree.  The data were then averaged to 2 minutes 

and further edited for  

-2 < pitch <2 

 0 < mrms < 0.004 

The 2 minute averages were merged with the gyro data files to obtain spot gyro values.  The ships 

velocity was calculated from position and time, and converted to speed and direction.  The resulting a-

ghdg should be a smoothly varying trace that can be merged with ADCP data to correct the gyro 

heading.  Diagnostic plots were produced to check this.  During ship manoeuvres, bad weather or 

around data gaps, there were spikes which were edited out manually (plxyed). 

During the cruise, a number of gaps occurred in the Ashtech data stream. The largest of these gaps 

occurred as a result of the TECHSAS logging system dropouts, as described earlier in the report. In 

the same way as for the gps_4000 and gps_g12 data streams, gaps were filled by stitching data in from 

the TECHSAS II system (refer to computing and instrumentation section). 

A number of smaller gaps occurred in the Ashtech data stream. Those greater than 60 seconds are 

listed below. 

time gap : 08 230 13:00:07  to  08 230 13:47:49  (47.7 mins) 

time gap : 08 230 17:56:12  to  08 230 17:57:15  (63 s) 

time gap : 08 231 17:19:35  to  08 231 17:27:54  (8.3 mins) 

time gap : 08 231 17:30:55  to  08 231 17:51:07  (20.2 mins) 
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time gap : 08 234 23:10:24  to  08 234 23:12:50  (2.4 mins) 

time gap : 08 236 08:51:48  to  08 236 08:55:54  (4.1 mins) 

time gap : 08 236 11:04:24  to  08 236 11:07:19  (2.9 mins) 

time gap : 08 236 12:45:21  to  08 236 12:46:56  (95 s) 

time gap : 08 236 21:47:57  to  08 236 21:49:09  (72 s) 

time gap : 08 237 18:35:10  to  08 237 18:36:13  (63 s) 

time gap : 08 237 20:47:09  to  08 237 21:09:49  (22.7 mins) 

time gap : 08 238 18:30:30  to  08 238 18:31:33  (63 s) 

time gap : 08 239 19:50:15  to  08 239 19:51:19  (64 s) 

time gap : 08 239 20:58:40  to  08 239 20:59:58  (78 s) 

time gap : 08 241 21:42:50  to  08 241 21:43:58  (68 s) 

time gap : 08 241 23:28:15  to  08 241 23:35:28  (7.2 mins) 

time gap : 08 244 17:26:50  to  08 244 17:27:52  (62 s) 

time gap : 08 244 21:20:20  to  08 244 21:21:52  (92 s) 

time gap : 08 245 18:03:51  to  08 245 18:20:54  (17.1 mins) 

time gap : 08 245 20:26:07  to  08 245 20:27:23  (76 s) 

time gap : 08 245 21:25:45  to  08 245 21:26:48  (63 s) 

time gap : 08 247 20:36:58  to  08 247 20:38:01  (63 s) 

time gap : 08 248 00:18:45  to  08 248 00:22:31  (3.8 mins) 

time gap : 08 249 07:02:03  to  08 249 07:03:06  (63 s) 

time gap : 08 249 21:23:45  to  08 249 21:25:25  (100 s) 

time gap : 08 250 07:37:54  to  08 250 07:38:56  (62 s) 

time gap : 08 251 07:58:27  to  08 251 07:59:33  (66 s) 

time gap : 08 253 00:07:44  to  08 253 00:09:17  (93 s) 

time gap : 08 253 15:21:25  to  08 253 15:22:30  (65 s) 

time gap : 08 253 20:15:08  to  08 253 21:41:49  (86.7 mins) 

time gap : 08 254 17:01:13  to  08 254 17:02:16  (63 s) 

time gap : 08 254 20:17:43  to  08 254 20:50:54  (33.2 mins) 

time gap : 08 254 20:51:39  to  08 254 20:52:54  (75 s) 

time gap : 08 255 12:32:45  to  08 255 12:33:52  (67 s) 

time gap : 08 256 19:48:30  to  08 256 19:49:32  (62 s) 

time gap : 08 259 20:04:38  to  08 259 20:05:41  (63 s) 

With considerable frequency during the cruise, the ADU2 PASHR (pitch and roll) stream would drop 

out as the ADU2 lost satellite mapping.  At these times, the TECHSAS logging of ADU2 would 

frequently stop as though there were a time-out set too short in the logging routine. Frequent watch 

checks were necessary to limit data loss this problem needs to be rectified however.  
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7 SHIPBOARD ADCP 

John Allen, Leighton Rolley 

7.1 Introduction 

During the refit for RRS Discovery in March 2008, the original narrow band RDI 150 kHz Vessel-

Mounted Acoustic Doppler Current Profiler (VM-ADCP) was replaced with an RDI broad band 150 

kHz (Ocean Surveyor) phased array style VM-ADCP.  This was in addition to the similar 75 kHz 

Ocean Surveyor instrument that had been in use in the forward ADCP housing since 2001. 

The 150 kHz ADCP is mounted in the hull 1.75 m to port of the keel, 33 m aft of the bow at the 

waterline and at an approximate depth of 5 m.  The 75 kHz ADCP is also mounted in the hull, but in a 

second water chest 4.15 m forward and 2.5 m to starboard of the 150 kHz well. 

This section describes the operation and data processing paths for both ADCPs. 

7.2 75 kHz and 150 kHz VM-ADCP data processing 

The RDI Ocean Surveyor 150 kHz Phased Array VM-ADCP was configured to sample over 120 

second intervals with 100 bins of 4m depth and a blank beyond transmit of distance of 4m.  The 

instrument is a broad band phased array ADCP with 153.6 kHz frequency and a 30° beam angle.   

The RDI Ocean Surveyor 75 kHz Phased Array VM-ADCP was configured to sample over 120 

second intervals with 100 bins of 8m depth and a blank beyond transmit of distance of 8m.  The 

instrument is a broad band phased array ADCP with 76.8 kHz frequency and a 30° beam angle. 

Both deck units had firmware upgrades to VMDAS 23.17 after the March 2008 refit.  Both PCs ran 

RDI software VmDAS v1.44.  Gyro heading, and GPS Ashtech heading, location and time were fed as 

NMEA messages into the serial ports of the both PCs and VmDAS was configured to use the Gyro 

heading for co-ordinate transformation.  VmDAS logs the PC clock time, stamps the data (start of 

each ensemble) with that time, and records the offset of the PC clock from GPS time.  This offset was 

applied to the data in the processing path before merging with navigation. 

The 2 minute averaged data were written to the PC hard disk in files with a .STA extension, eg 

D332001_000000.STA, D332002_000000.STA etc. for the 150kHz data and 

D332_75001_000000.STA, D332_75002_000000.STA etc. for the 75 kHz data.  Sequentially 

numbered files were created whenever data logging was stopped and re-started.  The software was set 

to close the file once it reached 100MB in size, though on D332 files were closed and data collection 

restarted daily such that the files never became that large.  All files were transferred to the unix 
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directories /data32/d332/os150/raw and /data32/d332/os75/raw as appropriate.  This transfer included 

the plethora of much larger ping by ping data files, these can be useful in the event of major failure of 

the ship’s data handling systems as they record all the basic navigation and ships heading/attitude data 

supplied by NMEA message. 

Both instruments were configured to run in ‘Narrowband’ range over resolution mode after leaving 

Greenland for the first time (files 012 – onwards).  Before this the 150kHz instrument had been 

configured to run in ‘Broadband’ resolution over range mode (files 001-011); in this mode the 150 

kHz VM-ADCP had an effective depth range of only 200-250 metre even in the calm weather that we 

experienced across the Labrador Sea.  Bottom tracking was used leaving St John’s and on our first 

approach to Greenland where we had shallow shelf waters; files 001, 002, 003, 012 and 013 for both 

instruments. 

The VM-ADCP processing path followed an identical route to that developed in 2001 for the 75 kHz 

ADCP (RRS Discovery cruise 253).  In the following script descriptions, “##” indicates the daily file 

number. 

S75exec0 and S150exec0:  data read into Pstar format from RDI binary file (psurvey2).  Water track 

velocities written into “sur” (75kHz) or “adp” (150kHz) files, bottom track into “sbt” (75kHz) 

or “sur” (150kHz) files if in bottom track mode.  Velocities were scaled to cm/s and amplitude 

by 0.45 to db.  The time variable was corrected to GPS time by combining the PC clock time 

and the PC-GPS offset.  An offset depth for the depth bins was provided in the user supplied 

information (13 m for the 75kHz and 9 m for the 150 kHz instruments), this equated to the 

sum of the water depth of the transducer in the ship’s hull (~5 m in RRS Discovery) and the 

blank beyond transmit distance used in the instrument setup (see earlier).  Output Files: 75kHz 

(sur332##.raw, sbt332##.raw), 150 kHz (adp332##.raw, bot332##.raw). 

S75exec1 and s150exec1: data edited according to status flags (flag of 1 indicated bad data).  Velocity 

data replaced with absent data if variable “2+bmbad” was greater than 25% (% of pings where 

>1 beam bad therefore no velocity computed).  Time of ensemble moved to the end of the 

ensemble period (120 secs added with pcalib).  Output files: 75kHz (sur332##, sbt332##), 150 

kHz (adp332##, bot332##). 

S75exec2 and s150exec2: this merged the adcp data (both files) with the ashtech a-ghdg created by 

ashexec2.  The adcp velocities were converted to speed and direction so that the heading 

correction could be applied and then returned to east and north.  Note the renaming and 

ordering of variables.  Output files: 75kHz (sur332##.true, sbt332##.true), 150 kHz 

(adp332##.true, bot332##.true). 
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S75exec3 and s150exec3: applied the misalignment angle, ø, and scaling factor, A, to both files.  

Variables were renamed and re-ordered to preserve the original raw data.  Output Files: 75kHz 

(sur332##.cal, sbt332##.cal), 150 kHz (adp332##.cal, bot332##.cal). 

S75exec4 and s150exec4: merged the adcp data (both files) with the bestnav (10 sec) NMFSS 

combined navigation imported to pstar through navexec0 (abnv3321).  Ship's velocity was 

calculated from spot positions taken from the abnv3321 file and applied to the adcp velocities.  

The end product is the absolute velocity of the water.  The time base of the ADCP profiles 

was then shifted to the centre of the 2 minute ensemble by subtracting 60 seconds and new 

positions were taken from abnv3321. Output Files: 75kHz (sur332##.abs, sbt332##.abs), 150 

kHz (adp332##.abs, bot332##.abs). 

7.3 75 kHz and 150 kHz VM-ADCP calibration 

A calibration of both VM-ADCPs was achieved using bottom tracking data available from our 

departure from St. John’s across the continental shelf.  No further calibration was deemed necessary 

from inspection of the processed data during the cruise.  Using long, straight, steady speed sections of 

standard two minute ensemble profiles the following calibrations for mis-alignment angle, 

! 

" , and 

necessary amplification (tilt), A, by comparing GPS derived component vectors of the vessel speed 

and direction with processed VM-ADCP bottom track determined component vectors of the vessel 

speed and direction: 

150 kHz: 

 

! 

"  A 

 -0.018512871 1.000441046 

 -0.016868291 1.000713913 

 -0.073552092 1.001649237 

 -0.069557015 1.001224268 

 -0.071581693 1.001931542 

 -0.244478970 1.013804604 

 -0.079962566 1.001662313 

 -0.041468116 1.001246205 

mean -0.076997702 1.002834141 

s.d 0.072164205 0.004460596 

Therefore 

! 

"  = -0.0770 and A = 1.0028 were used to calibrate the 150 kHz VM-ADCP. 
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75 kHz: 

 

! 

"  A 

 -61.56854572 1.000847964 

 -61.59553717 0.999593243 

 -61.61658854 1.002341076 

 -61.48439489 1.009464745 

 -61.52071430 1.002429133 

 -61.60229483 1.000229935 

 -61.47084647 0.999899017 

 -61.58901336 1.003569632 

mean -61.55599191 1.002296843 

s.d. 0.056376467 0.003217112 

Therefore 

! 

"  = -61.5560 and A = 1.0023 were used to calibrate the 75 kHz VM-ADCP. 

7.4 Initial data inspection 

In good weather and calm seas both VM-ADCPs behaved well and agreed very closely (Figure 7.1).  

During the latter part of the cruise, severe weather significantly degraded the VM-ADCP data.  The 75 

kHz data were affected worst probably due to its position in the forward ADCP water chest.  In most 

cases, both ADCP datasets still retained some good data in bad weather, but at deeper depths (e.g. 

100m), although this was most apparent for the 150 kHz data. 

The 150 kHz VM-ADCP was in ‘Broadband’ mode during the transect across the Labrador Sea.  

However it became apparent that having the VM-ADCPs in ‘Broadband’ high resolution mode 

significantly reduces their range penetration in the water column as can clearly be seen in Figure 7.1, 

whilst any increase in resolution was not obvious in the mixed underway and on-station use that we 

were making of the data. 
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Figure 7.1:  East component velocity for the 150 kHz VM-ADCP (top) and the 75 kHz VM-ADCP 

bottom, across the Labrador sea (section AR7W). 

 



 72 

8 WATER SAMPLES 

8.1 Inorganic nutrient analysis 

Ian Salter 

My objective during cruise D332 was to measure micro-molar levels of the inorganic nutrients: nitrate, 

silicate and phosphate from CTD samples using segmented flow analysis.  The analysis of micro-

molar concentrations of nitrate+nitrite (hereinafter nitrate), phosphate and silicate was undertaken 

using a Scalar Sanplus Autoanalyser following the methods described below. 

8.1.1 Colorimetry 

At the correct pH and concentration, the chemical reaction of nutrients with certain metals forms 

coloured solutions of reduced metal complexes. Over a certain range, the intensity of the colour 

produced is proportional to the concentration of the reacted nutrient. The concentration of nutrient 

present can therefore be determined by measuring the absorbance of light at the wavelength 

corresponding to the colour of the solution, according to the Beer-Lambert law:  

Ia = Io (1–e-cx)  

Where Ia is the light absorbed, Io is incident light, c is the concentration of the nutrient, and x is a 

constant (constant for each system). In general, this law holds for reactions where Ia
 
< 0.85 Io. The 

light absorbed by the solution is measured using a photometer to which filters have been fitted so that 

the wavelength of light passing through is equal to that of the colour of the nutrient-metal solution. 

Using a series of inorganic nutrient standard solutions of concentrations within the linear range of the 

Beer-Lambert Law, the absorbance of the solution is calibrated to the nutrient concentration of the 

solution. This linear calibration may then be used to obtain nutrient concentrations in unknown 

samples. 

8.1.2 Automated segmented flow analysis  

The advantages of automated rather than manual techniques in nutrient analysis are that constant 

reaction conditions are maintained for all samples, ensuring greater reproducibility and comparability 

of results, and that the speed of analysis and therefore sample throughput can be greatly increased. A 

precision of better than 1% of the full-scale value of the calibration should be achieved by this system. 

The concept can be briefly described as follows: A seawater sample is pumped into the system and the 

colorimetric reagents are introduced into the sample line in the appropriate sequence. The constant 

flow of reagents and samples is segmented by air bubbles, which serves the dual purpose encouraging 
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the turbulent mixing of the sample with reagents in the glass coils, and preventing cross-contamination 

between samples. The quantity of reagent added to each sample segment is controlled by the 

concentration of the initial reagent solution and the flow rate of the tubing transporting the reagent to 

the sample line. Glass coils inserted into the line enhance mixing and determine the time allowed for 

colour development. The differential speed of movement of the solution on the inner side of the coil 

relative to that on the outer side creates circulation within the segment and thus increases mixing. 

After mixing, the segments are de-bubbled and transferred to a photometer cell where absorbance of 

the sample is measured. After analysis, the waste sample is drained away.  

The size and frequency of the bubbles in the line is important in improving the resolution of the 

sample signals. The size of the bubble is controlled by the geometry of the air injector and the surface 

tension of the sample/reagent mixture, whilst the frequency of the bubbles is determined by the rate of 

air input. The optimal length of bubble is about twice the tube diameter. The frequency of bubbles 

should be such that the mixing coils have two and a half to three bubbles per turn of the coil, in order 

to maximise the mixing of the sample and to ensure sufficient scrubbing of the sample line between 

segments, thus reducing carry over between samples.  

The resolution of sample signals is also influenced by the length of sampling and wash times. The 

segments are de-bubbled prior to entering the photometer cell, and thus are potentially subject to 

mixing. The rate at which one sample is washed out of the cell depends on the geometry of the cell 

and the viscosity of the solutions and the length of time where the sample may be exposed to mixing 

may result in overlapping of sample peaks. . The best resolution of peaks is obtained where the 

sampling time is sufficiently long for the peak to reach a plateau, and the wash time is sufficient for 

separation of the peaks so the can be identified. However, excessively long wash times may degrade 

peak quality by moving the mixing process within the cell away from equilibrium. When deciding on 

the length of sampling and wash times, the need for good peak resolution (long sampling time) and 

separation (long wash time) must be balanced with the availability of sample and the overall time 

required for the analytical run. 

8.1.3 Nitrate+Nitrite 

The method presented here is that of Kirkwood (1984), which is in turn based on Bendschneider and 

Robinson (1952). It relies on the quantitative reduction of nitrate, which cannot be determined directly 

by colorimetric methods, to nitrite, by heterogeneous reaction with activated copper cadmium under 

alkaline (pH 8-9) conditions. Nitrate is then reacted with an aromatic amine (sulphanilamide) to form 

a diazonium compound. Reaction of this compound with a second aromatic amine (n-(1-napthyl)-

ethylenediamine dihydrochloride, or NEDD) forms an azo dye with extinction at 543 nm. 

Measurement of nitrite only is achieved by removal of the cadmium column step.  
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Reagents 

Reagent 1 Buffer solution  Ammonium chloride  6 g } in 2 litres of d.H2O 

Reagent 2 Combined reagent  Sulfanilamide   1 g }   

4 M HCl   30 ml  } in 2 litres of d.H2O 

NEDD   0.1 g } 

20% BRIJ-35   0.5 ml } 

The combined reagent should ideally be kept in a dark bottle and must be monitored closely for signs 

of colouration – once the reagent begins to turn pink it should be discarded. 

8.1.4 Phosphate 

The standard method of phosphate analysis is that of Murphy and Riley (1962), in which phosphate is 

reacted with acidified ammonium molybdate and potassium antimonyl tartrate, then reduced using 

ascorbic acid to form a blue phosphoantimonyl molybdate complex, with extinction measured at 880 

nm. The method reported here uses the split reagent of Grasshoff (1983, as reproduced in Kirkwood, 

1984), which separates the ascorbic acid from the other components, thus increasing the stability of 

the reagents. 

Reagents 

Reagent 1  5 M (280 ml conc./l) sulphuric acid  800 ml }  

Ammonium molybdate   20 g } in 2 litres of d.H2O 

Potassium antimonyl tartrate   0.4 g }  

Reagent 2  Ascorbic acid     16 g }  

Sodium dodecyl sulphate   2 g } in 2 litres of d.H2O 

In standard colorimetric methods, it is generally advised to allow ten minutes after addition of the 

reagents to allow for full colour development. To ensure completion of the reaction in the automated 

system, the sample/reagent mixture is passed through a water bath with a temperature of about 40 °C. 

8.1.5 Silicate 

The method presented here is based on that of Koroleff (1971), modified by Grasshoff (1983) and 

reported in Kirkwood (1984). Silicate is reacted with ammonium molybdate, forming a yellow 

silicomolybdate complex. Acidic conditions are maintained in order to ensure the reaction product is 

the more rapidly-formed beta isomer of the silicomolybdate. Oxalic acid is then added to the system to 

removed any excess molybdate and prevent interference from phosphate. Finally, ascorbic acid is 
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added to reduce the silicomolybdate complex to a strongly-coloured blue complex, with extinction at 

810 nm. 

Reagents 

Reagent 1  5 M Sulphuric acid   40 ml } 

Ammonium molybdate  14 g } in 2 litres of d.H2O  

Sodium dodecyl sulphate  2 g }  

Reagent 2  Oxalic acid 12 g   } in 2 litres of d.H2O 

Reagent 3 Ascorbic acid 32 g in 2 l d.H
2
O } in 2 litres of d.H2O 

The silicate method works well only within a limited temperature range of 20-40 °C, and a water bath 

with temperature around 30 °C is used after addition of the reagents. 

8.1.6 Sampling 

All samples were drawn directly from the CTD Niskins into brand new 25ml Sterilin coulter counter 

vials.  Each vial was rinsed three times with sample water before the sample was finally taken.  All 

samples were stored in refrigerated conditions (4oC, dark) and analysed within 24 hours of collection.  

The only exception to this was for the samples originating from CTD casts 045, 046, 047, and 048, 

which were frozen at -200C.  Prior to analysis these samples were allowed to thaw under the 

refrigerated conditions described above.  During D332 1394 samples were analysed for nitrate, 

phosphate, and silicate, of which, 176 were duplicates.  Duplicates were taken either from 1) different 

Sterilin vials drawn from different Niskin bottles fired at the same depth, or from 2) the same Sterilin 

Vial.  16.9% of the samples were analysed in duplicate. 
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Table 8.1: Summary of the number of rosette bottles sampled from the CTD for inorganic 

nutrient analysis.  Also included is the number of duplicate samples analysed from each cast, and for 

reference the number of discrete depths sampled during each cast. 

Cast Number of Number of Number of

Number rosettes duplicate depths sampled

sampled from samples

33200003 8 2 6

33200004 8 2 6

33200005 7 2 5

33200006 8 1 7

33200007 8 2 6

33200008 7 0 7

33200009 9 0 9

33200010 12 0 12

33200011 12 2 12

33200012 18 5 18

33200013 12 2 12

33200014 12 2 12

33200015 12 3 11

33200016 12 2 13

33200017 14 2 14

33200018 18 3 19

33200019 20 1 23

33200020 24 2 24

33200021 24 5 24

33200022 24 6 24

33200023 22 2 24

33200024 20 4 24

33200025 24 1 24

33200026 22 3 22

33200027 22 3 23

33200028 23 3 23

33200029 23 2 23

33200030 17 3 18

33200031 9 1 10

33200032 6 2 6

33200033 6 2 6

33200034 5 1 6

33200035 22 2 24

33200036 24 14 24

33200037 19 2 23

33200038 22 2 24

33200039 24 2 24

33200040 18 1 24

33200041 15 2 24

33200042 23 3 24
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Table 8.1: continued 

Cast Number of Number of Number of

Number rosettes duplicate depths sampled

sampled from samples

33200043 23 2 24

33200044 23 6 23

33200045 22 2 24

33200046 21 2 24

33200047 21 2 24

33200048 23 2 24

33200049 24 3 23

33200050 24 3 23

33200051 24 3 23

33200052 22 2 23

33200053 23 2 23

33200054 23 2 23

33200055 22 3 23

33200056 22 2 24

33200057 21 1 22

33200058 23 2 22

33200059 23 2 22

33200060 24 3 23

33200061 24 3 23

33200062 12 2 12

33200063 12 2 12

33200064 9 2 9

33200065 9 0 9

33200066 8 1 8

33200067

33200068 22 2 24

33200069 23 3 23

33200070 22 2 23

33200071 12 12 12

33200072 12 2 12

33200074 10 2 10

Total 1218 176
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8.1.7 Preparation of analytical standards 

Separate analytical standard stock solutions of nitrate (NaNO3), nitrite (NaNO2), phosphate (KH2PO4), 

and silicate (Na2SiF6) were prepared by dissolving pre-weighed salts in 1 l of deionised water (18.2Ω 

cm-1) to a concentration of approximately 5mM and stored in a refrigerator (4oC).  The exact mass of 

the nutrient salts and resulting concentration of the analytical stock solutions after dissolution in 1 l of 

deionised water is summarised in Table 8.2.  The stock solutions were used to making a set of 

analytical working  standards in a matrix of artificial seawater (ASW: 40g NaCl / litre).  For nitrate 

and silicate the working standards were made at concentrations of 0.5, 2.5, 5, 10, and 20µM.  For 

phosphate the working standards were made at concentrations of 0.1, 0.5, 1, 2.5, and 5µM.  The 

nitrate, phosphate, and silicate working standards were made as a mixed standard.  For nitrite the 

working standard was made at a concentration of 10µM.  The exact concentrations of the working 

standards nitrate, phosphate, and silicate is summarised in tables 8.3-8.5.  All standards were made up 

in plastic volumetric flasks that had been soaked in 1.2M HCl and rinsed thoroughly with de-ionised 

water.  

Table 8.2: Shows the exact concentration of analytical stock solutions after dissolution in 1 litre 

of de-ionised water.  The concentrations reported in this table are used to calculate the exact 

concentrations of the analytical working standards presented in tables 8.3-5. 

Nutrient Mass (g) Concentration (mM)

NaNO3 0.4342 5.11

KH2PO4 0.6787 4.99

Na2SiF6 0.9432 5.02

NaNO2 0.3469 5.03

 
Table 8.3: Nitrate: Concentration range of the analytical working standards used for daily 

calibrations. 

Voume of 5.11mM Concentration of

Std # standard (mL) in 1 l working standard

of d.H2O (_M)

1 0.1 0.503

2 0.5 2.515

3 1.0 5.030

4 2.0 10.060

5 4.0 20.120
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Table 8.4: Silicate: Concentration range of the analytical working standards used for daily 

calibrations. 

Voume of 5.02mM Concentration of

Std # standard (mL) in 1 l working standard

of d.H2O (_M)

1 0.1 0.502

2 0.5 2.510

3 1.0 5.020

4 2.0 10.040

5 4.0 20.080

 
Table 8.5: Phosphate: Concentration range of the analytical working standards used for daily 

calibrations. 

Voume of 4.99mM Concentration of

Std # standard (mL) in 1 l working standard

of d.H2O (_M)

1 0.02 0.0998

2 0.10 0.4990

3 0.20 0.9980

4 0.50 2.4950

5 1.00 4.9900

 
8.1.8 Blanks 

An artificial seawater (ASW) solution (40g NaCl / l) was used as the inter-sample wash and for 

baseline determinations, in addition to its use as a matrix for the working standards as described 

above.  Several batches of ASW were made up during the cruise by dissolving 1kg of NaCl in 12.5 l 

of deionised water.  2.5 l of this solution were quantitatively removed from the carboy to give 10 l of 

80g / l NaCl solution.  10 l of deionised water was added to this to provide a 20 l solution of 40 g NaCl 

/ l.  All aqueous NaCl solutions were made from the same batch of analytical dried reagent (Sigma 

Aldrich, Batch number: 106K0082).  In order to test the contamination associated with this batch of 

NaCl a blanking run was performed as follows: 

1. Analyser was started with all reagent tubes in 10% Decon until a steady baseline was attained. 

2. Reagent sampling tubes were transferred to corresponding reagent flasks and ASW sample tube 

placed in ASW reservoir until a steady baseline was achieved. 

3. Nitrate column was connected and system left until a steady baseline was attained. 

4. A sample table was set up which consisted of 2 samples of standard #2 (N = 2.51µM, Si = 2.52µM, 

P = 0.49µM) and 100 washes to produce a continuous base line. 
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5. Once the standards had appeared on the real-time trace and the baseline had settled to a steady value 

the reagent tubes were removed from silicate reagent 1 and phosphate reagent 1 (see sections 2.4 and 

2.5) and placed in deionised water and the cadmium reduction column on the nitrate line was 

disconnected.  This removes all of the colour-forming capabilities of the autoanalyser.   

6. The baselines for each chemistry drop to a lower value.  The difference between the baseline values 

with the colour-forming chemicals connected  and the baseline values with them disconnected is 

recorded.  This difference is caused by contamination in the ASW matrix that is being rinsed through.  

The difference in baseline values can be equated to a concentration by comparing with the height of 

the standard #2 peaks.  The data is summarised in Table 8.6. 

 

Table 8.6: Details of the ASW blank corrections performed for each nutrient chemistry 

I.D Nitrate Phosphate Sil icate

Baseline (DU) 18870 12635 2508

Std 2 Concentration (uM) 2.5 0.5 2.5

Std 2 Height (DU) 19476 12946 2992

Baseline minus colour forming (DU) 18816 12562 2462

Standard #2 Height (DU) 606.0 311.0 484.0

Signal (DU/uM) 0.0 0.0 0.0

Baseline difference (DU) 54.0 73.0 46.0

ASW Blank (uM) 0.22 0.12 0.24

 
The blank values reported in table 8.6 were added to each sample value to provide ASW blank-

corrected data. 

8.1.9 Quality of the analytical calibration. 

An analytical calibration was performed separately for each run in order to account for the degradation 

and/or contamination of the analytical reagents and ASW, and changes in the intensity of the lamps as 

a function of time.  In order to ensure high quality calibration data several measures were taken: 1) 

analytical standards were kept refrigerated at all times.  The standards were removed from the fridge 1 

hour before analysis in order to allow them to warm up to room temperature. 2) The samples were 

decanted into small 100mL Nalgene flasks after thoroughly shaking the 1L volumetric flasks. Once in 

the small flasks it was easier to decant the standards into the autosampler vials minimising spillage 

and cross-contamination between standards.  The 100ml Nalgene bottles were shaken thoroughly prior 

to decanting into the autosampler vials.  The r2 values from the linear regressions were recorded for 

each nutrient as a function of time and are presented in Figure 8.1.  For nitrate the R2 values range 

from 0.99324 – 0.99999 with a mean of 0.99949 ± 0.00173.  With the exception of one data-point 

(0.993) all calibrations are >0.999.  For phosphate the R2 values range from 0.99950 – 0.99999 with a 

mean of 0.99994 ± 0.00012, all calibrations are >0.999.  For silicate the R2 values range from 0.99977 
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– 1.00000 with a mean of 0.99990 ± 0.00007, all calibrations are > 0.999.   The quality of calibrations 

showed no relationship with time for any of the three nutrients. 

 
Figure 8.1: Linear regression coefficients for the standard calibrations for the inorganic nutrients 

nitrate, phosphate, and silicate. 

Nitrate reduction efficiency 

As discussed in section 2.4 the measurement of nitrate relies on the quantitative reduction of nitrate, 

which cannot be determined directly by colorimetric methods, to nitrite, by heterogeneous reaction 

with activated copper cadmium under alkaline (pH 8-9) conditions.  In order to monitor the reduction 

efficiency of nitrate to nitrite by the cadmium column was checked at the start of each run.  This is 

achieved by running a nitrite standard of a known concentration (10µM ) through the system.  

Subsequently a analytical nitrate standard with an identical concentration is also analysed.  If the 

column is operating with 100% efficiency the nitrate and nitrite peak heights should be identical.  

Comparing the relative peak height of nitrate against nitrite allows the column’s reduction efficiency 

to be calculated, this data is shown in Figure 8.2.  In order to ensure that column efficiency remained 

high, great care was taken to ensure that no bubbles entered the column when connecting and 

disconnecting.  The column efficiency ranged from 99.65 to 100.40 with a mean of 100.03 ± 0.20. 
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Figure 8.2: Shows the quantitative reduction efficiency of nitrate to nitrite by the cadmium 

column as a function of time. 

Baselines 

The baseline values were recorded during each analytical run to monitor any changes in the intensity 

of the lamps and the condition of the flow cells.  The data is shown in Figure 8.3.  The baseline values 

were practically constant for each nutrient varying by 1.9% for nitrate, 3.1% for phosphate, and 2.3% 

for silicate.  If any trends are discernible it is that there was a slight increase in the nitrate baseline and 

a slight drop in the phosphate baseline with time, possibly due to the aging of reagents and or 

deterioration of the lamp.  However, these changes are insignificant and the sensitivity of the 

instrument (see section 4.3.4) was very stable over the course of the cruise. 
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Figure 8.3: Baseline values for the three inorganic nutrients nitrate, phosphate and silicate. 

Sensitivity 

The sensitivity of the analyser was computed for all three chemistries to document any changes over 

the course of the cruise.  Sensitivity is calculated as bits / µM.  This parameter is calculated by 

subtracting the height of an analytical standard (of known concentration) from the “height” of the 

baseline for each nutrient.  The nature of this calculation normalises for any slight baseline drifts (as 

discussed in section 4.3.3) and provides an absolute measure of instrument sensitivity.  The purpose of 

this is to keep a track on reagent contamination/degradation, the flow cells, and deterioration of the 

peristaltic pump tubing.  The data is presented in Figure 8.4.  For nitrate the sensitivity ranged from 

226.34 – 281.66 with a mean of 258.50 ± 12.2, varying by <4.7%.  For phosphate the sensitivity 

ranged from 596.98 – 47.90, with a mean of 618.16 ± 13.22, varying by <2.2%. For silicate the 

sensitivity ranged from 194.37 – 208.52, with a mean of 200.95 ± 4.39, varying by <2.2%.  Overall 

the sensitivity of the instrument was very high and very stable for all three nutrients during the cruise.  
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Figure 8.4: Instrument sensitivity of nitrate, phosphate, and silicate over the course of the cruise. 

Precision 

The analytical precision was determined separately on analytical standards (Figure 8.5) and 

samples (Figures 8.6 – 8.9).  The “standard precision” is calculated from duplicate standard 

measurements (Figure 8.5) and is viewed as the instrument precision, including any handling 

errors incurred in the laboratory.    The standard precision was always <0.5% for all three 

nutrients.  Nitrate has a mean of 0.06%, phosphate has a mean of 0.03%, and silicate has a mean 

of 0.12%.  For comparison, on a previous cruise (D326), the “standard precision” for nitrate had a 

mean 1.2%, phosphate had a mean of 1.79% and silicate had a mean of 1.48%. 
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Figure 8.5: Instrument precision calculated from duplicate measurements of the analytical 

standards (10µM).  Errors are of the same order (<0.5%) for all standard concentrations (data not 

shown.) 

The precision of the measurements was also calculated from duplicate samples, taken both as 

replicates from the same coulter counter vial and as replicates from different CTD Niskins fired at the 

same depth.  The “sample precision” integrates the instrument precision with the sampling errors from 

handling incurred at the CTD. Figure 8.6 shows the sample precision as a function of sample 

concentration for nitrate.  80% of the samples analysed in duplicate have a sample precision of better 

than 3%.  However, the sample precision at concentrations <1µM is variable and can reach as high as 

40%. It appears that the sample precision of the method for nitrate is only desirable at concentrations 

>1µM.  Figure 8.7 shows the sample precision for nitrate with the data points removed at sample 

concentrations <1µM.  Treating the data in this way results in 91% of the duplicate samples analysed 

having a sample precision of better than 3%.  The inlay in Figure 8.7 shows that 66% of the samples 

have a precision of better than 1%.  Figure 8.8 shows the sample precision as a function of sample 

concentration for phosphate.  91% of the samples analysed in duplicate have a sample precision of 

better than 3%.  The inlay in Figure 8.8 shows that 68% of the samples have a precision of better than 

1%.  Figure 8.9 shows the sample precision as a function of sample concentration for silicate. 91% of 

the samples analysed in duplicate have a sample precision of better than 3%.  The inlay in Figure 8.9 

shows that 75% of the samples have a precision of better than 1%.  The data presented in the inlays of 

Figures 8.6-9 is summarised in Table 8.7. 
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Figure 8.6: Shows sample precision for nitrate as a function of sample concentration.  Grey 

shaded area marks the region where the sample concentration is less than 1µM.  The inlay shows, as a 

percentage, the distribution of data over the discrete precision intervals <1, 1-2, 2-3, 3-4, 4-5, and 

>5%. 

 

Figure 8.7: Shows sample precision for nitrate as a function of sample concentration with <1µM 

data removed.  The inlay shows, as a percentage, the distribution of data over the discrete precision 

intervals <1, 1-2, 2-3, 3-4, 4-5, and >5% excluding the  <1µM data. 
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Figure 8.8: Shows sample precision for phosphate as a function of sample concentration. The 

inlay shows, as a percentage, the distribution of data over the discrete precision intervals <1, 1-2, 2-3, 

3-4, 4-5, and >5%. 

 

Figure 8.9: Shows sample precision for phosphate as a function of sample concentration. The 

inlay shows, as a percentage, the distribution of data over the discrete precision intervals <1, 1-2, 2-3, 

3-4, 4-5, and >5%. 
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Table 8.7: A summary of the distribution (as percentage) of data over the discrete precision 

intervals  <1, 1-2, 2-3, 3-4, 4-5, and >5%, for nitrate, phosphate and silicate.  Nitrate values are 

excluding the <1µM data. 

Precision Interval Nitrate Phosphate Silicate

% % %

<1% 66.4 67.8 74.8

1-2% 16.0 17.5 11.9

2-3% 8.8 5.6 4.2

3-4% 4.8 2.8 6.3

4-5% 0.8 2.8 1.4

>5% 3.2 3.5 1.4

 
8.1.10 Data Processing 

Data processing was undertaken using Skalar proprietary software and was performed within a few 

days of the run completion.  Within an analytical run, batches of samples consisted of between 12-20 

samples, capped at both ends by drift standards (Standard #4) and baseline standards (ASW).  The 

software uses this data to account for drifts in the baseline and peak heights and applies a linear drift 

correction if necessary.  Some samples with expected high concentrations were diluted by 50%.  

However, comparison of non-diluted samples with diluted samples yielded similar results and this 

precaution was abandoned after the first few runs.  All samples analysed fell within the calibration 

range of 0-20µM (nitrate and silicate) and 0-5µM (phosphate). 

Some issues were encountered with the software incorrectly assigning the peak cross hairs with the 

correct peaks.  Consequently the peak cross hairs were assigned manually for each run.  This process 

required 5-8 hours depending on the length of the run.  It was apparent that the software was getting 

progressively worse at correctly assigning the peaks within the duration of a run after each set of wash 

samples.  In order to try and resolve this issue, for the later runs the wash samples were set as 

unknowns in the sample table.  This resulted in the software trying to assign peaks rather than troughs 

for the washes.  After the run the sample table was edited to turn the wash samples I.D. back to washes 

and then the peaks were re-picked and saved and the date re-calculated.  This technique significantly 

reduced the problem for all three nutrients. 

8.1.11 Results 

The following plots (figures 8.10–8.12) show the spatial sample distribution for the inorganic 

nutrients. 
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Figure 8.10: Spatial distribution of nitrate samples. 

 

Figure 8.11: Spatial distribution of silicate samples. 
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Figure 8.12: Spatial distribution of phosphate samples. 
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8.2 Calcite, POC, Chl 

Emma Rathbone, Ian Salter, Esben Madsen 

8.2.1 Objectives 

As part of my Undergraduate Masters of Oceanography research project, biological data was collected 

in order to investigate the effect of stratification, nutrients and CO2 on coccolithophore dominance in 

the northern North Atlantic. Water samples were taken and filtered for particulate calcite; a proxy for 

coccolithophores.  Furthermore, water samples were filtered for S.E.M. in order to distinguish 

individual species of coccolithophores. Two other biological parameters were measured:  particulate 

organic carbon (POC) and chlorophyll (Chl). Three areas in the northern North Atlantic were 

investigated; 1. Labrador Basin, 2. The box around the tip of Greenland, and 3. The Irminger Basin. 

239 samples were taken from 72 stations. 

8.2.2 Methods 

Sampling 

1.5 litre water bottles covered with black tape were used to collect water samples from the niskin 

bottles on the CTD. One was labelled ‘surface’ and the other ‘Chlorophyll maximum’, and samples 

were taken from these depths at all stations with the exception of stations which showed a well mixed 

upper water column, where only one sample was taken. Each bottle was flushed with the water sample 

three times and then filled. After sampling from the CTD, the samples were stored in a cold (4°c), dark 

environment to minimise biological activity. The samples were collected immediately after the CFC, 

CO2, dissolved O2, δ180, salinity and nutrients. 

Filtering 

The water samples were filtered to measure four biological parameters: 

1 Particulate calcite:  250 ml of the water sample was filtered through a 0.2 µm polycarbonate 

filter and the filter funnel was rinsed with Milli-Q with a trace of ammonia to ensure that all the 

calcium in the salt residue was filtered. The filter was placed into a 50 ml falcon tube and labelled. 

2 Particulate calcite for S.E.M.:  10 ml of the water sample was filtered through a 0.2 µm 

polycarbonate filter and the filter funnel was rinsed with Milli-Q with a trace of ammonia which was 

filtered. The filter was placed into a plastic petri-dish, sealed with tape and labelled. 
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3 Particulate organic carbon:  250 ml of the water sample was filtered through a glass 

microfibre filter with a nominal pore size of 0.7 µm. The filter funnel was rinsed with artificial 

seawater (40 g per litre) to ensure that all organic material was filtered. The filter was placed into a 

plastic petri-dish, sealed with tape and labelled. 

4 Chlorophyll:  250 ml of the water sample was filtered through a glass microfibre filter with a 

nominal pore size of 0.7 µm, and the filter funnel was rinsed with artificial seawater and filtered. The 

filter was placed into a plastic petri-dish, sealed, labelled and stored in a freezer set at –20 °C. 

After each water sample was filtered, the equipment used; filter funnel, measuring cylinder and the 

plastic forceps, were rinsed with a 10% HCL wash and then rinsed with Milli-Q three times. In 

addition, the measuring cylinder was rinsed with 250ml of the water sample before use. This is to 

ensure that the water sample filtered was not contaminated with a previous sample. Furthermore, 

before the cruise the falcon tubes had been soaked in 10% HCL wash and then rinsed three times with 

Milli-Q. Plastic forceps were used to handle the filter to eliminate contamination.  

Storage 

The particulate calcite filters were stored in the onboard cold store to minimise biological activity. The 

glass microfibre filters were stored in a freezer set at -20°c to eliminate biological activity and to 

preserve the samples. 

Duplicates and blanks 

At some of the stations, duplicates filters were measured for particulate calcite. Filters were taken 

from both the polycarbonate filters and glass microfibre filters to measure as blanks. However, the 

glass microfibre filters were not combusted before the cruise so high particulate organic carbon blanks 

are expected. 

Sample nomenclature 

1. Particulate calcite filters: PCa - station number – niskin number - duplicate number e.g. PCa-

001-24-1 

2. S.E.M. filters: Mic - station number - niskin number e.g. Mic-001-24 

3. Particulate organic carbon: POC – station number - niskin number e.g. POC-001-24 

4. Chlorophyll: Chl - station number – niskin number e.g. Chl-001-24 

8.2.3 Problems  

After the first pack of polycarbonate filters had been used (Millipore Isopore membrane filters; cat no. 

GTTP02500, lot no. R8CN54470), the filtration rate using the second pack (Sterlitech polycarbonate 
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membrane filters; batch no. PCT0225100) was very low to the extent that the extraction of the desired 

solids was impractical in the time available (taking 4-8 hours to filter 250ml of water sample). After 

deciding that the filters were possibly hydrophobic, the method for measuring particulate calcite was 

altered to include filtering 2ml of propan-2-ol prior to the water sample, this effected a satisfactory 

filtration rate for the seawater sample. Furthermore, a pump with more suction was used to filter when 

using the Sterlitech polycarbonate membrane filters; this did increase the filtration rate. However, it is 

important to note that this pump overheated after being switched on for more than a few minutes. 

Nevertheless, it was discovered that the pump only had to be switched on for the time required to 

create a vacuum, which was still faster than the original pump.  

8.2.4 Stations sampled 

Biological samples were only taken at stations where CO2 was measured by the University of East 

Anglia, with the exception of stations in the box around the tip of Greenland, as no CO2 samples were 

taken in this region. This was due to the fact that the effects of CO2 on coccolithophore dominance 

were being determined and also time limitations. A maximum of two niskin bottles were sampled 

from each station due to the fact that the filtration apparatus only allowed one sample to be filtered at 

one time and because time was limited between stations. 

 

Station Depth (m) PCa-1 PCa-2 MIC POC Chl 

      003 35      

3      006 
      

3      009 
      

3      011 
      
      013 25      

5      015 
      

10      017 
      

3      019 
      

3      021 30      

5      023 
      

5      025 30      

5      027 20      

5      029 20      

20      031 
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5      033 20      

5      035 35      

5      036 36      

5      037 32      

5      038 50      

5      039 35      

5      041 30      

5      042 30      

20        043 
      

5      044 25      

5      045 
      

5      046 50      

5      047 
      

5      051 20      

5      053 
      

10      055 
      

5      065 30      

5      061 20      

5      059 
      

5      068 30      

10      069 35      

5      070 
      

10      071 50      

20      072 
      

Table 8.2.1 Biological parameters filtered: 1, PCa-1 – Particulate calcite;  2, PCa-2 – Duplicate 

particulate calcite filter;  3, Mic Particulate calcite for S.E.M.;  4, POC – particulate organic carbon;   

5, Chl – Chlorophyll, at each station and depth in the northern North Atlantic. Highlighted areas 

indicate the estimated chlorophyll maximum. 
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8.3 CFC and SF6 Sampling 

Katie Gowers, Ian Salter, Liz Kent, Joerg Frommlet, Roz Pidcock, Esben Madsen, John Allen, 

Katherine Cox and Emma Rathbone 

8.3.1 Objectives 

The objective was to take CFC and SF6 samples from CTD casts into glass ampoules and seal them 

under nitrogen for subsequent analysis at the University of East Anglia. 

8.3.2 Materials 

Nitrogen bottle and regulator 

Board with scrubbers 

Ampoules  

Stainless-steel tees 

Butane blow lamp 

Face guard, safety gloves and laboratory coat. 

8.3.3 Set-up 

1 The purity line was removed from aluminium trunk and the indicator purity traps were checked 

to confirm the difference in colour between spent indicator and unspent. 

2 The OFN cylinder + regulator were set-up in the hanger. The gas cylinder was securely clamped 

to the bench. 

3 The Secure purity line was bolted to the bench close to gas cylinder to prevent movement in 

high seas. 

4 The purity line was connected to gas cylinder. The 1/8” stainless steel tube was connected to the 

regulator. 

5 The gas cylinder was opened and the regulator set to approximately 1Bar. All connections were 

tested with snoop to confirm that all connections were completely leak free. 

6 The needle gauge was used to set flow rate to about 10ml min-1, confirmed with the bubble flow 

meter. 

7 A retort stand was secured adjacent to the purity board. 
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8.3.4 Problems encountered during set-up 

Several hours after connecting the purity lines it became clear that the oxygen scrubber/indicator had 

developed a leak (shown by the indicator darkening to 2/3 of the tube where it had been only 1/3 

previously). It transpired that fragile glass connectors inside the oxygen scrubber had cracked.  A 

replacement oxygen scrubber was fitted to the purity line.  No further problems were experienced 

during the cruise. 

8.3.5 Sampling 

SF6 and CFC samples were taken first from the CTD: 

1 Prior to the CTD arriving on deck ampoules were labelled with both the station number and the 

Niskin bottle to be sampled. 

2 Labelled ampoules were then connected to the bottom of the tee by hand tightening the 3/8” 

ultra-torr fitting ensuring that the o-rings had created a secure fit 

3 Next the moveable tube was moved to the bottom of the ampoule and the 1/8” ultra-torr 

tightened. 

4 Stages 1 and 2 were repeated for the remaining ampoules (see Fig 8.3.1). 

5 Sampling from the Niskin bottles was done using very short tubing and an adaptor connected to 

the moveable tube of the tee and the petcock of the Niskin. 

6 The time taken to fill the bottle was counted and three rinse volumes were allowed to flow 

through the ampoule. 

7 Once flushed but whilst the water was still running through the tee the moveable tube was 

raised to just below the 3/8” ultra-torr fitting and the 1/8” ultra-torr nut was tightened to secure 

the moveable tube in place. The cap was then hand-tightened on to the stationary tube. 

8 The moveable tube was then removed from the Petcock of the Niskin and a cap hand-tightened 

on the end. 

9 The ampoules (with tees still attached and capped) were then stored in the provided cool boxes 

on deck until all the ampoules were sampled for that station had been filled. 

See Figures 8.3.1-2 for reference. 
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Figure 8.3.1: Schematic of the glass ampoule and tee during sampling. 

 

 
 

Figure 8.3.2: Schematic of the glass ampoule and tee during transport from the CTD to the sealing 

station. 

8.3.6 Problems encountered during sampling 

The sampling for CFCs and SF6 was very time consuming, a problem augmented by not having 

enough metal tees in our possession.  Due to the movement of the ship and the equipment provided it 

was necessary to support the ampoules by hand during the filling procedure.  It became clear that this 
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problem needed resolving. Accordingly, advice was sought from Sven Ober and Steve Whittle.  Steve 

went off on a rummage and found PVC bars which could be machined and bored into new adaptors 

which screwed on to the moveable tube of the tees as well as fitting in the larger tap of the Niskin 

bottles creating a secure connection. After trialling, enough were produced to service a full cast.  This 

eliminated the problem of not being able to leave the bottles unattended whilst sampling, as previously 

the adaptors did not secure well to either the tees or the Niskin bottles. The new adaptors, being made 

of rigid PVC, meant that sampling became much quicker without contamination of the CFC samples. 

8.3.7 Flame Sealing 

1 The nitrogen regulator was set up to approximately 1.3-1.5 psi and the nitrogen turned on to 

flush the system. 

2 A flow meter was then used to adjust the flow out of a needle valve to around 10ml/min. 

3 The cap was then removed from the stationary tube and connected to the needle valve whilst 

nitrogen was flowing followed by the removal of the cap on the moveable tube. This allowed 

water in the tee to be replaced by nitrogen. 

4 The 1/8” ultra-torr nut was loosened and the moveable tube pushed down to just above the 

bottom of the neck of the ampoule allowing the water in the neck to be displaced by nitrogen. 

5 With the nitrogen still flowing the moveable tube was pulled up to just below the 3/8” ultra-torr 

fitting and tightened with the 1/8” ultra-torr fitting to secure it for the sealing process. 

6 A butane blow lamp was used to warm and then melt the neck of the ampoule at about 2cm 

above the water level. Once the glass started to melt the neck was pulled gently upwards from 

the tee and was melted to create a seal. 

7 Ampoules were then allowed to cool before the seal was tested by inverting the ampoule, any 

ampoules that did not seal were noted on the log sheets. 

See Figure 8.3.3 for reference. 
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Figure 8.3.3: Schematic of the glass ampoule and tees during flame sealing 

8.3.8 Problems encountered during sealing 

Sealing of the ampoules began as soon as the last ampoule was sampled, however due to the time 

involved in both sampling and sealing the ampoules there was occasionally as much as a couple of 

hours between the sampling and sealing of the ampoules.  This exceeds the prescribed 1 hour 

recommended by UEA. On a number of occasions the glass ampoules did not seal properly.  This 

resulted in the loss of samples.   

8.3.9 Storage 

Once it was determined whether the ampoules had sealed they were securely wrapped in bubble wrap 

and placed in the cool boxes provided ready for transport home. 

8.3.10 Stations sampled 

Stn No. of 
samples  Stn No. of 

samples  Stn No. of 
samples  Stn No. of 

samples  
2 6 17 10 33 4 59 8 

3 3 19 9 53 9 58 8 

6 2 21 9 55 9 68 7 

9 4 23 11 57 9 69 9 

11 6 25 9 65 4 70 8 

13 8 29 6 63 3 59 8 

15 10 31 6 61 7   
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8.4 Alkalinity and TCO2 Sampling 

Esben Madsen and Emma Rathbone 

Additional operators:  Ian Salter, John Allen, Roz Pidcock, Jörg Frommolet, Katherine Cox. 

Water samples were collected during D332 for subsequent analysis of alkalinity and TCO2 by the 

University of East Anglia. 

8.4.1 Materials: Preparation of a saturated HgCl2 solution 

Materials and ingredients 

Plastic container with screw lid 

MilliQ water 

Mercuric chloride (HgCl2) (solid) 

Marker pen and marking tape 

Spoon (clean) 

Safety glove, safety glasses, laboratory coat 

The plastic container was labelled ‘HgCl2 saturated solution, (date), UEA’.  Then: 

• A spoonful of HgCl2 powder was added to the plastic container; 

• MilliQ was added to the container and the HgCl2 powder allowed to dissolve; 

• More HgCl2 powder was added to the solution in the container until solid HgCl2 powder remained at 

the bottom of the container. The presence of HgCl2 powder at the bottom of the container was checked 

regularly. 

8.4.2 Alkalinity/TCO2 methods 

Joint alkalinity and TCO2 bottles were labelled prior to water sampling, ensuring that each bottle had a 

unique number (cast number and Niskin number). White tape and permanent black marker pens were 

used for labelling purposes.  Prior to water sampling, a sampling sheet was completed, indicating 

station/cast number, and the Niskins from which samples with their unique number were taken. Work 

was carried out in GMT.  

Sampling 

Sampling procedures described in the SOP1 by Dickson and Goyet were followed.  Samples were 

drawn from 20L Niskin bottles from 28 stations. The 250 ml glass bottle for the joint alkalinity and 

TCO2 sample was rinsed with 30-50 ml of sample water. The tygon tubing was placed in the bottom of 

the bottle, and the bottle was filled from the bottom to the top. Bubbles were removed from the tubing 
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by squeezing the tube, and removed from the bottle by moving the tubing around as well as gently 

tapping with against the deck or CTD rack. The bottle was allowed to overflow for ten slowly counted 

seconds. After sufficient overflow, the tygon tube was slowly pulled to the surface of the bottle. While 

maintaining the flow, to prevent bubbling when removing the tubing, the tube mouth was manoeuvred 

laterally across the surface of the overflowing sample water and out of the bottle. The bottle was then 

secured with a stopper, placed in a temporary storage box. The full set of samples were then taken to 

the wet lab. 

Fixing 

Fixing of samples was carried out in the wet lab shortly after sampling.  The stopper was removed 

from the bottle and a small headspace created by removing 2.5 ml of the sample with a pipette.  The 

stopper was dried with blue paper towel.  The stopper was greased with 4 strips of grease, each 

extending 2/3 of the way from the top towards the bottom ground portion of the stopper.  The 250 ml 

sample was poisoned with 50 µl of the prepared saturated mercuric chloride solution.   The stopper 

was inserted into the bottle twisted to squeeze air out of the grease and create a good seal. A rubber 

band was placed around the bottle and stopper. The bottle was shaken, while keeping the stopper in 

place.  Gloves, safety glasses and laboratory coats were used for this method due to the hazardous 

chemical handled. The used gloves and pipette tips were stored in a tight glass jar for subsequent 

disposal. 

Storage 

The bottle was packed in its cardboard box and packed into a storage crate along with samples from 

the same station/cast.  After the samples were packed into crates, a note was made of the samples 

contained within each individual storage crate. The crates had room for 48 samples. Sampling 

constraints did not always allow for a full set of 24 samples to be taken from each CTD cast, and 

therefore samples from one individual cast were in some cases spread over two storage crates.  

Stations sampled 

No water samples were taken for CO2 to the east of Greenland from stations 35 to 51. The majority of 

the remaining stations were sampled. Three duplicate samples were taken at all stations. A duplicate 

was taken at the deepest depth, and the remaining two were taken at intermediate or shallow depths. 

The total number of samples taken on this cruise was 500.  See Table 8.4.1. 
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Station 
number 

No. of CO2 
samples  

Duplicate 
samples 

Station 
number 

No. of CO2 
samples  

Duplicate 
samples 

002 6 3 031 10 3 

003 4 3 033 6 3 

006 4 3 053 23 3 

009 4 3 055 22 3 

011 12 3 057 24 3 

013 12 3 058 21 3 

015 12 3 059 24 3 

017 14 3 065 9 3 

019 22 3 063 12 3 

021 24 3 061 23 3 

023 22 3 068 24 3 

025 24 3 069 24 3 

027 24 3 070 24 3 

029 24 3 071 12 3 

 

Table 8.4.1: CO2 / alkalinity samples and duplicates. 
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8.5 Dissolved Oxygen 

Jörg Frommlet 

Additional analysts:  Emma Rathbone, Esben Madsen, Ian Salter and Katie Gowers  

8.5.1 Introduction 

Dissolved oxygen profiles during cruise D332 were measured using a SBE 43 membrane 

polarographic oxygen detector (Sea-Bird electronics, Inc.). At the working electrode (cathode) of this 

type of sensor, oxygen gas molecules are converted to hydroxyl ions (OH-). The electrode supplies 

four electrons per molecule oxygen to complete the reaction. The sensor counts oxygen molecules by 

measuring the electrons per second (amperes) delivered to the reaction. At the anode, silver chloride is 

formed and silver ions (Ag+) are dissolved in solution. Consequently, the chemistry of the sensor 

electrolyte changes continuously as oxygen is measured and this produces a slow but continuous 

change of the sensor calibration over time.  

To correct for this change of the sensor calibration, reference measurements of dissolved oxygen in 

discrete water samples were performed, using Winkler titration. The Winkler titration is based on the 

quantitative oxidization of iodide ions to iodine by the oxygen in a sea water sample. The amount of 

iodine generated in this fashion is determined by titration with a standard thiosulfate solution. Water 

samples from various depths were analysed regularly with this method, the depths being chosen based 

on observed minima and maxima in the oxygen profile.  

8.5.2 Material and Method 

Calibration of Dissolved Oxygen Analyser 

Determination of the blank – Blank measurements were performed every fourth day (see also table 

8.5.1), unless sampling had been interrupted for longer periods of time due to e.g. bad weather. 

Thoroughly rinsed bottles were filled to around 4/5 with Milli-Q water, 1mL of iodide standard (1.667 

mM, Osil) and 1 mL of H2SO4 (5 M) were added and blanks were mixed on the stirring plate of the 

oxygen unit. Then 1 mL of alkaline iodide (320 g/L sodium hydroxide, 600 g/L sodium iodide) was 

added, blanks were stirred, 1 mL of MnCl2 was added and blanks were stirred again. The titration was 

started and, once complete, the titre volume (V1; Addition 1) was recorded. This was followed by a 

second addition of 1 mL of alkaline iodide to the blank and the titration was repeated (V2; Addition 2). 

According to another protocol, a total of four additions of alkaline iodide were made. Depending on 

the protocol the blank value was calculated as follows: 

Vblank = V1–V2,  or alternatively: 
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Vblank = V1–((V2 + V3 + V4)/3) 

Typically, five blanks (Vblank) were measured and the average value was used in calculating the 

oxygen concentrations of samples until new blank measurements were performed. 

Standardization of sodium thiosulfate titrant – Regular standardization is important to correct for the 

time related degradation of the sodium thiosulfate reagent. The standardization was usually performed 

every fourth day (see also table 8.5.2), directly following the measurement of blanks. Thoroughly 

rinsed bottles were filled to around 4/5 with Milli-Q water, 5 mL of iodide standard and 1 mL of 

H2SO4 were added and standards were mixed on the stirring plate of the oxygen unit. Then 1mL of 

alkaline iodide was added, blanks were stirred, 1 mL of MnCl2 was added and blanks were stirred 

again. The titration was started and, once complete, the titre volume was recorded. Typically, five 

standard measurements were performed and the average titre volume was used in calculating the 

oxygen concentrations of samples until new standard measurements were performed.  

Sampling – Water samples for the measurement of dissolved oxygen were drawn off first from the 

CTD Niskin bottles to minimize gas exchange between the atmosphere and the sample. To sample, a 

piece of rubber tubing, approximately 20 cm long, was attached to the Niskin bottle nozzle. Before the 

samples were drawn, any air in the tube was displaced. The tube was then lowered to the bottom of the 

sampling bottles and the samples were taken without creating bubbles. The water was allowed to 

overflow until the bottles had been flushed with approximately 3 times their volume. The temperature 

of water samples was measured during the filling of bottles using a handheld electronic thermometer. 

Sample processing – Samples were fixed directly after collection by adding 1 mL of a manganese 

chloride solution (600 g/L) followed by 1mL of alkaline iodide solution (320 g/L sodium hydroxide, 

600 g/L sodium iodide). Both solutions were added using automatic dispensers (1-5 mL, Ceramus 

classic, Hirschmann Laborgeräte) the tip of the dispenser being inserted about 10 mm below the water 

level to prevent bubbles being introduced into the sample. The lids were placed on the bottles making 

sure no bubbles were trapped and the bottles were thoroughly shaken. A precipitate of manganese (II) 

and (III) hydroxides formed. The precipitate was given 30-60 min to settle before the samples were 

shaken again. After the precipitate had settled for another 30-60 min the samples were analysed. 

Winkler titration – The sampling bottles were opened carefully to avoid spillage and 1 mL of 

sulphuric acid (5 molar) was added. The samples were stirred on the Dissolved oxygen Analyser 

(E649, Metrohm) using a magnetic stirring bar until the precipitate had dissolved and a clear yellow 

iodine solution had formed. The pipette from the automated burette (665 Dosimat, Metrohm) was 

lowered into the solution and the titration was started. The burette slowly added a sodium thiosulphate 

solution (25 g/L) until the iodine solution had been reduced to a colourless iodide and tetrathionate 
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solution. The amount of dissolved oxygen (µmoles O2/L) was calculated using the following equations 

with V = Titre volume (mL), Vol = Volume (mL) and M = molarity: 

O2 (moles) = 1.5 * (VSample – VBlank) * (Vol Standard / 1000) * Iodate (M) / (VStandard – VBlank) 

O2 (µmoles/L) = (O2 (moles) – 0.000000075) / (Vol Bottle / 1000) * 1000000 

Data analysis – Average dissolved oxygen concentrations, the mean difference and the standard 

deviation were calculated based on duplicate measurements. The actual oxygen sensor calibration is 

described in section 3 by Liz Kent. 

8.5.3 Results and Discussion 

Blank and standard measurements – Blank measurements were comparable to those of previous 

cruises and ranged from 0.0199 to 0.0377 (Table 8.5.1). For the determination of Vblank two protocols 

were used previously - One in which only a second addition of alkaline iodide is made and another 

protocol in which also a third and a fourth addition of alkaline iodide is made (see difference in 

calculating Vblank in materials and methods). As shown by a comparison of blank values determined 

with the two protocols (compare value for 01.09.2008 with other values in Table 8.5.1), multiple 

additions did not result in significantly different values for Vblank and hence the quicker protocol of 

only adding alkaline iodide twice was adopted for all other blank measurements.  
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Table 8.5.1: Blank measurements. 

Date  Blank 1 Blank 2 Blank 3 Blank 4 Blank 5 Average 

20.08.2008 Addition 1 0.0890 0.0952     

 Addition 2 0.0780 0.0702     

 Vblank 0.0110 0.0250    0.0180 

21.08.2008 Addition 1 0.0994 0.0961 0.1014 0.0952 0.1007  

 Addition 2 0.0701 0.0412 0.0532 0.0687 0.0709  

 Vblank 0.0293 0.0549 0.0482 0.0265 0.0298 0.0377 

24.08.2008 Addition 1 0.0929 0.0939 0.0949 0.0931 0.1002  

 Addition 2 0.0758 0.0742 0.0658 0.0723 0.0713  

 Vblank 0.0171 0.0197 0.0291 0.0208 0.0280 0.0231 

28.08.2008 Addition 1 0.0937 0.0941 0.0929 0.0941 0.0955  

 Addition 2 0.0710 0.0751 0.0734 0.0732 0.0781  

 Vblank 0.0227 0.019 0.0195 0.0209 0.0174 0.0199 

01.09.2008 Addition 1 0.0981 0.0964 0.0961 0.0946 0.0958  

 Addition 2 0.0612 0.0738 0.0746 0.0737 0.0748  

 Addition 3 0.0687 0.0753 0.0693 0.0733 0.0719  

 Addition 4 0.0716 0.065 0.0721 0.0716 0.0744  

 Average (2-4 ) a 0.0672 0.0714 0.0720 0.0729 0.0737  

 Vblank 0.0309 0.0250 0.0241 0.0217 0.0221 0.0248 

05.09.2008 Addition 1 0.1001 0.0901 0.0952 0.0959 0.0967  

 Addition 2 0.0674 0.0724 0.0721 0.0735 0.0731  

 Vblank 0.0327 0.0177 0.0231 0.0224 0.0236 0.0239 

13.09.2008 Addition 1 0.0956 0.1018 0.1022 0.0934 0.0979  

 Addition 2 0.0774 0.079 0.0696 0.0705 0.0741  

 Vblank 0.0182 0.0228 0.0326 0.0229 0.0238 0.0241 

21.09.2008 Addition 1 0.1010 0.0965 0.1031 0.0929 0.1029  

 Addition 2 0.0769 0.0749 0.0785 0.0741 0.0764  

 Difference 0.0241 0.0216 0.0246 0.0188 0.0265 0.0231 

 

Note a:  A total of four additions was made and the average of additions 2-4 was used in the blank 

calculation. Values are shown in mL. 

Values for the titre volume of sodium thiosulfate standards are shown in Table 8.5.2. The values were 

comparable to those of previous cruises and ranged from 0.4978 to 0.5033. As a result of the slow 

degradation of the sodium thiosulfate solution, the titre volume increased slightly over time. This did 

however not affect the analysis of samples since the standardization process takes this aging of the 

titrant into account. 
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Table 8.5.2: Standardization of sodium thiosulfate titrant. Values are shown in mL. 

Date STD 1 STD 2 STD 3 STD 4 STD5 Average 
20.08.2008 0.4984 0.4985 0.4977 0.4966 0.4976 0.4978 
24.08.2008 0.4983 0.5015 0.5012 0.4999 0.5021 0.5006 
28.08.2008 0.4998 0.4995 0.4989 0.4993 0.5 0.4995 
01.09.2008 0.4992 0.4973 0.4995 0.4983 0.4966 0.4982 
05.09.2008 0.5002 0.5005 0.5009 0.5008 0.5005 0.5006 
13.09.2008 0.5000 0.5003 0.5014 0.5007 0.5010 0.5007 
21.09.2008 0.5035 0.5043 0.5034 0.5033 0.5020 0.5033 

Sampling statistics- During D332 a total of 51 CTD casts were sampled. From each of the sampled 

CTD casts between 3 and 12 (predominantly 5) Niskin bottles were sampled, of which generally 1 or 2 

were sampled in duplicate. This resulted in a total of 314 analysed samples. CTD casts that were 

sampled for dissolved oxygen were: 001, 004, 005, 007, 008, 010, 012, 014, 016, 018, 020, 022, 024, 

026, 028, 030, 032, 034, 035, 036, 037, 038, 039, 040, 041, 042, 043, 044, 045, 046, 047, 048, 049, 

050, 051, 052, 054, 056, 058, 060, 062, 064, 066, 067, 068, 069, 070, 071 (oxygen sensor failed), 072, 

073, 074. See figure 8.5.1 for sampled depths. 

 

Figure 8.5.1:  Sampling depths of the 51 casts of which dissolved oxygen measurements were 

conducted. 

Instrument performance and reproducibility of Winkler titration – Throughout cruise D332, the 

dissolved oxygen analyser worked consistently well and no significant errors or problems were 

encountered with the instrument. Based on 39 duplicate measurements the calculated overall mean 
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difference between duplicates was 0.4325 µmoles O2/L (< 0.2 %) and the standard deviation was 2.35 

µmoles O2/L, showing good reproducibility. 

Replacement of SBE 43 oxygen sensor – On the 22.09.2008 (cast 71) the oxygen sensor with the serial 

number 430619 (hereafter referred to as ‘old oxygen sensor’) failed and had to be replaced by a new 

oxygen sensor with the serial number 430709 (hereafter referred to as ‘new oxygen sensor’). 

Measurements of dissolved oxygen using the Winkler titration up to, and including, cast 70 are 

therefore to be used to calibrate the old oxygen sensor and measurements of casts thereafter are to be 

used to calibrate the new oxygen sensor. 

Sensor calibration - The Winkler titration data provides the necessary references to calibrate the 

oxygen sensor 430619 and will gives a first indication for the performance of the oxygen sensor 

430709. For details regarding the actual calibration of sensors see section 3 by Liz Kent. 

8.6 Oxygen Isotope Samples 

Katharine Cox 

Water samples for δ18O analysis were collected from all 74 CTD stations (excluding test station 1) and 

each depth level that was sampled, 1220 samples were collected in total. The samples were collected 

immediately after CFC, CO2 and O2 samples. They were collected in 28 ml McCartney glass bottles.  

These were labeled [D332-  ‘station number’-‘niskin number’].  

The bottles and caps were flushed three times with the sample, and then filled leaving a 5-10 mm head 

space to accommodate thermal expansion of the water. After filling, the bottles were sealed using an 

aluminium screw cap with a high density rubber seal insert; to prevent the aluminium caps from 

loosening, the bottles were then further sealed with insulation tape. The samples were then stored in 

the onboard cold store, set to 4 °C, to reduce the risk of evaporation of the samples and minimise 

thermal expansion.  

The water samples were freighted back to NOCS for analysis. They will be analysed for δ18O using a 

GV Instruments Multiprep Isoprime dual inlet mass spectrometer. These data will then be used in 

conjunction with δ18O data from the water samples collected on D298 in order to determine the 

freshwater sources to North Atlantic via the East Greenland Current, the West Greenland Current and 

the Labrador Current. 
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8.7 Salinometry 

Katharine Cox and Esbsen Madsen 

Additional operators: Roz  Pidcock, John Allen, Katie Gowers, Emma Rathbone. 

Salinity samples were drawn from the Niskin bottles mounted on the CTD rosette that sampled the 

surface and bottom waters and several depth levels in between where a constant salinity was observed 

from the CTD. Four to five samples were taken per CTD cast. A duplicate sample was taken from an 

intermediate depth at most stations.  Samples were taken using 200ml glass bottles; these were flushed 

three times with the sample and then filled to the shoulder. The bottleneck, plastic insert and bottle 

screw cap were wiped dry to prevent salt crystallisation before sealing the bottles.  

Salinity analyses were performed using a Guildline Autosal salinometer (model 8400B, serial no. 

65764), fitted with a peristaltic pump, installed in the controlled temperature laboratory (maintained at 

24oC). According to the manual, the 8400B can operate successfully at lab temperatures between 4°C 

below and 2°C above the bath temperature, the preferred temperature being in the middle of this 

range.  The bath temperature was set at 24°C.  A thermometer was used to measure the temperature of 

the CT lab, which has not varied throughout the cruise. Salinity samples were stored in the CT lab for 

a minimum of 24 hours prior to analysis to allow equilibration to the lab conditions. The salinometer 

was calibrated using the IAPSO standard seawater (batch number P148, 10th October 2006), which has 

a salinity of 34.993 (K15 = 0.99982). OSIL’s Autosal software, SoftSal, was used throughout.  On 

multidisciplinary cruises this expedites the entry of determined salinities into excel spreadsheets for 

merging with instrument data files.  The software and the Autosal worked well. 

Salinity values were copied in to an Excel spreadsheet, and then transferred to the Unix system in the 

form of a tab-delimited ASCII file. Data from the ASCII files were then incorporated into the sam 

files using the Pstar script passal. Initial calibrations of both the thermosalinograph and the SeaBird 

CTD were made successfully at the end of the cruise. 

The stability of measurements, determined by monitoring the standard deviation of the salinity 

measurements, was good. With few exceptions, the bottle samples were determined to a precision 

greater than 0.001.  Additionally, over the period of the cruise 74 duplicates were taken, the 

differences between these duplicate samples are shown in figure 8.7.1. The mean difference is 0.0001 

with a standard deviation of these differences of 0.001, this indicates consistent sampling and stability 

in the measurements. 

 As mentioned on a number of previous cruises, there are a couple of points worth noting about using 

this software however; firstly the software encourages the operator to re-trim the salinometer after 
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each standardisation to the IAPSO standard seawater.  This is almost certainly because the measured 

salinity standard is not recorded in the output file (the second point to note), so no post measurement 

offset can be made. OSIL’s latest software (advertised in the IAPSO standard seawater boxes), looks 

as though it overcomes this limitation, furthermore it is designed to be directly compatible with 

spreadsheet software like MS Excel. Standard seawater samples were analysed after every crate as a 

quality check.  

Figure 8.7.1: Plot of the differences between salinity measurements of duplicate samples. 

  

 

8.8 Secondary production and biomass 

Santiago R. Gonzalez 

In the process of moulting, crustaceans use an enzyme, chitobiase, that plays a role in the degradation 

of the old exoskeleton into mono aminosugars. These are in turn used for building the new 

exoskeleton underneath the old skeleton. Once the old exuvium is shed, the enzyme is released freely 

into the ambient water. A relation between the released enzyme activity and the increase in biomass 

(secondary production)  was found by Oosterhuis et. al. (MEPS, 2000) 

During the DISCOVERY cruise D-332, August 19th  until September 25th,  the secondary (crustacean) 

production through the water column was measured at 9 stations. 0.5 liter water samples were taken 

from the rosette sampler at discrete depths. 5 ml samples from these 0.5 liter bottles were used for the 

chitobiase assay. The water bottles were stored in a climate room at approximately 4 degrees Celcius. 

The assay was done by adding 200 ul Tris/HCl buffer (final pH=7.5) and 100 ul of the substrate 

Methylumbelliferyll N-acetyl b-D glucosaminide (final concentration 150 mM). The enzyme activity 
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was measured after  a 2 hours incubation period at 25 0 C using a spectrofluorometer, exitation 366 

nm, emission 450 nm. The activity of the enzyme was also measured in the different bottles during a 

period of 24 hours. This gives the degradation rate of the enzyme by mainly bacteria. From the 

degradation rate and the initial enzyme activity, the total release of chitobiase per day can be 

calculated. From here, the increase in biomass expressed as mg dry weight per m3 per day (secondary 

production) can be estimated using the relation found by Oosterhuis et. al. (MEPS, 2000). 

To estimate zooplankton biomass, vertical net hauls were done at the 9 stations prior to the water 

sampling for the chitobiase assays. The water column was sampled from 100 meter depth to surface. 

The catches were preserved in 4% formalin and stored for later analysis. 

Preliminary results 

Figure 8.8.1: Examples of the production profiles as measured at selected stations. 
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9 UNDERWAY SURFACE METEOROLOGY 

Elizabeth Kent 

9.1 Surfmet processing 

The Ships’ surfmet system logs data from a range of meteorological and underway sensors. The 

meteorological system comprises pressure, air temperature, humidity, wind speed and direction (all on 

the port foremast) and pairs of shortwave sensors for each of total incident radiation (TIR) and 

photosynthetically active radiation (PAR). The underway pumped system measures sea surface 

temperature (SST), conductivity (along with the temperature at the which the conductivity is 

measured, required for salinity calculation), fluorescence and the transmissivity of the seawater.  

Variable Instrument type Instrument 
number 

Calibration 
a + bx + cx2 + dx3 

Port PAR Skye Instruments Energy 
Sensor (400nm-700nm) 

SKE 510 1204 
28561 

b = 1.020 mV per 
100 Wm-2 

Starboard PAR Skye Instruments Energy 
Sensor (400nm-700nm) 

SKE 510 1204 
28562 

b = 1.020 mV per 
100 Wm-2 

Port TIR Kipp and Zonen 
Pyranometer, Model 

CM6B 

973135 b = 11.66 
µV/(Wm-2) 

Starboard TIR Kipp and Zonen 
Pyranometer, Model 

CM6B 

973134 b = 10.84 
µV/(Wm-2) 

Air Temperature/Humidity Vaisala HMP45 C1320001 output meets 
specification 

Air Pressure Vaisala, PTB100A U1420016 a = 3.51188e-1 
b=9.99218e-1 

SST FSI Temperature Module, 
OTM 

1401 a = -8.86735e-3 
b=1.00053e0 

c=-8.88572e-5 
d=1.95377e-6 

Conductivity 
(uncalibrated, coefficients from 
CTD comparison) 

OCM Conductivity 1339 a = 0.65567 
b= 1.1108 

Thermosalinograph temperature FSI Temperature Module, 
OTM 

1339 
 

a = -1.36685e-2 
b=1.00070e0 

c=-4.31229e-5 
d=8.84556e-7 

Wind speed & direction Gill Windsonic 071123 none 
Fluorescence Wetlabs WS3S-247 a = 0.055V 

b=12.4/µg/l/V 
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Variable Instrument type Instrument 
number 

Calibration 
a + bx + cx2 + dx3 

Transmission Wet Labs CST-114R a= 0.013063 
b= 0.217723 

A new version of the surfmet logging software had been installed on a previous cruise, however there 

were bugs in the software which meant that the contents of the "airtemp" stream and the "temp_m" 

stream were identical and that air temperature was not being logged, although it was being displayed 

on the screen. It later became clear that the "temp_m" stream which was supposed to contain SST 

actually contained the thermosalinograph (TSG) temperature "temp_h". The surfmet code was not 

available on board to correct these problems and there were delays before a new version of the code 

was made available.  The temp_m and temp_h streams were not swapped however as it was thought 

easier to have them logging in the same way for the whole cruise.  Air temperature data were logged 

from 10:17 on day 250. Prior to this the air temperature values noted on the nominally hourly watch-

keeping log were typed in and added to the file.  

Throughout the cruise the TSG system had suffered from periodic data losses with bad data recorded 

for the two temperature variables and for conductivity. This problem became worse over time, and 

eventually the system failed. The problem was traced to the Ethernet connection and there was a major 

loss of surfmet data between 14:40 on day 249 and 08:35 on day 250 whilst a replacement Ethernet 

box was built.  

Data from the surfmet system was transferred daily from the ship's computer system and processed to 

give along track surface properties such as sea surface temperature, air pressure and true wind speed.   

Data were logged from the Shipborne Wave Recorder (SBWR) for processing ashore. On the 

following cruise (D333) however,  Robin Pascal checked the SWBR system and found that the 

pressure sensors which provide the high frequency component of the wave record were not switched 

on. The measurements taken on D332 therefore constitute only the low frequency part of the wave 

signal and are therefore only indicative of the amount of swell present, excluding any wind-wave 

component. 

Four scripts were used in the processing: 

surfmet0 convert data into PSTAR format; add in header information such as the name of the 

ship and variable names 

surfmet1 selected only data with non-zero time difference and pressure, removes 1.2% and 

0.3% of the data respectively. When pressure is zero, all other variables apart from 
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time are zero. A variable equal to zero was inserted for later use in salinity 

calculation. Conductivity is calibrated (see below). Editing specific to D332 based on 

data cycle numbers was carried out to 1) remove erroneous air temperatures 2) 

remove TSG variables when Ethernet connections caused bad data. Further general 

editing was carried out to range data and to remove spikes (see table). As the 

tsg_temp value required to calculate salinity was absent at times when there was valid 

SST, any gaps in tsg_temp for which SST was valid were replaced with SST+0.28˚C. 

Applying a time shift to allow for the lag in measurement was investigated but made 

little difference so was not applied. The surfmet system outputs calibrated (or 

nominally-calibrated) data. The conductivity was calibrated from the nominal output 

using surface data from the CTD (see below).  

surfmet2 merges on bestnav navigation (30 second data) to give ship speed and direction, 

calculate components for all speeds and directions, then average to 2 minutes. Merge 

on Ashtech heading information (2 minute file). 

surfmet3 applies some qc to the ship speed and then calculates true wind speed and direction. 

Variable Valid range for 

pedita 

Criteria for peditc Spike limit for 

pmdian 

ppar -10 - 1500 - - 

spar -10 - 1500 - - 

ptir -10 - 1500 - - 

stir -10 - 1500 - - 

humidity 0 - 100 - - 

airtemp -50 85 - - 

press 900 - 1100 - - 

SST 1 - 30 25 < cond < 47; |SST-tsg_temp| < 0.7 0.05 

cond -1 100 25 < cond < 47; |SST-tsg_temp| < 0.7 0.05 

tsg_temp 1 - 30 25 < cond < 47; |SST-tsg_temp| < 0.7 0.05 

wind speed 0 100 - - 

wind dirn, -361 361 - - 

fluor -1 100 - - 

trans -1 100 - - 
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Figure 9.1 Full cruise time series of light sensor data. 

 
Figure 9.2 Full cruise time series of relative wind speed (speed), true wind speed (trspeed), 

atmospheric pressure (airpres) and ship speed (vspeed). 

 
Figure 9.3 Full cruise time series of relative wind direction (dirn), true wind speed (trdirn), Ashtech 

heading (aHdg) and ship direction (vdirn). 
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Figure 9.4 Full cruise time series of SST, transmissivity, salinity and fluorescence. 

 
Figure 9.5 Full cruise time series of SST, humidity, air temperature (airtemp) and TSG temperature 

(temp_tsg). 

9.2 TSG Calibration 

The TSG conductivity was calibrated using the 8 m depth CTD conductivity from the gridded CTD 

file. Obvious erroneous data were removed from the comparison and a regression performed on the 

resulting 68 conductivity data pairs using plreg2.  The resulting calibration was: 

cond_tsgcal = -0.682 + 1.112 *cond_tsg 

the r2 value was 0.99936. Figure 9.6 shows the CTD and TSG conductivity data pairs before and after 

calibration. 
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Figure 9.6 Scatter plot of CTD primary conductivity against TSG conductivity as measured (black) 

and following calibration (red). The red line indicates a 1:1 relationship. 
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10 SHIP’S FITTED SYSTEMS 

Leighton Rolley 

10.1 General Issues Raised 

10.1.1 Navigation Precision  

An issue that was raised during the cruise was the accuracy of the GPS positions in NetCDF files 

created by TECHSAS.  The number of characters for position is constant i.e 8, currently if degrees of 

latitude or longitude are less than ten then the precision is 10-6 (i.e. ~10 cm resolution – and indeed 

this appears to be the limit of the netcdf data), however where degrees of latitude or longitude exceed 

10 then the precision read reduces to 10-5 (i.e. only ~ 1 m resolution), and should the longitude exceed 

100 degrees then the precision read would decrease to 10-4 (i.e ~ 10 m resolution).  Whilst this has not 

been a major problem on this cruise – this should be addressed as a matter of urgency. 

Update: This has been investigated and found to be an issue with the listit script. Using anylist 

produces full gps positions. Investigations are ongoing at base to remove the two levels of precision 

that are caused by using the listit script. 

10.1.2 TECHSAS Issues 

The TECHSAS data logger caused concern throughout D332.  The problems that we encountered with 

TECHSAS operation this cruise were entirely new and had not been experienced or identified by 

technicians on previous cruises.  Each of these problems was identified and handled to the best of our 

ability with the PSO getting regular updates on the progress.  Below is a list of identified issues with 

the TECHSAS systems: 

Audible Alarm 

TECHSAS would benefit from the inclusion of an audible alarm that should sound in the event that 

data streams freeze or the entire logging process dies.  A program or “mod” should be 

written/requested from Ifremer that detects the increase in file sizes of the latest file generated by 

TECHSAS.  If any file does not increase in size for a specified period of time (i.e 30seconds) an 

audible alarm should sound drawing the attention of the Technician to the problem. 

TECHSAS Crashes Due To Mounted Drives 

A problem that occurred on a number of occasions during the cruise was TECHSAS 1 “falling-over” 

when unable to write to its mounted drive (See investigation below).  Data from TECHSAS was 
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written to a mounted folder on TECHSAS 2 to ensure data integrity.  However, on a number of 

occasions this folder became unavailable to TECHSAS 1 due to high disk activity on TECHSAS 2 or 

the Linux operating system on TECHSAS 2 crashing and not being able to manage the drive.  When 

TECHSAS 1 tried to write to this folder it could not access it and TECHSAS 1 did not appear to be 

able to handle a non-existent location. This caused TECHSAS 1 to hang.  This is a problem with the 

software and the OS.  Once again safeguarding should be in place that would raise a visual and/or 

audible error if TECHSAS is unable to write the logged data to its primary or secondary locations.  

This should not crash the application and result in data loss.  In addition, new methods should be 

investigated to determine the best destination for a secondary storage location for data from 

TECHSAS 1.  It is critical that data is stored of system in the event of a major failure which results in 

total loss of TECHSAS 1.  

During this cruise I retained the NFS mount on Techsas 2 although there were a few crashes triggered 

by this with a total loss of data.  I retained this mount because of a lack of suitable other storage 

medium and because TECHSAS 1 was operating without its UPS due to a fault or a supply 

conditioner.  If TECHSAS had not been writing to an additional drive and had catastrophically died 

during this cruise (i.e through a power spike which we know can occur) the data loss would have been 

much more significant and could have resulted in up to 24hrs data loss. In the event of this I choose to 

play it safe and retain the T1 backup on Techsas 2. 

TECHSAS Module Errors 

During the cruise logical problems were identified with two TECHSAS modules that mishandled data 

thus resulting in the loss of data. 

The Trimble did not handle VDOP (vertical dilution of precision) correctly. This variable was 

populated with the ID of a space vehicle (Satellite).  This error was not addressed during this cruise as 

the scientific party were primarily concerned with Horizontal Dilution of Precision (HDOP) and 

Precision Dilution of Precision (PDOP) which were logged correctly.  This problem is traced to an 

Ifremer module. 

Also the Surfmet module did not correctly store r_temp and h_temp and the values were storing in the 

wrong filed. i.e r_temp was being stored in h_temp and vice versa.  In addition airtemp was being 

populated with x_temp. This resulted in a loss of airtemp recordings.  Subsequent investigation of 

these problems revealed that they had been present for a number of cruises. The respective authorities 

for data handling have been informed. 

Live Data 
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During the cruise the scientific party commented on the fact that they did not have access to the “live-

data” from TECHSAS.  This issue has been addressed and a new script has been written that will be 

installed in the coming months that populates the streams in “real-time”. 

10.2 Streams logged During the Cruise  

We have used three sets of data streams during this cruise:  one for data from TECHSAS 1;  one for 

data from TECHSAS 2;  the third set of streams is used as a composite – using data from both 

TECHSAS 1 and TECHSAS 2 to produce the most complete data streams. 

TECHSAS 1 
DATA STREAMS 

TECHSAS 2 
DATA STREAMS 

FULL 
STREAM 

adu2 adu22 adu23 
ea500d1 ea500d2 ea500d3 
gps_4000 gps4000 gps4000 
gps_g12 gps_g122 gps_g123 
gyronmea gyro2 Gyro3 
lighttmp light2 Light3 
log_chf log_chf2 log_chf3 
mettmp mettmp2 Mettmp3 
winch winch2 Winch3 

10.3 Processed Data Streams 

10.3.1 Relmov 

Calculate the relative motion of the ship from gyro and log data 

Input File Gyro – gyronmea 
Input File Log – log_chf 
Outpur File Relative Motion- relmov 
   Vn 
   Ve 
   Pfa 
   Pps 

10.3.2 Bestnav 

Calculates continuous navigation from a series of fix files and relative motion. 

Primary input File – Fixes  gps_4000 
Secondary Input File – Fixes  gps_g12 
Third Input File – Fixes   adu2 
Input File – Relative Motion  relmov 
Output file – navigation   bestnav 
Output file – drifts   bestdrf 
OUTPUT VARIABLES BESTNAV 

Lat 
Lon 
Vn 
Ve 
Cmg 



 121 

Smg 
Dist_run 
Heading 

OUTPUT VARIABLES  BESTDRF  
Vn  
Ve  
Kvn  
Kve  

The program bestnav reads position fixes from up to three RVS data files along with the ship's motion 

as calculated by relmov and generates a series of positions at time intervals of the navigation window. 

The names of the data files and the start and end times for processing are given on the menu; the size 

of the navigation window is taken from the environment variable NAVWINDOW. The menu also 

allows the maximum acceptable drift speed and a known drift speed to be input. The use of these 

values is described below. 

The basis for the program's calculations is a series of position fixes. The input fix files are given in 

order and a timeout given for each file. Fixes will be taken from the first file until a data gap longer 

than that file's timeout is encountered. Fixes will then be taken from the second file until either the 

first file resumes or the second file also times out. In the latter case the third file will be used. 

The gaps in the series of fixes are next filled using dead-reckoning based on the ship's motion relative 

to the water. When the end of each gap is reached the position obtained by dead-reckoning is 

compared with the fix position and the difference between the positions attributed to drift, caused 

either by wind or water currents. The drift in position is used to calculate an average drift velocity 

during the fix gap whose magnitude is compared with the known drift and maximum allowable drift 

entered on the menu. If the drift is greater    than the limit then the fix is assumed to be in error and 

processing is halted. If this occurs the user should either correct (or delete) the fix or increase the 

allowed drift and re-run the program. 

If an acceptable drift velocity is found this is added to the dead reckoned positions. This completes the 

calculation of the ship's track. For each navigation window a position is interpolated from the 

calculated track and a record written to the output fixes file. Each record also contains the calculated 

velocity represented as north and east components and as speed made good and course made good. 

The average heading of the ship is calculated along with a cumulative distance since the start of the 

file. If the output file contains a variable stream this will be set to 1, 2 or 3 to indicate which of the fix 

files the current fix was taken from. The status of the calculated values will either be good, if there 

was a fix at the time of the output record, or interp otherwise. The calculated drift velocities are also 

written to an output data file. This contains either one record per navigation window (if there is more 

than one fix in the window) or one record per fix. The file contains the north and east calculated drift 

velocities as well as the known and limitdrift speeds entered on the menu. 
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10.3.3 Protsg 

Calibrate temperature/conductivity data 
Raw Input File:  Surfmet 
Processed Output File: Protsg 
Calibration File  surftsg.cal 

Protsg is used to apply quadratic calibrations to values from the flow-through thermosalinograph. 

Output variables for salinity and, optionally, density are calculated from the calibrated values using 

standard algorithms. This program can also be used when calibrated temperature and conductivity data 

are available, but salinity and/or density must be calculated. This is achieved by using the program 

with the alternate calibration file surftsg.cal. 

Temp_m 
Temp_h  
Cond  
Salin  
Sigmat  

10.3.4 Prodep 

The program corrects the raw depths recorded by the EA500 echo sounder for local variations in 

sound velocity using values from Carter’s tables published by the Hydrographic Office.  These tables 

divide the world's oceans into areas of similar water masses and provide depth corrections for each of 

these areas. The prodep program uses a navigation file (bestnav) to find the position of each depth 

record and applies the relevant correction. Each record in the output file contains the raw and 

processed depths together with the number of the Carter area used. 

Input File   Ea500d1 
Output File  prodep 
Corrected Navigation in File bestnav 
Uncdepth  
Cordepth  
Cartarea 

10.3.5 Pro_wind 

WINDCALC inputs: bestnav, surftmp*  
Outputs:  
pro_wind     
Abswspd (knots)     
Abswdir 

10.3.6 Gps_4000 - Trimble 4000 

Streams: 
 Gps_4000 
 Gps4000 
 Gps40003 
NetCDF Files: 
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YYYYMMDD-HHMMSS-satelliteinfo-4000.gps 
YYYYMMDD-HHMMSS-position-4000.gps 

All three streams used the same variables: 
lat 
lon 
hdg 
hvel 
pdop 
s 
s1 
s1 
s3 
s4 
s5 
s6 

10.3.7 gps_ g12 - Fugro GPS_G12 

Streams  
 Gps_g12  - Techsas 1 
 Gps_g122  - Techsas 2 
 Gps_g123  - Techsas 1 & 2 Consolidated 
NetCDF Files  

YYYYMMDD-HHMMSS-ADUPOS-G12PAT.gps 
All three streams used the same variables: 

Type  
Svc  
Utc Universal Time Coordinated 
Lat Latitude 
Lon Longitude 
Alt Altitude 
Cmg Course Made Good 
Smg Speed Made Good 
VVel  
Pdop Position Dilution of Precision 
Hdop Horizontal Dilution of Precision 
Vdop Vertical Dilution of Precision 
Tdop Time Dilution of Precision 

10.3.8 ADU2 - Ashtec Attitude Detection Unit 2 

Streams  
 Adu2 - Techsas 1 
 Adu22 - Techsas 2 
 Adu3 - Techsas 1 & 2 Consolidated 
NetCDF Files  

YYYYMMDD-HHMMSS-ADUPOS-PAPOS.gps 
All three streams used the same variables: 

Sec  
Lat Latitude 
Lon Longitude 
Hdg Heading 
Pitch Pitch 
Roll Roll 
Mrms Measurement (rms) error in meters 
Brms Baseline error in meters 
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Attf Attitude 

10.3.9 Winch - CLAM 

Streams  
 Winch1 - Techsas 1 
 Winch2 - Techsas 2 
 Winch3 - Techsas 1 & 2 Consolidated 
NetCDF Files  

YYYYMMDD-HHMMSS-DWINCH-CLAM.DWINCH 
All three streams used the same variables: 

Cabltype 
Cablout 
Rate 
Tension 
Btension 
Comp 
Angle 

10.3.10 EA500d1 – Simrad EA500 Echosounder 

Streams  
 Ea500d1  - Techsas 1 
 Ea500d2  - Techsas 2 
 Ea500d3  - Techsas 1 & 2 Consolidated 
All three streams used the same variables: 

Depth 
Rpow 
Angfa 
Angps 

10.3.11 Gyronmea – Ships Gyro 

Streams  
 gyronmea  - Techsas 1 
 gyro2   - Techsas 2 
 gyro3   - Techsas 1 & 2 Consolidated 
NetCDF Files  

YYYYMMDD-HHMMSS-gyro-GYRO.gyr 
All three streams used the same variables: 

Heading 

10.3.12 Log_chf – Chernikeef Log (EM LOG) 

Streams  
 Log_chf   - Techsas 1 
 Log_chf2  - Techsas 2 
 Log_chf3  - Techsas 1 & 2 Consolidated 
NetCDF Files  

YYYYMMDD-HHMMSS-DYLog-LOGCHF.DYLog 
All three streams used the same variables: 

Speedfa 
speedps 
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10.3.13 Surfmet – Surfmet Met System 

Streams  
 Surfmet1   - Techsas 1 
 Surfmet2   - Techsas 2 
 Surfmet3   - Techsas 1 & 2 Consolidated 
NetCDF Files  
YYYYMMDD - HHMMSS-MET-SURFMET.SURFMETv2 
YYYYMMDD - HHMMSS -Light-SURFMET.SURFMETv2 
YYYYMMDD - HHMMSS -Surf-SURFMET.SURFMETv2 
All three streams used the same variables: 

Temp_h 
Temp_m 
Cond 
Fluo 
Trans 
Press 
Ppar 
Spar 
Speed 
Direct 
Airtemp 
Humid 
Ptir 
stir 

10.4 Downtime 

10.4.1 Surfmet – Met System Downtime 

Date Time Start Time End Duration Culm  

233 20:52:30  21:07:31  00:15:01 00:15:01 Surfmet Crash – Application Error 

238 08:13:14 08:15:18   00:02:04 00:17:05 Spiking Data reset and reboot of Surfmet system 

241 18:18:53 18:30:20   00:11:27 00:28:32 Data capture for investigation of message 
problems. The system was taken offline for 10 
minutes with approval from the PSO for 
investigation of airtemp issue discussed below 

249 14:48:38 21:46:04 06:57:26 07:25:58 

249 22:49:57 23:37:57 00:48:00 08:13:58 

250 02:23:28 08:43:17 06:19:49 14:33:47 

Major issue with TECHSAS.  

Failed Devicemaster. See additional notes 

 

Total Downtime 873 Minutes 

Total Time At Sea 10:00 (233) till 10:00 (267)1512hrs  –  51840 

Total Downtime 1.68% Downtime – 98.32 Uptime 
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Airtemp Message Problems 

The Surfmet system had a number of issues that affected its operation and data logging capabilities 

throughout D332. The first main problem that we encountered was that SURFMET was outputting the 

wrong value for airtemp in the $GPXSM message sent from Surfmet to TECHSAS.  It was actually 

outputting the temp_h value in the airtemp field.  This was a major issue as the meteorological team 

specifically required the air temperature for study of the air-sea interface. The information regarding 

this problem was emailed to base and the problem was observed on the RRS James Cook (25th 

August) as well. The individual responsible for this system was currently available on leave. A fix for 

the air temp was received on 03/09/2008 (247) and air temperature logging commence from 

03/09/2008 onwards.  This meant the scientific party were without accurate air temperature for 15 

days of the cruise. Since identifying this as a problem it took 10 days to fix this issue.  

Surfmet Device master Failure Friday September 5th 2008 (249) 

Most notable was the loss of the system on day 249 for six hours followed by data logging for roughly 

one hour and then another fall over followed by nearly 3 hours of logging before another gap of 

roughly six hours.  On Friday 5th September (249) it was decided that the Surfmet system should get a 

thorough clean pending some of the strange readings (See spike information) we have been getting.  

The system was taken offline for cleaning at 14:40:17 and the Transmissometer, Flurometer and 

Conductivity sensor were inspected and thoroughly cleaned with NOC’s calibration technician 

present.  When the system was restarted the Surfmet graphical displays showed values of 0 for all 

instruments in the Surfmet system.  The voltages display within the Surfmet application indicated that 

no voltages were being received from any instruments.  The lack of input voltages suggested a 

potential problem with the 12v power supply. The junction Box was opened and the 12v power supply 

inspected for faults.  One of the 12v power supply looked as though it had been shorted and the casing 

was considerably warped and had been apparently subjected to quite a bit of heat.  However, test 

revealed that the 12v supply was actually for the fans and the 12v supply below was for the actual 

Surfmet system which was functioning correctly.  The 12v supply for the fans also appeared not be 

working correctly and is not required by the Surfmet system. However, spares should be sourced in 

the event that this component of the system failed. 

As the system was receiving power the next line of inquiry was to analyze each individual instruments 

and component of the Surfmet system. The usual system reboots of the Surfmet, device master and 

12v supply were conducted.  When the system was brought back online it still showed 0's in the main 

display.  However, the raw values (voltages) now showed values for the majority of instruments with 

the exception of the conductivity and housing temperatures. These two instruments are on the same 

instrument bus of the surfmet system so it was decided that one of these had potentially become 
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problematic.  Inspection of the instruments showed that the transmissometer casing was loose and 

potentially susceptible to moisture ingress. However, analysis of the internal workings showed that no 

shorts or visible problems could be seen.  A spare conductivity sensor was sourced and this was 

replaced with the existing one with no results or improvements - the system still registered 0 voltages 

form the conductivity and housing temperature sensors.  

As the spare conductivity sensor had no calibration sticker and attempts to communicate with it had 

failed the old sensor was reinstalled.  During another subsequent reboot, communication with the 

conductivity sensor was restored but the raw voltage value was populated with either gibberish or "bad 

command" – which would have indicated a problem with the instrument and/or its settings.  

Inspections of the cabling yielded no problems.  Subsequent reboots sorted out the "Bad command" 

problem and eventually we were receiving all raw values but the system was not displaying any real 

units within the application.  As the application was receiving data from all instruments but not 

outputting them it was decided that the program was not applying its calibrations or had become 

corrupted.  During this it was also noticed that the Ethernet connection was dropping in and out, 

although this was sporadic.  A Windows XP restore was conducted which restored the system files to 

the 23rd of August – just before we sailed.  Once restored the whole system started working again 

with the September version of the Surfmet program.  However, the system promptly fell over 4 hours 

later and was once again displaying all voltages but no real data again.  Once again the network 

connection was flaky. For test purposes the surfmet system was plugged temporarily into the ship's 

network and the port on the surfmet system was found to be working correctly.  Plugging this back 

into the device master the system almost instantly got network dropouts.  It would appear that device 

master had developed a hardware fault.  The device master was possibly another victim of the power 

spike phenomenon that has plagued operations during this cruise.  The device master was replaced 

with an edgeport USB expansion module. New cables were made from the junction box to the module 

following the pin configurations (Half Duplex) etc.  Using this device we were able to remove the 

potential for power spikes in the future.  Port assignment was copied from the device master to the 

Edgeport.  The system then began responding correctly on the morning of 250 at 10:25. 

During the early days (233-249) of the cruise the system was also plagued by spiking data – this was 

attributed to runaway processes in the application. However, in hindsight this was likely due to 

corrupted data from the failed device master which was corrected by the restart (start/stop) of 

communications to the instruments when the application was restarted.  When the system fell over on 

a total inspection of the system resulted and every aspect of the system was checked from the 

instruments to the cabling.  The original prognosis although wrong (we thought surfmet had lost its 

calibrations) helped us identify an intermittent hardware failure with surfmet’s device manager (a hub 
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which controls instrument input) which was changed during the night/morning of 250 and resulted in a 

fully functioning system free of spiking data. 

Air in System 

Further issues were caused by the build up of air in the Transmissometer which resulted in “bad data”. 

This was attributed to the low flow rate through the surfmet system. The pipe work into Surfmet was 

checked for blockages but none were identified. 

10.4.2 SIMRAD EA500 

During the first test deployment of the CTD a fault was detected with the EA500 which would not 

ping. The system was thoroughly examined and the in-built system check indicated a possible fault on 

one of the signal processing boards. Spares were sourced and although we had several spare signal 

processing boards, all boards differed and no documentation was available to indicate which board 

should be used as a replacement. Eventually a hardware reset solved the problem and the system was 

restored to fully working condition.  

Additional downtime was incurred during days 261 and 262. During this period the TLO altered a 

number of settings to try and obtain optimum data quality from the EA500 which resulted in no depth 

readings. This was attributed to bad sea state.  However, during lowered sea state no additional 

readings were received from the EA500 and a hardware reset was undertaken. This resulted in the 

need to re-enter all default values. Once the system was brought online it recommenced pinging and 

returning a depth. 

10.4.3 SBWR 

There were two occasions during the cruise when the wave recorder stopped logging. The first 

occurred on 06/09/2008 (250) when the system froze.  Watch checks by scientific personnel failed to 

detect that the system had fallen over despite the values not increasing for a number of hours, the 

clock frozen (10:29) and the display not scrolling. The system was eventually restored at 16:10. The 

second occurrence of data logging failure appears to be caused by operator error or ship motion. The 

technician noticed that someone had been using the system as the SBWR screen showed the 

calibration setup.  The technician closed the calibration screen, although failed to check that the 

system was still logging.  Later that day it was noticed that logging had been stopped on the system.  

The system was subsequently restarted and continued logging. 

Note added by SB:  After the cruise, it was found that the SBWR pressure sensor had been off for the 

entire cruise.  See section 9.1. 
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10.4.4 ADU – Ashtec Attitude Detection Unit 

There were times during the cruise when Surfmet was receiving no data from the ADU2 and 

warranted a reset. However, the effect of resetting the system was unknown as it still took a number of 

minutes before any positional information was received. The ADU was also the least reliable of the 

onboard GPS systems and dropouts of 30 seconds occurred quite frequently throughout the cruise 

especially when quite far north. Returning much further south the fixes became much stronger and the 

drop-outs less frequent. 

During the cruise the system was fully checked in accordance with the system documentation. 

Antennae and cables were inspected for damage and the hardware was checked for any errors. No 

damage to the coaxial cabling was found or damage to connectors. The system appeared to be 

performing normal and the only conclusion is that the frequent 30 second drop-out occurred when the 

system lost track of one satellite, reducing the number of space vehicles it is tracking to below the 

minimum required for a hard fix. It then took an average of 30 seconds to locate another satellite. It is 

worth noting that there is minimum requirement of 4 satellites for the system to compute Pitch Heave 

and Roll data. 


