
 - 1 - 

Improved strategies for the automatic selection of 

optimized sets of Electrical Resistivity Tomography  

measurement configurations 

  

Paul B. Wilkinson, Philip I. Meldrum, Jonathan E. Chambers, Oliver Kuras, and Richard 

D. Ogilvy. 

 

British Geological Survey, Natural Environment Research Council, Kingsley Dunham 

Centre, Keyworth, Nottingham, NG12 5GG, UK 

 

Accepted 2006 August 14. Received 2006 August 10; in original form 2006 June 6   

 

(Short title: Improved ERT optimization strategies) 

 

 

 

 

Corresponding Author: Paul Wilkinson, Tel: +44(0) 115 936 3086 

Fax: +44(0) 115 936 3261. Email: pbw@bgs.ac.uk 



 - 2 - 

Published in Geophysical Journal International (Royal Astronomical Society / Blackwell 
Publishing). The definitive version is available at www.blackwell-synergy.com 
 

Geophysical Journal International (2006) 167, 1119-1126 
http://www.blackwell-synergy.com/doi/pdf/10.1111/j.1365-246X.2006.03196.x 



 - 3 - 

Summary 

Two strategies are presented for obtaining the maximum spatial resolution in 

electrical resistivity tomography surveys using a limited number of four-electrode 

measurement configurations. Both methods use a linearized estimate of the model 

resolution matrix to assess the effects of including a given electrode configuration in the 

measurement set. The algorithms are described in detail, and their execution times are 

analyzed in terms of the number of cells in the inverse model. One strategy directly 

compares the model resolution matrices to optimize the spatial resolution. The other uses 

approximations based on the distribution and linear independence of the Jacobian matrix 

elements. The first strategy produces results that are nearer to optimal, but the second is 

several orders of magnitude faster. Significantly however, both offer better optimization 

performance than a similar, previously published, method. Realistic examples are used to 

compare the results of each algorithm. Synthetic data are generated for each optimized 

set of electrodes using simple forward models containing resistive and / or conductive 

prisms. By inverting the data, it is demonstrated that the linearized model resolution 

matrix yields a good estimate of the actual resolution obtained in the inverted image. 

Furthermore, comparison of the inversion results confirms that the spatial distribution of 

the estimated model resolution is a reliable indicator of tomographic image quality. 
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1. Introduction 

Over the past decade, geoelectrical surveying techniques have become a popular 

choice for shallow subsurface investigations. The most widely used of these methods is 

electrical resistivity tomography (ERT). Recently several computer controlled multi-

electrode ERT systems have become available, which permit the collection of very large 

data sets that provide coverage of large areas at high data density. Despite the flexible 

nature of these systems, resistivity data still tend to be collected using traditional 

electrode arrangements, such as Wenner, Schlumberger or Dipole-Dipole arrays. These 

arrays are often a good choice, as they are well understood in terms of their depths-of-

investigation (Barker, 1989), lateral and vertical resolutions (Barker, 1979) and signal-to-

noise ratios (Dahlin & Zhou, 2004). However, they may not be the most efficient option 

if the time or number of measurements allowed for the survey is limited, or if a target of 

particular interest is spatially localized. 

Therefore there is currently much interest in generating sets of electrode 

configurations that optimize the resolution of the tomographic image for a given number 

of measurements or in a specified region of the model. The first attempt to do so in 

resistivity surveying was by Cherkaeva & Tripp (1996), who used weighted sums of 

pole-pole configurations to produce multi-electrode transmitter and receiver arrays that 

focused the subsurface current distribution on features at known locations and depths. 

However, most ERT systems permit at most two current electrodes to be used for a given 
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measurement. Two optimization methods more suited to use with these systems have 

recently been introduced (Furman et al., 2004; Hennig & Weller, 2005). Both rely on 

assessing the sensitivity of given arrays to discrete localized changes in resistivity. The 

sensitivity distributions are calculated from analytical perturbations (Furman et al., 2004) 

or expressions for the Jacobian matrix elements for the forward problem (Hennig & 

Weller, 2005). Optimization takes place by obtaining weighted sums of these 

distributions that maximize the sensitivity either evenly across the subsurface model or 

within a localized region. Summing sensitivity distributions has an intuitive appeal, in 

that regions of the model with high average sensitivity tend to be well resolved. 

However, it can only give a correct representation of subsurface resolution in certain 

limited circumstances (for example, when the sensitivity distributions have minimal 

spatial overlap with each other and the regularization constraints are small). Stummer et 

al. (2004) pioneered a more accurate approach that uses the sensitivity distributions to 

calculate an estimate of the model resolution matrix. This provides a measure of how 

well the observed apparent resistivity data resolve each model cell. They showed that 

their optimization algorithm produced sets of electrode configurations that out-performed 

traditional arrays. 

In this paper, we present two new ERT optimization strategies, which are both 

based on finding a limited number of electrode configurations that enhance the model 

resolution matrix. Of the two, the algorithm that performs better in terms of optimizing 

the resolution has much longer execution times. The other uses approximations to 
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increase its speed, but manages to achieve similar optimization performance. We 

compare our methods against that of Stummer et al. (2004) in terms of both speed and 

performance. We also analyze each algorithm’s effectiveness at optimizing the model 

resolution and validate these findings by inverting synthetic data generated using the 

optimized arrays. In addition we assess the scaling properties of all three algorithms, 

quantify the effects of the size of the inverse model on their execution times, and discuss 

the resulting suitability of each method for different applications. 

2. Method Overview 

The optimization strategies presented in this paper all rely on appraisals of the 

model resolution matrix R. This quantifies the degree to which each resistivity cell in the 

model can be resolved by the observed data. It is defined by mfit = Rmtrue (Menke, 1984), 

where mfit is the estimate of the model resistivities determined by the inversion process, 

and mtrue comprises the true resistivities, which are unknown. If each model cell is 

perfectly resolved then R = I, otherwise each row of R is the constrained least-squares 

best fit to the corresponding row of I (Jackson, 1972). Strictly R can only be defined for 

linear inverse problems (Friedel, 2003). However, despite the fact that the forward 

problem is non-linear, ERT inversion is typically implemented via an iterative series of 

linearized steps (Loke & Barker, 1995). This permits a first-order estimate of the model 

resolution matrix to be defined as 

 GGCGGR TT 1)( −+= , (1) 
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where the Jacobian matrix element Gij is the logarithmic sensitivity of the ith 

measurement to a small change in the resistivity of the jth model cell, and C contains the 

damping factors, constraints and spatial filters that regularize the inversion (Loke et al., 

2003). Our optimization procedures attempt to maximise the matrix elements on the 

leading diagonal of R. We denote these elements R(j) and call them the “model 

resolution”, noting that they are also sometimes referred to as the “model importance”. 

Since R is the least-squares fit to I, the model resolution lies in the range 0 ≤ R(j) ≤ 1. It 

provides a simple measure of how well the jth resistivity model cell is resolved by the 

data (0 being unresolved and 1 perfectly resolved). 

For a system of N electrodes, the comprehensive measurement set contains 

N(N-1)(N-2)(N-3)/8 non-equivalent four-electrode configurations when reciprocity is 

taken into account (Xu & Noel, 1991). It is likely that this set will contain configurations 

that reduce the stability of the inversion, such as those of the Wenner-γ type and others 

with large geometrical factors. These can be discarded before the optimization process 

begins, leaving a set Sc containing nc configurations. Suppose that one wishes to find the 

subset of nb measurements from Sc that, by some measure, provides the optimal model 

resolution. Since there are )!(!
!

bcb

c

nnn
n

− such combinations, and since nc scales as O[N4], 

there is no practical possibility of testing them all. One could try a global optimization 

technique, such as simulated annealing or a genetic algorithm. However, the sheer 
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number of possible combinations and the lack of an obvious algorithm for producing 

beneficial test combinations would almost certainly limit its effectiveness. 

A more practical approach is to use local optimization. The most effective method 

would be to select a small initial base set, then test every other configuration by 

recalculating R for the base set plus that particular configuration. The best configuration 

would then be added to the base set for the next iteration, and the process would be 

repeated until the set contained the required number of configurations. But each step 

would require O[N4] calculations of R, and each of these calculations would require a 

matrix inversion, which is an O[m3] process where m is the number of model cells. These 

unfavourable scaling properties make this form of local optimization far too inefficient 

for practical use. However, several modifications can be made so that it retains most of 

its efficacy whilst drastically improving its efficiency. Since R does not tend to change 

rapidly after the first few steps, it is not necessary to recalculate it for the add-on 

configurations every time. In the intervening iterations, it is sufficient to check that the 

sensitivity distribution of the configuration being tested has a degree of orthogonality to 

those that have already been added (Stummer et al., 2004; Menke 1984). Since this check 

is an O[m] process, this modification leads to a considerable increase in speed. When R 

does need to be recalculated, this can be done by updating the model resolution of the 

base set using a Rank-1 correction based on the Sherman-Morrison formula (Press et al., 

1992). This replaces the O[m3] matrix inversion with an O[m2] process, giving a further 

large performance benefit. The local optimization method, with these two modifications, 
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is the basis of our first strategy (“Compare R”). It is still rather slow, taking several hours 

on a 3GHz desktop PC for a realistic 2.5D ERT problem, but it does give very good 

results. 

The above method was developed as a more effective version of the strategy of 

Stummer et al. (2004). In their paper, each configuration is ranked by a “Goodness 

Function” that attempts to assess the effects of its addition to the base set without 

calculating R explicitly. This replaces the O[m3] matrix inversions with several O[m] 

calculations and is therefore much faster than the “Compare R” approach, taking only a 

few minutes to run for the same problem. But their method, which we denote the 

“Original GF” algorithm, is also significantly less effective at optimizing the model 

resolution. We have improved on their approach to create the “Modified GF” strategy, 

which not only gives results that are closer to those obtained from “Compare R”, but is 

faster still than “Original GF”. 

3. Configuration Assessment 

Strategy 1 – Compare R 

This is the most computationally intensive approach of the three strategies. Each 

possible configuration to be added to the base set is ranked in terms of ∑ =
m

j jR
jR

m 1 )(
)(1

b

t , 

where Rt is the resolution of the base set plus the test configuration and Rb is the 

resolution of the base set. The finesse in the method involves using the Sherman-
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Morrison Rank-1 update to calculate Rt from the known Rb, rather than explicitly from 

Eq. 1. Briefly, if g is the m element vector containing the logarithmic sensitivities of the 

test configuration and Rb has already been calculated using Eq. 1, then the matrices are 

updated as follows: 

 gg ⊗+→ GGGG TT , 

 ( ) ( )
µ+

⊗−+→+
−−

1

11 zz
CGGCGG TT , (2) 

where z = (GTG + C)-1g, µ = g · z and ba ⊗  denotes the matrix multiplication of a and 

bT. Each step in this process scales as O[m2] or better, and the final calculation of Rt is 

also O[m2] if only the leading diagonal of Rt is calculated. 

Many configurations are added to the base set at each iteration. The first is the 

highest ranked configuration, represented by the sensitivity vector g1. The next highest 

ranked, g2, is then added only if it is deemed to have a suitable degree of orthogonality to 

the first. This is assessed by calculating |g1 · g2| / (|g1| |g2|) and checking that it is less than 

a specified limit. This procedure is repeated until the desired number of extra 

configurations has been appended to the base set, with each configuration being checked 

against those that were previously added on this iteration only. 

Strategy 2 – Original GF 

Full details of the original goodness function are given in Stummer et al. (2004). 

In brief, the ith add-on configuration is ranked by a goodness function defined by  
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where 

 ∑
=

=
c

1c

sum 1 n

k
kjj G

n
G  (4) 

and Rc is the model resolution of the comprehensive set. The bracketed term in Eq. 3 

selects configurations that improve regions of the model that are poorly resolved by the 

base set. Gj
sum provides a normalization factor by summing the absolute sensitivities for 

the jth model cell of all configurations in the comprehensive set. This ensures that the 

goodness function gives equal preference to improving the resolution in all regions of the 

model, regardless of their relative sensitivity. 

As with the “Compare R” approach, multiple configurations are tested for 

inclusion in the base set at each iteration. In this strategy, the orthogonality check is 

performed against the entire base set, not just the configurations that have been added on 

this pass. This means that, if the add-on configuration fails this test against some 

configuration in the base set, then it will also fail at every future iteration (since that 

configuration will remain in the base set). Therefore any failing add-on configurations are 

discarded to save time in subsequent iterations. However, if the orthogonality test is too 

strict, it is possible to discard all the add-on configurations, thereby causing the algorithm 

to halt prematurely. 
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Strategy 3 – Modified GF 

The modified goodness function follows a similar approach to the original. Each 

configuration is ranked by 

 

2/1
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The changes between the modified and original goodness functions are pragmatic in 

nature, having been found to be beneficial on the basis of numerical tests involving 

several different subsurface geometries. The Gj
sum term now only sums over the nb 

configurations in the base set. Its purpose has been changed so that it gives high 

weighting to add-on configurations that are orthogonal to the base set, and this effect is 

increased by the squared terms in Eq. 5. Since low values of Gj
sum tend to imply poor 

resolution of the jth model cell, these modifications can over-emphasize the importance 

of configurations with sensitivity distribution that are strongly localized in poorly 

resolved regions of the model. This can have the side-effect that other useful 

configurations, which provide more uniform improvements to the model resolution, are 

often ignored. Therefore the bracketed term in Eq. 5, which has the purpose of improving 

the same poorly resolved regions, has had its exponent reduced to restore the balance. 

The overall effect of the modifications is that add-on configurations are chosen which 
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improve the resolution whilst simultaneously having a high degree of orthogonality to the 

base set. This means that it is only necessary to perform the separate orthogonality test 

against the configurations that have been added during this iteration, rather than against 

the whole base set. This substantially reduces the amount of time spent performing these 

checks, and removes the possibility of running out of add-on configurations. 

4. Performance Tests 

We have tested each of the strategies using a 2.5D geometry which matches that 

used in Stummer et al. (2004). This consists of 30 electrodes positioned at 5 m spacings 

and 16 exponentially increasing depth levels in the model, giving a total of m = 464 

resistivity model cells. All the Wenner-γ configurations and others with geometrical 

factors larger than 5,500 m were discarded, leaving a comprehensive set Sc containing 

nc = 51,373 unique configurations. The initial base set Sb was a sparse dipole-dipole array 

comprising nb = 147 configurations with an ‘a-spacing’ of 1 and ‘n-levels’ of 1 → 6. At 

each iteration an extra 0.09nb configurations were added to Sb, and nb was updated to 

1.09nb.  

The Jacobian matrix G contains the logarithmic sensitivity of each configuration 

to changes in the model resistivities. It was calculated using the adjoint field approach 

(Park & Van, 1991), which is valid for arbitrary resistivity distributions. To ensure that 

the generated sets of configurations would be applicable to general resistivity surveys, we 

assumed no prior knowledge of the resistivity distribution. Therefore we chose to use a 
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homogeneous half-space, which increased the speed and simplicity of the sensitivity 

calculations. As an aside, in this situation the adjoint field method also has a particularly 

simple physical interpretation (see Appendix A). 

In addition to the unknown resistivity distribution, the final constraint matrix 

cannot be determined before the inversion is performed. This is due to the iterative nature 

of the non-linear inverse resistivity problem; the inversion algorithms tend to change the 

constraints at every iteration to maintain stability and maximize image resolution. 

Fortunately the optimization strategies all rank the additional configurations in terms of 

one model resolution distribution divided or normalized by another. Therefore they are 

relatively insensitive to the detailed structure of these distributions, and hence also to the 

constraint matrix, providing that the model resolutions are physically reasonable 

(Stummer et al., 2004). Consequently we used a simple damping constraint C = λI with λ = 2.5×10-6, which was chosen so that the model resolution, Rc, of the comprehensive 

measurement set was small (Rc ~ 0.05) at a depth of ~ 30 m. This depth is the typical 

maximum median depth of investigation for four-electrode configurations on an array of 

145 m length (Barker, 1989). The distribution of Rc is shown in Fig. 1 on a logarithmic 

scale. Its spatial dependence appears realistic since it exhibits the typical, approximately 

exponential, decrease of resolution with depth. 

Each algorithm was run for 40 iterations, producing a set of 4,368 configurations. 

The upper limit on orthogonality was chosen separately to give the best possible results 

for each algorithm. Therefore this limit is slightly different for each, being 0.97 for 
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“Compare R”, 0.98 for “Original GF”, and 0.95 for “Modified GF”. The outputs of each 

strategy are shown in Fig. 2 as plots of the spatial distribution of the relative model 

resolution, Rr. This is defined as the model resolution of the optimized set divided by that 

of the comprehensive set (Rr = Rb / Rc). The colour scale ranges from white (Rr = 0), 

through the visible spectrum from blue to red, to black (Rr = 1).  The best possible 

relative model resolution distribution would be provided by the comprehensive set, and 

would therefore equal 1 (black) throughout the model space. Note that this means that the 

model resolution would be as shown in Fig. 1, it does not imply that the model resolution 

would be uniformly good everywhere. The plots in Fig. 2 show Rr at six different stages 

of the optimization process (iteration numbers 1, 8, 16, 24, 32 and 40). Qualitatively it 

can be seen that the model resolution improves with increasing iteration number for each 

of the optimization strategies. It should also be clear from Fig. 2 that, by iteration 40, the 

“Compare R” strategy has produced the best distribution of Rr, whereas the performance 

of “Original GF” is noticeably worse. However, the results of the “Modified GF” 

algorithm appear to be nearly as good as those of “Compare R”. The execution times for 

the algorithms were 6.0 hours for “Compare R”, 6.3 minutes for “Original GF”, and 3.9 

minutes for “Modified GF”. 

A more quantitative measure of the performance of each method is presented in 

Fig. 3. The graphs show the average value of the relative model resolution, 

∑ == m

jm
jRS

1 r
1 )( , plotted against the iteration number for “Compare R” (blue line), 
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“Modified GF” (red line) and “Original GF” (green line). From these graphs, it can be 

clearly seen that the “Compare R” strategy is the most effective, producing a final 

average resolution of S = 0.94, closely followed by “Modified GF” (S = 0.92), with the 

least effective being “Original GF”, which produced S = 0.84. It should be emphasized 

that these optimized sets contain only 4,368 configurations, or 8.5% of the total number 

available. Despite this, they achieve average model resolutions comparable with that of 

the comprehensive set (S = 1.00). 

As with Stummer et al. (2004), we find that the largest improvements in Rr are 

due to the inclusion of asymmetric dipole-dipole configurations. Our implementation of 

their “Original GF” algorithm exhibits very similar behaviour to that which they reported. 

The algorithm initially selects only dipole-dipole type configurations, in our case for the 

first 25 iterations. After this point, nested configurations (i.e. the C1-P1-P2-C2 type) are 

chosen more and more frequently, with the numbers of both types projected to be roughly 

equal (about 3,000 of each) at the 43rd iteration. The “Compare R” method produces 

somewhat different behaviour, with dipole-dipole and nested configurations being added 

in approximately the same ratio (~ 4:1) at each iteration. The “Modified GF” approach is 

similar, but the proportion does change slightly, from ~ 11:1 initially to ~ 9:1 at the 40th 

iteration. Compared to “Original GF”, both of our new approaches tend to utilize more of 

the asymmetric dipole-dipole configurations and select them earlier in the optimization 

process. 
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5. Inversion Results 

Having obtained distributions of Rr from the three optimization strategies, it is 

desirable to invert data obtained from the respective sets of configurations to test how 

well each set performs against known targets. This is to give confidence that assessing 

the distribution of Rr is a good way to predict the inversion performance of a given 

configuration set. To this end we have tested each set against three synthetic models, one 

with four resistive prisms of ρ = 100 Ωm buried at different depths in a background with ρ = 10 Ωm (Fig. 4a), another with only the deepest of the four prisms (Fig. 4e), and a 

third with both conductive and resistive structures (Fig. 5a). The data were calculated 

using the Res2DMod software with a finite-difference forward modelling algorithm. 

They were inverted using the companion Res2DInv program using the same model cell 

discretization and an l1-norm (robust) model constraint (Loke et al., 2003). The finite-

element method was used within Res2DInv to avoid having the same combination of 

discretization and modelling algorithm in the forward and inversion processes. 

The inverted images for the four-prism model are shown in Figs 4b-d for the 

“Compare R”, “Original GF” and “Modified GF” strategies respectively. We assess the 

resolution quality by the degree to which a localized resistivity structure in the inverted 

image is contained within the boundary of the corresponding prism in the forward model. 

We also take into account the degree to which the resistivity contrast in the forward 

model is reflected in the inversion. In these qualitative terms, it can easily be seen that the 
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prisms are best resolved by the “Compare R” configurations, then by “Modified GF”, and 

least well by “Original GF”. This agrees with what would be expected from the degree of 

optimization of the respective Rr distributions. 

These assessments can be quantified by calculating the average resistivity value 

within the outlines of the prisms. The closer each prism is to being perfectly resolved, 

then the nearer the average value would be to 100 Ωm. The average resistivity values are 

shown adjacent to each prism in Figs 4b-d. By this measure, the best resolution for all 

four prisms is obtained with the “Compare R” algorithm. With the exception of the 

deepest prism, the next best results are obtained using “Modified GF”, whilst “Original 

GF” gives the poorest resolution. Although the deepest prism has a slightly higher 

average resistivity using the “Original GF” strategy as opposed to the “Modified GF”, its 

structure is not actually resolved at all in either image. We have examined both of these 

images using much higher resolution contouring than shown in Fig. 4. This has 

confirmed that, in contrast to the “Compare R” image, neither contains an isolated 

resistivity maximum in the vicinity of this prism. The associated average values merely 

reflect the spatial trends of the resistivity over a much larger area.  

Although “Compare R” managed to resolve a weak localized resistivity maximum 

in the vicinity of the deepest prism, it is clear that the resolution in this region is poor 

using any of the three strategies. Therefore, to assess their resolving capabilities more 

accurately at these depths, we have repeated the exercise using a forward model 

containing only the deepest prism (Fig. 4e). The inverted images for this single-prism 
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model are shown in Figs 4f-h using a compressed colour scale. With the same assessment 

criteria as before, the “Compare R” scheme performs the best, showing some localized 

structure and the greatest resistivity contrast against the background. The capabilities of 

the “Original GF” and “Modified GF” schemes are similar, but the “Modified GF” is the 

better of the two, resolving a faint localized structure where the “Original GF” produces 

none, and also producing a slightly higher resistivity contrast. These observations are 

corroborated by the average resistivity value, which is highest for “Compare R”, and 

marginally higher for the “Modified GF” than the “Original GF”.  

It is also possible to compare the spatial resolution measured directly from the 

inverted images with an estimate of the radius of resolution obtained from R. Using the 

results for “Compare R” as an example, we defined the edge of the prism in the inverted 

image to be at 11.8 Ωm, which is the centre contour between the maximum and 

background resistivities. We measured the spatial resolution as the distance between this 

contour and the edges of the prism in the forward model, obtaining a value of ~ 9.2 m. At 

the midpoint of the prism, the estimated model resolution is R ~ 0.035. The radius of 

resolution, defined by Friedel (2003), is given by 

 
R

A
r

π
= , (7) 

where A = 12.5 m2 is the area of the model cell at the prism midpoint. This gives an 

estimated radius of resolution of r ~ 10.7 m. The good agreement between these two 

estimates of spatial resolution further validates the use of the simple damping constraint 



 - 21 - 

in Eq. 1, and gives added confidence in the use of model resolution estimates to predict 

inversion performance. 

Whilst the forward and inverse models involving resistive prisms illustrate the 

close correspondence between R and the spatial resolution, it is also helpful to examine 

the performance of the same optimized arrays against a more general model. To this end, 

we consider the model used by Stummer et al. (2004), which consists of a conductive 

overburden, a resistive prism and an inhomogeneous conductive prism (Fig. 5a). For ease 

of comparison we have adopted their colour scale and block display for Fig. 5. It should 

be noted that, when comparing the results of the two papers, we have used an l1-norm 

model constraint, which has the effect of improving the recovered blocky geometry of the 

model, but also reduces the peak resistivity or conductivity contrasts that are obtained. By 

inspecting Figs. 5b-d, it is clear that each of the three algorithms has resolved the two 

prisms and the overburden. Marginally better resistivity contrasts are obtained with 

“Compare R” (Fig. 5b) for the conductive prism, and with “Modified GF” (Fig. 5d) for 

the resistive prism. However, there is little quantitative difference, as evidenced by the 

similar average resistivity values obtained with each algorithm. More importantly, each 

of the new strategies significantly improves on the resistivity contrasts achieved with the 

“Original GF” method (Fig. 5c). 



 - 22 - 

6. Conclusions 

We have proposed two new local optimization strategies that, for a given limited 

number of four-electrode configurations, provide near-optimal subsurface resolution for 

ERT surveys. Both algorithms use a linearized first-order estimate of the model 

resolution to assess the suitability of the electrode configurations. One approach, 

“Compare R”, calculates the effects of adding new configurations directly by updating 

the model resolution matrix. The other method, “Modified GF”, uses a goodness function 

to estimate which new configurations would be beneficial to include. 

We compared these schemes with the “Original GF”, a previously published 

algorithm that uses a similar approach. Our tests indicate that “Compare R” produces the 

closest to optimal subsurface distribution of model resolution. However, this algorithm is 

slow and scales unfavourably with the number of resistivity cells in the model. The 

“Original GF” method is at least an order of magnitude faster but its results exhibit 

notably poorer resolution. However, our “Modified GF” runs faster still and produces 

model resolutions that are much closer to those obtained by the “Compare R” method. 

The estimate of model resolution was calculated on the basis of a homogeneous 

half-space so that the results would not be specific to any particular subsurface resistivity 

distribution. This had the additional benefit of increasing the speed and simplicity of the 

Jacobian matrix calculations. Despite these assumptions, tests involving the inversion of 

synthetic data derived from forward models with resistivity contrasts of 10:1 demostrated 
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that the distribution of the estimated model resolution was a reliable indicator of the 

quality of the final inverted image. Both qualitative and quantitative assessments of the 

inverted images showed that the best results were obtained with the “Compare R” 

strategy closely followed by our “Modified GF”, whereas the poorest resolution was 

produced by the “Original GF”. These findings were supported by further tests on a more 

general model involving both conductive and resistive prisms and a conductive 

overburden. 

By applying a spatial weighting function to the model resolution distribution, it 

would not be difficult to adapt these procedures to target a specified region of the 

subsurface (Hennig & Weller, 2005; Furman et al., 2004). Our scaling analysis suggests 

that, due to its long execution times, “Compare R” is likely to be used only in the 

preparation stages for a field survey, and would therefore require prior knowledge of the 

target areas and geometries. However, the “Modified GF” method is probably fast 

enough that it could be used for real-time array optimization. It could therefore form the 

basis of an adaptive time-lapse electrical imaging system. This would use feedback from 

the resistivity image to determine time-dependent weighting functions for the next 

inversion, automatically optimizing the spatial resolution for time-lapse tomographic 

imaging of dynamic subsurface processes. 
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Figure Captions 

Figure 1. Logarithm of the model resolution Rc for the comprehensive set of 

configurations. 

Figure 2. Relative model resolutions Rr at six different stages of the optimization 

process for each strategy. Each column shows the results of a different optimization 

strategy, with the iteration number and number of configurations in the optimized sets 

increasing down the page. 

Figure 3. Average relative model resolution as a function of iteration number for 

each of the three optimization strategies. 

Figure 4. Forward models a) & e) showing the locations and sizes of resistive 

prisms (ρ = 100 Ωm, light red) embedded in an otherwise uniform background 

(ρ = 10 Ωm, light blue). Also shown are inverted images obtained from forward modelled 

synthetic data using optimized sets of configurations generated with b) & f) “Compare 

R”, c) & g) “Original GF”, and d) & h) “Modified GF”. The displayed average resistivity 

values relate to the regions of the inverted images bounded by the prisms. 

Figure 5. a) Forward model used in Stummer et al. (2004), showing the locations of 

conductive and resistive prisms and a conductive overburden in an otherwise uniform 

half-space (ρ = 1000 Ωm, yellow). Also shown are inverted images obtained from 
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forward modelled synthetic data using optimized sets of configurations generated with b) 

“Compare R”, c) “Original GF”, and d) “Modified GF”. The displayed average resistivity 

values relate to the regions of the inverted images bounded by the prisms. 

Figure A1. A background medium of uniform conductivity σ incorporates a small 

volume τ with conductivity σ+δσ. In the electric field of a current source C this causes a 

dipolar perturbation current density of δJ at an angle θ and distance r′ to the field point P. 
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Appendix A – Physical Interpretation of Sensitivity  

Calculations 

The derivation of the adjoint method used to calculate the Jacobian matrix 

elements is mathematically dense (Park & Van, 1991) and does not readily give insight 

into the physical origins of the form of the sensitivity function. But when the subsurface 

resistivity distribution is homogeneous, the sensitivity does have a simple physical 

interpretation; the change in potential due to a small localized resistivity perturbation is 

due to the change in dipolar current density flowing in the perturbed region.  

To demonstrate this, we consider a homogeneous half-space of conductivity σ 

containing a small volume τ in which the conductivity is σ + δσ (Fig. A1). If the 

perturbation is weak, then the electric field E in τ can be assumed to be unchanged (this is 

equivalent to the Born Approximation in scattering theory). The field E, due to the 

current electrode C, produces a dipolar current flow through the volume τ. The change in 

the dipolar current density caused by the conductivity perturbation is δJ = Eδσ. In turn, 

this extra current density changes the potential at P by 

 r3
2'2

cosδδ d
r

J
V ∫=

τ πσ
θ

 (A1) 

(Lorrain et al., 1988), where r is a position vector within τ, and r′ and θ are the distance 

and angle from τ to P respectively. The magnitude of the electric field of a notional unit 

current pole located at P would be 2'2
1'

r
E πσ= . Therefore  
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τ
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θσ
, (A2) 

where the minus sign arises since E′ is anti-parallel to r′. Rearranging Eq. A2 slightly in 

terms of resistivity ρ gives 

 rEE 3
2

'
δδ dV ∫ ⋅=

τρ
ρ

, (A3) 

which is the result found in Park & Van (1991). 

 


