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I Introduction

Phytoplankton has an immediate and strong socio-economic importance for human society as it
will influence various human uses of water e.g., as drinking watcr, tourism, recreation ....

Consequently, the possible influence of climate change on phytoplankton development is of
immediate concern for human society. A better understanding and prediction of the influence of

climate variability on phytoplankton growth patterns based on historical records is one of the
main tasks of CLIME's work package 8. Here we report the influence of climate variability on
the historic development of phytoplankton growth patterns in thc primary and secondary sites of
CLIME (Table I). Using these study sites, we encompass lakes in three different regions, i.e.,
Western, Central and Northern Europe, and lakes of different setting, morphology, and trophic
status.

Table I. List of lakes in which phytoplankton growth patterns have been analysed in this report

Lake Country Surface area Trophic status

Erken Sweden 23.7 km2 Mesotrophic
Esthwaite Water UK 1km' Eutrophic
Grei lensee Switzerland 8.5 km' eutrophic
Constance (Upper
Lake Constance)

Austria,
Germany,
Switzerland

470 km' oligo-mcsotrophic

Lough Leane Ireland, 19.9 km' Mesotrophic
Maggelsee Germany 7.3 km' Hypereutrophic
Malaren (fikoln) Sweden 94.1 km' Eutrophic
Malaren Eats..
Mtualsee

Sweden 41 km' Hypereutrophic
MesotrophieAustria 14.2 kaj

Ift;r• r....aps alikonlit  
: Amu&

261I km1 

.

0.134 km
Mesotrophie
oligo-mcsotrophic. Vilmv or Sg

WI; 'v
Valktikkot a ut

"Inhind • 13.42 km'
-, Mesotrophic

ilirdmitl .  
13stonla

0.042 kW  
270 knY

Dystrophic
• EutrophicVArtIltv

WhulturnQu OK 8 km' mesotrophic
Mesotrophic
mesotrophie

1owut %ficleh
—Y

_Switzerland 65 km2
' I_Upper '1'Ar eh, Switzerland. _. 20 km'
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The first part of the report introduces the study lakes. It analyses the main drivers of variability in

phytoplankton growth patterns and the response of phytoplankton growth patterns, i.e. biomass

and timing events to climate variability in the respective lakes. It also reports and discusses

influences other than climate variability on phytoplankton growth patterns, most notably the

influence of cultural eu- and oligotrophication. In the second part of the report a comparative

analysis of the lakes responses to climate variability is given.

2 Lake specificresults

2.1 Lake Constance, Germany, Austria, Switzerland

Lake Constance is a large mono-mietic and deep perialpine lake which was subject to strong

eutrophication and oligotrophication in the last century. During eutrophication, maximum

phosphorus concentrations during winter mixis rose from 8 ug l in the 1950s to approximately

80 ag in the 1970s. Since the 1980s total phosphorus concentrations decreased again and

dropped to 12 Lig11 during recent years. The consequences of oligotrophication for Lake

Constance has been subject of a number of studies (Bauerle and Ciaedke 1998).

Also, a number of previous studies have shown that.Lake Constance and at least its zooplankton

community is strongly influenced by climate variability associated with the North Atlantic

Oscillation (Straile and Adrian 2000;Straile 2000,Straile, Joehnk, and Rosskneeht 2003) Here we

analyse the response of phytoplankton growth patterns to the.reduction in nutrient loads and to

climate variability based on measurements of chl a concentrations front 1.980—2003 (no

measurements available in 1984 and 1985) with a weekly sampling frequency during the

vegetation period. In addition we were interested in the effect of the temporal resolution of the

analysis. To analyse thislwe performed our calculations both with the original weekly data as

well as with monthly averages of original data.

In respect to the response of chl a to TP concentrations both types of analyses yielded similar

results at least during the growing season. Reductions in chla concentrations with

oligotrophication, i.e. a positive correlation between chla and TP concentrations, were observed

during May and July, i.e. during the timing of the phytoplankton spring and the summer peaks. In
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addition significant correlations were observed in the analysis based on monthly averages in

March and November. However, thc ecological significance of these observations is unclear.

Hence, the main response of overall phytoplankton expressed as chla concentrations to

oligotrophication of Lake Constance seemed to take place during the periods of the spring and

stinuncr phytoplankton pcaks.
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Pig, I Seasonal development of the relationship between Lake Constance a) monthly averaged
cpi imnet lc lehlal and b) weekly measurements of [chl a] with [Total Phosphorus] measured during
wintermixis. Dots indicate individual correlations significant at p < 0.05.

The relationshipbetweenchlorophyll conccntrations and the NAO index was analysed after time

series were linearly (Jett-ended.Correlations of monthly chl a averages with the NAO index

revealed no significant influence of NAO variability on chl a concentrations (Fig. 2a). Using the

weekly series. however, a pattern emerges during summer and autumn (Fig. 2b). During

ittine/Julyand again in autumn correlations are mostly positive, whereas in-between, i.c. during

A ugust/September negative correlations prevail. Thc reason for this cyclic behaviour remains

minim, Most probably, this results from a predator-prey interaction of algae with Daphnia. The

latterhas been shown to respond very sensitively to NAO variability in Lake Constance (Straile

2000),
In eartaaNang0with previoiliStudies(Strailc and Adrian 2000;Straile 2000), we found no

IniThelle0cifUrnNAO on algal dynamics in spring, despite the NAO has an influence on water

column stabilityoetiake Constancein April and May (Straile, Joehnk, and Rossknecht 2003).

DilringdION InOntlittphyloplanktonseems to be controlled at least partially by small herbivores.

in tioniroto,timing Mord) ;priys,en,„veins, .,e., absenceof wind induced mixing, which seems to

bo oorolntedto Oio
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Fig. 2 Seasonal development or the ivlationship between Lake Constance a) monthly averaged

epilimnetic chla concentrations and In weekly measurements of chl a concentrations with the NAO w nter

index (Hurrell 1995) Dots Mille:Ili' idual correlations significant at p < 0.05.

NAO is important law lie shirt ()1 111c alii;i1 bloom (Gaedke. 011inger, Batterle, and Straile 1998).

Absence of mixing as indicated lw iii :illicit small temperature gradient was associated with a

strong gradient Mehl a colleen ;Ii101I: sidlitee [Chl a] more than 3-fold higher in years with


a temperature gradient than without d temperature gradient (Fig.3).
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Fig.3 Average March temperature and chlorophyll a gradients yeats w 11(hlgek) and without (red) a

temperature gradient H temperature difference between <5m and I`, 70in water depth) in March in Lake

Constance.

Altogether our studies show that a multitude of factors influence phytoplankton growth patterns

in Lake Constance. Reduction of nutrient loads, i.e. oligotrophication is definitely of major

importance. In addition, there is also an influence of climate variability, which is however not

necessarily associated with the NAO. The influence of the NAO on phytoplankton growth
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patterns is most probably an indirect one, mediated by food web interactions with Daphnia.

Finally, a high temporal resolution, i.e. based on weekly measurements, of the analysis seems to

be important to detect these indirect effects of the NAO.

2.2 Lakes Greifen, Zurich and Walen , Switzerland

Phytoplankton data from four lakes (Greifensee, Walensee, Upper Thrichsee and Lower

Thrichsee) are available from 1975 to 2000 on a monthly basis (26 years). The lakes arc located

in the northern perialpine region (at —420m a.s.1.).They lie close to one another, in the vicinity

of the city of Zurich, and arc subjected to approximately the same local weather conditions

(Anneville et al. 2004). However, they differ in many other respects. Their surface areas range

from 8.5 kin2 to 67 km2, their maximum depths from 32 m to 150 m, and their trophic states from

oligotrophie to very eutrophic.

3 -

0 -,

19701980 1990 2000

year
Fig. 4 Time-course (1975 to 2000) of mean winter (D,J,F) total phosphorus concentration in four swiss
lakes. Red:Greifensee, blue: Lower Ziirichsee, green: Upper Ziarichsee, yellow: Walensee.

Greifensee

Greifensee is not only the smallest of thc four lakes (surface area 8.5 km2; max. depth 32 m), but

also the most cutrophic. The mean winter total phosphorus concentration (P".) from 1975 to

2000 was 202 ttgli. Greifensee is undergoing strong re-oligotrophication (thirgi et al. 2003): in

the late 1970s. ['taw ranged between 286 and 472 traL-1,whereas in the late 1990s it ranged
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between 85 and 117 ugL-1 (Fig. 4). This decrease in 1310„„,is significantly negatively correlated

with time (r = -0.92, p < 0.0001). Phytoplankton biomass showed a strong seasonality, which is

typical for eutrophic lakes (13iirgi1994; Bilrgi et al. 2003). Winter values were low (around 1 to 2

mgL-5, but increased 2.5 times from winter to spring, reaching a mean spring peak biomass of -5

mg1:1 in March/April. The spring peak is followed by a pronounced clear-water phase in

May/June with values of -2 After the cicar-water phase, a sccond, hump-shaped, bloom


became established, with a peak in July (4 mg1:1). From July to December, biomass decreased

continuously. Although 13,,,.„decreased dramatically during the study period, no significant

relationships between the decrease in 1.31, and the phytoplankton biomass were found in winter

and spring. Significant negative correlations in June and October indicate a reduction in the

magnitude of the clear-water phase (June) and an extension of the late summer bloom (October).

No significant cot-relations with climate variability (e.g., with the winter NAO index, NA0,,,,)

were found.

6 -

4

111111111111

1 2 3 4 5 6 7 S In I I I '

month

Fig. 5 Mean (1975 to 2000) phytoplankton biomass seasonality in loin s‘‘ i lakes. Red Greifensee, blue:

Lower Ziirichsee, green: Upper Zurichsee, yellow: Walensee.

Walensee

Walensee is the deepest and most oligotrophic of the four lakes (sui kicc area 24.2 km2; max.

depth 151 m; mean Pti,” 13.5 ligL-1). Although very oligotrophie. Walensee underwent a

significant re-ohgotrophication (r = -0.91, p < 0.0001) during the study period, with maximum

values of P101,of -30 pig: in the late 1970s. P„,,, values arc currently -4.5 tigLA. The seasonal
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development of the phytoplankton biomass showed the hump-shaped pattern that is typical of

oligotrophic lakes. The maximum biomass (—I.5mgIJI) occurred on average in May/June. Re-

oligotrophication was found to have strongly affected both the absolute phytoplankton biomass

and its seasonality (Zimmermann 1999). During the more cutrophic phase, the spring bloom

reached values of —3mgL-' in March and April, followed by a weakly pronounced clear-water

phase, and a weaker second bloom during late summer/autumn with maximum values of —2.5

mgL-1in October. In the recent, more oligotrophic phase, no clear distinct seasonal patterns were

observed, except a weak late summer peak (-1.5 mgL-1) in August. This trend is reflected in the

significant positive relationship found between phytoplankton biomass and Rot,„ in March, April,

May, September, October and November (p < 0.05). No significant correlations with the winter

NAO index wcrc found. However, we found a significant negative correlation of phytoplankton

biomass in April and May with air temperatures in April (r = -0.49, p = 0.02) and May (r = -0.46,

p = 0.02), respectively. We presume that this was probably the result of stronger stratification

occurring at higher air temperatures.

1 2 3 4 5 6 7 8 9 10 11 12

month
Fig. 6 Time series of Pearson correlation coefficients (r) relating mean winter total phosphorus
concentrations to monthly values of the phytoplankton biomass in four swiss lakes. All correlations are for
time period 1975 to 2000. Symbols indicate correlations significant at P 0.05. Red: Greifensee, blue:
lower Zdrichsee, green: upper ZUrichsee, yellow: Walensee.

correlation

0.8-

c,c

-0 8-
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Upper Zfirichsee

Upper Zurichsee has a surface area of 20 km2 and a maximum depth of 48 m. With a mean

concentration of 24.8 this lake is oligotrophic. Upper Zurichsee showed the weakest re-




oligotrophication trend (r = -0.87, p < 0.0001) of all four lakes.13,4„, concentrations ranged

between 27.7 and 41.5 ugL-1(mean: 34.8 ug1:1) at the end of the 1970s, whereas at the end of the

1990s, values ranged between 10.7 and 23.4 ugL-1(mean: 17.3 Fie:). During the more eutrophic

period, the seasonal development of the phytoplankton biomass showed a biased hump-shaped

pattern, with a peak maximum in April/May (-2.5 mgL-I) and a weak second peak in September.

A significant correlation of biomass with trophic state was found for the spring peak (April/May)

only, resulting in a reduction of the spring peak (Gammeter and Forster 2002). Summer biomass

increased weakly, but not significantly. These two trends have resulted in a more hump-shaped

seasonal pattern in recent timcs (Gammeter and Forster 2002), typical for oligotrophic lakes, with

a biomass peak in summer (July), reaching values of —2.5mgla-1 A significant negative influence

of climate variability (NAO) was found in October and November, reinforcing the hump-shaped

seasonal pattern. In April, air temperature has a weakly significant negative influence on

phytoplankton biomass (r = -0.36, p = 0.075).

Lower Thrichsee

Lower ZUrichsee is the largest of the four lakes (surface area 65 ugLd; maximum depth 136 m).

With mean 13,„t,‘„,of 71.7 ugL-1,Lower Ziirichsee is classified as mesotrophic (Bossard ct al.

2001), and ranges between eutrophic Greifensee and oligotrophic Walensee and Upper Zarichsee.

Like the other lakes, Lower Thrichsee has undergone a pronounced re-oligotrophication (r = -

0.96, p < 0.0001, Gammeter and Zimmermann 2000). Thc seasonal development of the

phytoplankton biomass showed a pattern intermediate between thc patterns shown by the other

lakes. The Lower Zurichsee peak biomass in spring and late summer/autumn was higher than

those of the oligotrophic lakes, but lower than that of the eutrophic lake. The clear-water phase

occurs in May/June, but is much weaker than in Greifensee. Based on the annual means of

phytoplankton biomass, no significant decrease could be found during re-oligotrophication

(Gammeter and Forster 1997; Zimmermann 1999). However, based on monthly means, re-

oligotrophication was found to have had a significant influence on phytoplankton biomass in

February and March, with the higher values having occurred in the recent, more mesotrophic

12



phase. The seasonal pattern did not change between the more eutrophic and the more mesotrophic

periods (Zimmermann 1999). A significant negative correlation with the NA4a,„index was found

in October.

In conclusion, in all four lakes phytoplankton biomass showed at least some significant

relationship to rc-oligotrophication. In the more oligotrophic Walensee and upper Ziirichsee,

there is a significant trcnd back to the hump-shaped seasonality of phytoplankton biomass, which

is typical for oligotrophic lakes. In contrast, the more eutrophic ones showed a tendency to a

weaker pronounced clear-water phase. However, in all lakes no significant relationships to NA0,,„

index could be detected, indicating that the oligotrophication process influenced the

phytoplankton biomass much more than the winter climate variability.

2.3 Mondsee, Austria

The climate signal controlling spring phenology is seen by time shifts of the spring peak of

phytoplankton in Mondsee. In years with a milder winter the spring peak (positive NAO index) is

about 39 days earlier, and after colder winter (negative NAO index) about 41 days later than on

average (1982-2003). This climatic response is expressed by the negative relationship of the

NAO index of January-February to the timing of the spring peak (r = -0.68).

Planktothrix agarclha is the most abundant cyanobacteria in deeper strata of the mesotrophic lake

Mondscc. Both phosphorus concentrations and the biovolume of Planktothrix revealed a

decreasing trend for the last 20 years (Dokulil & Teubner, in press). The detrended biovolumes

for the cyanobacteria are shown by standardised residuals in figure 1. Warmer spring periods but

a colder autumn-winter-period in the same year favors an enhancement of cyanobacteria in

Mondsec. We analysed a progression towards 6.5 days longerstratification per decade, demonstrating

the climatic responsivenessto the physics of Mondsee. The significant negative relationship between

longer periods of stratificationand the biovolume of P. agardhii suggests that this cyanobacteria in

deeper layers is not favouredby warming. The evidence of less cyanobacteria in years of longer

stratification is emphasised again by the negative correlationwhen plotted against the ratio of P.

agardhii biovolumc to totalphosphorus concentration (r = - 0.51).
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Fig. 7 A: Interannual variation of Planktothrix rubescens (Plarub, standardised residuals, effect of

detrending is shown by the not existing trend of linear regression) in Mondsee from 1982-2003. B-D:

Linear regressions of detrended biovolumes of Planktothrix rubescens against the NAO Index for January-

February (B) and November-December (C) and the length of the time period of stratification in days (D).

2.4 Miiggelsee, Germany
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In shallow eutrophic lakes the timing of the spring algal bloom is strongly influenced by the

winter conditions —especially the duration of the ice cover or the timing of ice out. In

Muggelsee- the timing when maximal algal mass has developed in spring, is currently advancing-

associated with a positive phase of the NAO p<0.01;

Fig. 8), Between 1979 and 2003 the timing of the spring bloom advanced by 28.5 days. The early

timing of the spring bloom was related to changes in the light climate and mixing conditions-

advantageous for diatoms -rather than to direct temperature effects.

Fig. 8 Timing of spring phytoplankton bloom and ice off date in Mtiggelsee
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Fig. 9 Correlation of total phytoplankton biomass and NAO index (winter) 1979-2002 in Mtiggelsee.
Significant correlations at 95 % level are marked red.
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Overall, total algal mass showed significant correlations with the NAO- winter signal in summer

months June and July and unexpectedly in December (p < 0.05) (Fig. 9). The expected positive

correlation in March was less strong and not significant at the 95 % level.

2.5 Piburger See, Austria

In the last forty years (ca. 1960-2000) the annual development of phytoplankton biovolume in

Piburger See has experienced a peculiar evolution, which is strongly related with the changes of

the trophic level of the lake. The trophic evolution is, in general, similar to what occurred in

many other temperate lakes in the whole Europe, characterised by an eutrophication phase until

thc late 1970's followed by a slow re-oligotrophication process. However in Piburger Sec sonic

peculiar aspects are evident as well.

The few historic documents availahle suggest that in the 50's the lake was still an oligotrophic

mountain lake (Psenner et al. 'MI). Since the early 1960's an eutrophication process started as a

consequence of the increase or the nutrient concentrations due to agicultural activities in the lake

catchment and to diffuse inputs a don icsiic waste waters. The eutrophicated condition enhanced

the algal production and the aerobic decomposition processes, which induced strong oxygen

depletion from 3 m depth down to the hollow ill ilic lake, accompanied by fish death, which was

particularly harsh in thc winter 1969-70.

2
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Fig. 10 Secchi depth of Piburger See during the period 1966 - 2002.

In summer 1970 the local authorities decided to start a series of restoration measures, the most

important of which were the diversion of waste-waters, thc interruption of the use of chemical

fertilizers and the installation of an Olszewski tube for the withdrawal of the nutrient rich deep

water. The oxygen saturation responded very quickly to the withdrawal of the deep anoxic
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waters. However, until the late 1980's no clear effect of the restoration on nutrient level and
phytoplankton biovolume could be detected. On the contrary, phytoplankton biovolumc,
chlorophyll a concentrations and Secchi depth increased markedly, reaching extremely high
values in spring-summer during until the early-mid 1980's (Fig. 10 and Fig. 11).

1 A _
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66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 2000 2002

Year
Chlorophyll a running average, n = 12 [pg

Phytoplankton Biovolume [mm3 1-1]

Fig. I 1 Chlorophyll a and phytoplankton Inovolume of Piburger See during the period 1966-2002.
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Fig. 12 Total phosphorus concentrationsof Piburger See during the period l966-2002.

Lc high algal biomass was mainly due to hypolimnetic blooms of the filamentous blue-green
kciliatoria limosa Agarth, which presented a planktonic growth phase in the deep water
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layers from late winter (February)to early summer(June). This phenomenonhas been interpreted

partiallyas a response of Oscillatoria limosa to the high nutrient (P) inputsfrom the catchment

during the 1980'andpartiallyto the ecologicalpropertiesof this taxon. In fact particularlyhigh

phosphoruss concentrations(up to 130ug 1-1)were recorded in the lake inlet in the early 1980's

which are reflectedby the higher monthlyweightedaverages of TP concentrationsin the lake.

Moreover,the life cycle of Oscillatoria limosa, characterisedby a benthonicstage in late-summer

and autumn,and its toleranceto low light intensity,which allows the strong growth in the deepest

water layersof the lake (Rott 1976),couldhaveprimed and prolonged the internal recycling of

nutrientsafter the restorationmeasures.The internalnutrient recyclinghas been detected in

severallakes during the earlyre-oligotrophicationstages and could be interpretedas responsible

for the delay in the recoveryof the nutrientconcentrationin Piburger Seeas well.

A progressiveand regular decreasein the phosphorusconcentrations in the main lake inlet and in

the lake itself started only in the late 1980ad was accompaniedby a progressivedecrease in the

chlorophylla concentrationsand phytoplanktonbiovolume.The decreasein the phytoplankton

biornasswas principallydue to the decreaseof the abundance of Oscillatoria limosa, which

completelydisappearedfrom the plankton of Piburger See since the early 1990's, even though

filamentmats have been regularlyobservedon the lake bottom since then.

At present the average chlorophyllconcentrationsand phytoplanktonbiovolumeremain below 4

ug 1-1and between0.5 and 1 mm31-',respectively,which are consideredas the threshold lines

betweenoligotropicand mesotrophicconditions(Vollenweider& Kerekes,OECD 1982;Rott

1984).

Since the early 1990's even the phytoplanktonspeciescompositionshowedimportantchanges,

especiallyduring summer,with an increasedabundanceof diatoms and coccalblue-green algae

(Prader 1993,Tolotti & Thies 2002).At present is not yet clear if these changesare mainly

related to the nutrient reductionof if changesin the regional and/or large scale climatic

conditionsare involvedas well. As the increasein the abundanceof diatomsbecame particularly

evident sincethe extremelydry and hot summer2003, the objective for the near future is to

investigatemore in detail the relationshipsbetweenenvironment conditionsand phytoplankton

speciescompositionand functionality.
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2.6 Esthwaite Water and Lake Windermere

The lakes of the English Lake District have been the subject of intensive study for more

than sixty years (Macan, 1970; Tailing, 1999). In the early 1960's, Tailing and Driver (1963)

developed a new method for measuring the chlorophyll a content of phytoplankton and this

method has since been used to monitor the abundance of algae in all the large lakes. In recent

years, the concentration of chlorophyll in most of these lakes has increased due to local discharge

of treated sewage effluent and the widespread use of fertilisers. Long-term variations in the

weather have also influenced the growth of phytoplankton but these changes are subtle and more

difficult to detect. In this report, we use a modelling approach to quantify the impacts of year-to-

year variations in thc weather on the growth of phytoplankton in two contrasting lakes. Esthwaite

Water and Windermere are two of the most intensively studied lakes in the area and are the

Primary and Secondary selected for the CLIME project. In each lake, the seasonal variations in

the biomass of phytoplankton have been modelled using transformed Gaussian curves and the

parameters of the model used to define different aspects of their inter-annual variability. Here we

present some Case Studies to illustrate how this approach can be used to quantify the impact of

changes in the weather on the duration of the summer growth period for the phytoplankton.

Extending thc duration of this growing period can have a significant effect on the average

biomass of phytoplankton and also lead to an increase in the quantity of oxygen consumed in

deep water.

Field Methods - Samples of water and plankton were collected from the lakes by lowering a

weighted plastic tube into the water column at a representative central site (Lund & Tailing,

1957). The integration depths were for 0-5 m for Esthwaite Water and 0-7 m for the South Basin

of Windermere. For most of this period, the samples were collected at weekly intervals but

fortnightly sampling was introduced during the winter of 1982 and extended to the whole year in

1992. Vertical variations in water temperature were recorded using a thermistor in the 1950s, a

Mackereth oxygen electrode in the 1960s and 70s (Mackereth, 1964) and a Yellow Springs

Instrument probe in the 1980s. In the laboratory, the water samples were either analysed

immediately for nutrients and chlorophyll content or stored overnight in a cold room at 9°C.

Phytoplankton biomass (as chlorophyll a) was estimated spectrophotometrically after filtering the

samples through a GF/C filter and extracting the pigment with aqueous methanol (Tailing &

Driver, 1963).
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The phytoplankton growth model - The growthof phytoplanktonin both lakesfollowed the •

'diacmic' patterndescribed by Tailing (1993)with well-definedmaximain the spring and late

summer. The spring maximumis typicallydominatedby the growth of the diatomAsterionella

but the species that dominatethe summermaximumvaried from site-to-siteand from year-to-

year. The modelused to describethe seasonalvariationsin the concentrationof chlorophyll has

been describedby Georgeand Hurley (2004)and isbased on the Gaussiancurve, G( t ):

G(t; p,a)=exp((t - p)2120-2)1(o-4(27r))

where t is the proportionof time that has elapsedfrom a defined startingdate to the current date,

that is t = (daysfrom start-date)/ 365.

In the model, the concentrationof chlorophyllis expressedin logarithmicterms.

ln(C (1))— a+ b1G(t; a, + b2 G(1; P2, az)

with the startingdate set at 31 December,the start of the 'winter' period. This model generates

two chlorophyllmaximawhen bi and b2 arc positiveor one chlorophyllmaximumwhen b2 is

zero. The parametersof the model can then bc uscd to characterisethe seasonaldevelopmentof

the phytoplanktonwhere:

pl is an index of the timing of the spring growth of phytoplankton (max at =

oilis an index of the duration of the spring growth of phytoplankton.

P2 is an index of the timing of the summer growth of phytoplankton (max at t= AO)

0-2is an index of the duration of the summer growth of phytoplankton.

a is an index of the winter minimum chlorophyll (min exp(a))

b is an index of the magnitude of the spring maximum in relation to the winter minimum

(max —exp(a + 611(m)i(2rr)))
b2 is an index of the magnitude of the sutmner maximum in relation to the winter minimum

(max —exp(a b21(0y4( Dr)))

In this report,we concentrateour attentionon the factors that influence the duration of the

summer growthof phytoplanktonas quantifiedby the 0-2(Sigma 2) index. Most of the data

analysedwas acquiredby weekly sampling,but we have included five yearswhere the sampling

frequencyin summerwas reducedto one sampleevery fortnight.
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Fig. 13 shows the result of fitting the Gaussian model to average weekly values of the

chlorophyll measurements recorded in the South Basin of Windermere between 1968 and 1997.

The results demonstrate that the model provides a very good representation of the average

seasonal variations and encapsulate both the timing and amplitude of the two chlorophyll

maxima.

Fig. 13Fitting the Gaussianmodel to the averageseasonalvariation in the concentrationof phytoplankton
chlorophyllin the SouthBasin of Windermere. The points are theaverage of all measurementstaken
between 1968and 1997.

119.14 The observedand modelledconcentrationof chlorophyllmeasured in the South Bas n of
Windermerein 1988. The points show the weeklychlorophyllmeasurements.
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Fig. 14 shows the result of fitting the Gaussian model to the chlorophyll measurements taken in

the South Basin of Windermere one particular year (1988). The results confirm that the model

can be used to explain a very high proportion of the seasonal variation and resolve key features

like the spring growth of phytoplankton and the timing of the clear-water phase.

Fig. 15 shows the results of using the Sigma 2 index to demonstrate the long-term change in the

duration of the summer growth period in Esthwaite Water. Despite some pronounced year-to-

year variations, there is a clear trend towards a longer growing season with the index increasing

from an average of 0.13 in the 1970's to an average of 0.24 in the 1990's. The rate of change is

particularly pronounced in the mid 1990's when a number of very warm summers were recorded

in the UK.

Years

Fig. 15The year-to-yearvariationsin the Sigma 2 index for Esthwaite Water. This index is a general

measureof the lengthof the growingseason. Missingyears are cases where the parametervalues cannot

be reliably estimated.

An analysis of the thermal data acquired during the same period shows that a key factor

influencing the duration of the growing season was the heat content of the water column in late

summer. Fig. 16a shows the relationship between the length of the growing season and the heat

content of the lake in late summer (weeks 31-40). There is a strong positive correlation (r = 0.56,

p< 0.05) between the Sigma 2 parameter and this physical measurement which is an integrated

measure of the lakes response to warm summers Further tests showed that that there were no
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significant correlations between the Sigma 2 parameter and any of the individual meteorological
variables. There was, however, a weak positive correlation between the Sigma 2 parameter and
the average air temperature and a weak negative correlation with the average wind speed
recorded during the same late summer period.

Fig. 16 (a) The relationship between the Sigma 2 parameter and the heat content of the water column in
Esthwaite Water in late summer. (b) The relationship between the Sigma 2 parameter and the Gulf Stream
Index (GS I).

The only significant correlation recorded with any proxy indicators of climate change was that
observed with the latitude of the Gulf Stream (Fig. 16b). Monthly charts showing the position of
the north wall of the Gulf Stream have been produced since 1966. An index of this position has
also been developed (Taylor and Stephens, 1980) and ranges from strong negative values when
the Gulf Stream is positioned towards the south to strong positive values when it is positioned
towards the north. The position of the north wall of the Gulf Stream in the Atlantic has
previously been shown to influence the movement of pressure systems across the Atlantic and the
mixing characteristics of lakes in the English Lake District (George and Taylor, 1995; George,
2000). The results presented here demonstrate that Gulf Stream also effects the duration of the
growing season which tends to be longer in years when the Gulf Stream Index is strongly
positive.
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Previous studies in the English Lake District have quantified the effects of long-term changes in

the weather on the average concentration of chlorophyll recorded in particular seasons (George,

2000; George et al.,2004). In the CLIME project, we are using the Gaussian model described

here to quantify the year-to-year variations in the seasonal dynamics of the phytoplankton. In

this report, we have shown how year-to-year changes in the weather influence the duration of the

summer growth period in one of the Windermere lakes. The Gaussian model results from other

lakes in the area are currently being collated and will now be used to quantify the changing

pattern of phytoplankton growth in a number of contrasting sites.

2.7 Lough Leane, Ireland

The Lakes of Killarney are situated in SW Ireland in County Kerry. L. Leane (52° 05' N, 09° 36'

W) is the largest of the three lakes. It has an area of 20 km2and a mean depth of 13.4 m. The

town of Killarney lies on the shores of the lake. The catchment of 553 km2 consists of two

contrasting components: an area of upland mountain peat and forest which lies to the south and

west and drains through the two smaller lakes, Upper Lake and Muckross Lake, into L. Leane

and an area to the east of the lake which is mainly agricultural grassland. The lakes are strongly

influenced by the temperate oceanic climate that predominates in the region. Annual rainfall is

high and can exceed 2000 mm, with over 3000 mm being recorded in some years in the upland

areas. Surface water temperatures are seldom greater than 20°C in summer, except during periods

of anticyclonic weather. The lakes stratify thermally between June and September. The surface

water temperature in winter is typically greater than 4°C, though periods of clear, cold weather

may reduce this to near freezing at times. However, ice cover is unknown.

Upper Lake and Muckross Lake have remained oligotrophic in all years since monitoring began

in the 1970s. In contrast, L. Leane has undergone several changes in trophic status in recent

decades (Fig. 17). The lake was classed as oligotrophic in 1972 and was mesotrophic for most of

the period up to the early 1980s. Chlorophyll a concentrations then increased and the lake was

classified as moderately eutrophic in 1983 and 1984. The change in the trophic state of the lake

was linked to increased phosphorus concentrations, primarily from municipal wastes. Following

the completion of a new sewage treatment plant for the town of Killamey in 1984, the trophic

status of the lake improved and it was classed as oligotrophic in 1990 and 1991 and as
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mesotrophic for most of the 1990s. However, in 1997 hypertrophic conditions were recorded in

the lake. Strongly eutrophic conditions were again indicated in 1998, with chlorophyll a

concentrations of 37.8 and 69.5 jrg Li at two of the three sites used for assessment (Fig. 17).

This decline in (he trophic status of the lake was again linked to increased phosphorus inputs,

with diffuse sources thought to contribute the bulk of the increased loading.
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Fig 17 IVIaximum chlorophyll a (p.g - ) at three sites in L. Leane 1972-2003

In the late 1990s (he L. Leane catchment monitoring and management programme was initiated.

This programme included management measures focused on reducing phosphorus inputs,

particularly from diffuse sources. In 1999, the trophic status of the lake improved from strongly

eutrophic to moderately eutrophic, while results for 2000 to 2003 indicated a return to

mesotrophic conditions.

The impacts of the NAO index on the weather in Co. Kerry was investigated in the REFLECT

project using data from Valentia, a synoptic station 50 km west of Killarney, and from Muckross,

a lakeshore station at L. Leane (Jennings et al. 2000). The study indicated that mean winter air

temperatures in the region were highly influenced by the winter NAO. The effect of the winter

NAO on air temperatures persisted to a lesser extent in spring and summer. There was no

significant effect by the following autumn. Winter wind speed, relative humidity and cloud
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amountwere also positivelyrelatedto the NAO. However,there was no significantrelationship

betweenwinterrainfall and the NAO. The relationshipbetween solar radiation in the region and

the NAO was negative,with higherwinter globaland diffuse radiation measurementsand greater

sunshinehours in low NAOyears. Wintersurfacewater temperaturein L. Leanewas also found

to have a positiverelationshipto the NAO.

An inverserelationshipwas previouslyreportedbetweenmean winterchlorophylla

concentrationsin L. Leane and the winterNAO index(1976-1992),with highest chlorophyll

concentrationsbeing recordedin low NAO years (Jenningset al. 2000).This relationship is still

apparentwhenthe data availablefrom 1997to 2002 is included

Fig. 18) (r = -0.52;p = 0.007;n = 26).No relationshipwas found between the NAO indexand

meanor maximumchlorophylla concentrationsin other seasons.Phytoplanktongrowth in winter

is dominatedby species that are adaptedto grow at low temperaturesand low light levels

(Reynolds1984;Talling 1993).Lossprocessesdue to washout may also influencechlorophyll

concentrations(Reynoldsand Lund 1988). A relationshipbetween the winterNAO and winter

chlorophyllconcentrationshas also recentlybeen reportedby George et al. (2004) for two small

lakes in the EnglishLake District. This relationshipwas linked to the influenceof the NAO on

rainfalland flushingrates. However,the absenceof any correlationbetween the NAO and

rainfall in Co. Kerry would indicatethat this is not a factor in the observedrelationship in L.

Leane. In addition there is no relationshipbetween total inflowto L. Leane in the winterperiod

and theNAO.

The lack of any relationshipbetween the NAO and rainfall at this site may reflect variationin the

influenceof the NAO on weatherpatternsover Ireland and Britain. Davies et al. (1997)have

noted that, in high NAOyears, heavierthan normalprecipitationmay be experiencedover the

northernhalf of Ireland and Britain,whileprecipitationmay be reduced in the southernhalf.

There were no significantcorrelationsbetweenthe meteorologicalvariablesthat are related to the

NAO in CountyKerry and meanDecember-Januarychlorophyllctconcentrationsin L. Lune

with the exceptionof a correlationwith meanair temperature(r = -0.45;p = 0.022). However,

this correlationmay reflect the influenceof the NAO on both variablesand doesnot necessarily

indicatethat low temperatureis part of the drivingmechanismin the relationshipbetween the
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NAO and chlorophyll a in the lake. It is probable that the relationship is due to a combination of

more than onc meteorological effect and that the NAO index acts as an integrator.
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Fig. 18 Mean chlorophyll a concentration (December-January) (log transformed) plotted against the
winter NAO index,

In summary, the pattern of summer phytoplankton abundance in L. Leane since the mid-1970s

has been highly influenced by changes in the availability of nutrients from the catchment.

However, wintcr chlorophyll a concentrations are negatively correlated to the NAO index, with

higher chlorophyll a concentrations in low NAO years, highlighting the influcnce of variation in

weather at this time of the year. Lower air temperatures with clearer skies and higher light

availability characterise the winter weather in low NAO years.

Acknowledgements: We would like to thank Kerry County Council, Aine Ni Shuilleabhain, Pascal Sweeney and the

IJCD Killamcy Valley Project team for use of their data from L. Leane.

2.8 Lake VOrtsjarv, Estonia

Lake VOrtsjary is a large (270 km2) shallow (mean depth 2.8m, maximum depth 6m) non-




stratified eutrophic lake located in Central Estonia. The mean annual amplitude of water level
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fluctuations in this lake is 1.4 m, and the maximum range is 3.2 m. The latter corresponds to 1.4-

times difference in the lake area, 2.4-times difference in the mean depth and three-times

difference in lake volume (Noges and Noges 1999). Thus, changing water level is considered to

be the leading factor controlling the ecosystem dynamics of L. VOrtsjarv, first of all through

phytoplankton (Nages et al., 2003).

Climatic and hydrological data series for L. Vartsjarv basin reach back up to more than 100

years. Air temperature has been measured since 1894, precipitations since 1866, water level

since1923, ice-on and ice-off dates since 1924, and water temperature since 1947, water chemistry

and phytoplankton biomass and composition since 1960s.

In Estonia the western airflow from the Atlantic during positive NAO remarkably increases

air temperature and the amount of precipitation in winter (Tomingas & Jaagus 1999). In high-NAO

years the ice cover on L. Vartsjarv has a shorter duration while the yearly average air temperature

and the amount of precipitations in the vicinity of the lake are higher (Fig. 19).
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Fig. 19 Correlations of the detrended and transformed time series of annual average amount of

precipitation in Estonia (PRECyTR), air temperature in central Estonia (ATyTR), duration of ice cover on

Lake Wirtsjarv (ICETR), and the North Atlantic Oscillation Index in winter (NAOwTR)according to

NOges (submitted).
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Because of flat landscape and restricted outflow, the increased amount of precipitation in high-

NAO years is directly reflected in lake's water level (Fig. 20) that remains high for several

months after the flood. In this way thc water level in spring determines the water level throughout

the whole year.

Phytoplankton biomass is higher in the springs after high-NAO winters but during the

other seasons the relation is rather opposite. In summer, and autumn phytoplankton biomass is

inversely related with the depth (Fig. 20). This phenomenon has been explained by the reverse

relationship between average light intensity and water depth in polymictic water column bringing

about light limitation and worsc growth conditions to phytoplankton (Noges and NOges 1999).

Fig. 20 Correlation of the transformed and detrended time series of annual average and spring
(March--May) depth of L. Vortsjarv (DEPTHyTR and DEPTHspTr, respectively), and
phytoplankton biomass (BTR) with the North Atlantic Oscillation Index in winter
(NAOwTR), and the relation of phytoplankton biomass with lake depth in different seasons
(Noges, submitted).

Weaker resuspension in deeper water releases less phosphorus from the bottom sediments while


lower denitrification rate keeps nitrogen concentration high (Fig. 21). Consequently, in a warmer
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Fig. 22 Consequences of global warming on phytoplankton in Lake VOrtsjary (NOges et al., 2003a).
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cyanobacteria (blue-green algae) will have less chance to develop (Fig. 22), thus the risk of toxic

water blooms will be reduced.
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2.9 Lakes Vattern, Malaren and Erken, Sweden

The total phytoplankton biomass was studied at I I lake sites in the Swedish lakes Vattern,

Vattern, Malaren and Erken. Long-term changes have been observed for a shift in the maximum

spring phytoplankton biomass that nowadays, as especially winter air temperatures become

warmer, occurs earlier in the year (Weyhenmeyer et al. 1999). In general, chlorophyll a

concentrations tend to be much higher below the ice cover during warm winters when there is no

snow on the ice (Pettersson ct al. 2003). Comparing a warm winter period (1989 to 1995) with a

cold winter period (1982 to 1988) the phytoplankton spring bloom occurred about one month

earlier after warm wintcrs in Sweden's largest lakes Vanern, Vattern and Malaren (Weyhenmeyer

2001). This implies an extension of the phytoplankton growing season. Significant changes in the

mean total phytoplankton biomass during the icefree season from May to October could,

however, not be observed as winter air temperatures became warmer. The total phytoplankton

biomass was also not affected when comparing years with an ice cover with years without an ice

cover in Swcden's largest lakes Vanem and Vattern (Westiiii 2004).

ln Lake Erken the shift in thc spring phytoplankton biomass pcak could be related to both,

regional climatic atmospheric circulation (Blenckner and Chen 2003) and the large scale climatic

process North Atlantic Oscillation (NAO) (Wcyhenmeyer ct al. 1999). This shift caused higher

chlorophyll a concentrations early in the year, as seen by positive relationships between the NAO

and chlorophyll a concentrations in March and April in Sweden's largest lakes Vattern, Vattern

and Malaren (Fig. 24 and Weyhenmeyer 2004). An earlier phytoplankton spring peak caused

also an earlier population decline of the phytoplankton, as seen by negative relationships between

the NAO and chlorophyll a concentrations in May (Fig. 24). During summer no significant

relationships between the NAO and chlorophyll a concentrations could be observed in the large

lakes Vdnern, Vattern and Malaren. In the relatively shallow Lake Erken, however, summer

phytoplankton biomass was higher during warm years with a high NAO, probably due to

increased mineralization rates by enhanced bacterial activity in the warmer waters.

First in autumn, the NAO was again related to chlorophyll a concentrations in the deepest Lake

Vattern (Fig. 24). At this time also water temperatures were related to the NAO. The

relationships result from the fact that the strong NAO signal on water temperature in May was
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stored in the hypolimnion during summer stratification and became apparent again at the watcr

surface in autumn when the water column was mixed. This implies that higher spring water

temperatures might be the reason for higher autumn surface water temperatures in deep stratified

lakes that favors the phytoplankton growth in autumn.

Not only ice cover and temperature had an effect on the phytoplankton biomass, but also an

extreme precipitation event that caused unusual high biomass values in the Swedish Lake

Malaren (Weyhenmeyer et al. 2004).
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Fig. 23 Linearregressionsof the North AtlanticOscillationwinter index on chlorophylla
concentrationsin surfacewaters at 16 lake sites in the lakesMalaren, Vanern and Vattern in the
period March to October from 1981to 1995.Grey and black boxes indicate that regressions
remain significantafter a correctionof the p-value(thep-value was corrected for the number of
regressionsthat have been carriedout for each water chemicalvariable at each lake site, i.e. seven
regressions),emptyboxes reflect non-significantregressions(p > 0.05) and short lines are a
symbolfor missing data.
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2.10 Lakes Paajiirvi and Valkea-Kotinen, Finland

Annual variations in summer phytoplankton biomass (June-August) in relation to winter NAO
index, local variations in the weather and to physical and chemical properties were studied in the
Finnish primary and secondary lakes, Padjarvi and Valkea-Kotinen, respectively. In the oligo-
mesotrophic and brown-watered Lake Paajarvi phytoplankton data consisted of monthly samples
for the summer period 1982-2003. For the small and humic Lake Valkea-Kotinen the data
included weekly phytoplankton total biomass (as chlorophyll) for the open water period from 13
years (1990-2002).

In Lake Pdajarvi, phytoplankton biomass in the epilimnion (0-15 m) averaged 0.98 g 1113 (wet
weight) (min-max: 0.32-3.19 g M3) in June-August during the 22-yr study period. The most
abundant algal groups were cryptomonads and diatoms contributing together 30-95 % (mean
65%) of the total phytoplankton biomass during summer. The role of cyanobacteria (blue-green
algae) in the total algal biomass waS generally small throughout the study period. There was a
decreasing trend in the total phytoplankton biomass during the study period, and on a monthly
basis this was most evident in June, After log(x..1-1)transformation and detrending, the total
phytoplankton biomass in June correlated negatively with the winter NAO index (r=-0.43, n=22).
Similar relationship was found between the NA0win and the biomass of diatoms in June (r=-
0.44, n=22). On the contrary, higher winter NAO was related to higher cyanobacterial abundance
in June (r=0.46, n=22). The reason behind the winter NAO impact on June phytoplankton
abundance likely lies on the earlier ice-break-up during the high NAO years. This would mean
that during the years with earlier ice break-up spring/early summer diatoms peak earlier and their
abundance is already decreasing during the June phytoplankton sampling. The increased

cyanobacterial abundance in June might be related to higher water temperature, although there

was no relationship between the epilinmetic temperature and cyanobacterial biomass in June.

In Lake Valkea-Kotinen, phytoplankton biomass is dominated by flagellates, especially the
raphidophyte Gonyostomum semen. Year-to-year variations in summer algal biomass (expressed

as chl-a concentration) in the epilimnion (0-2 m) are large in the lake; individual measurements
ranging from 4.5 to 187 mg chl-a tn-3(mean 38 mg chl-a ni3). During the years 1990-2002, there
was a decreasing trend in the epilimnetic chlorophyll concentration, which can largely be
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explained by the very high abundance of Gonyostomum in the early 1990's in the lake. After

detrending, the variations in epilimnetic chlorophyll during the summer months could not be

clearly related to winter NAO index or regional weather conditions. In May, there was a negative

correlation between the epilimnetic chlorophyll and winter NAO (1=-0.58, n=12), but this

relationship was mainly based on two data points.

3 Comparative analyses

Standardized seasonal courses of phytoplankton biomass were calculated for 15 study lakes

within the three lake regions, i.e., Northern lakes (including Lakes Vartsjarv and Maggelsee),

Western lakes, and perialpine lakes (Fig. 25). Standardized values were based on time series of

either chl a concentrations (Esthwaite Water, Lakes Erken, Windermere, Lough Leanc, and

Mondsee) or on total phytoplankton biovolume (all other lakes). With the exception of Lakc

Erken no complete seasonal cycles can be shown for the Scandinavian lakes and basins, as no

measurements under the ice were performed.

The lakes clearly show differences in mean growth patterns. Most notably, some lakes do show

unimodal average growth patterns with a summer/autumn peak of phytoplankton, whereas in

other lakes phytoplankton shows spring and summer blooms, with a clear drop in average

biomass in-between, usually around May and June. Both, unimodal and bimodal growth patterns

occur in all three regions studied. For example, bimodal growth pattern occur in Lakes Erken and

Miiggelsee (Northern Lakes), Esthwaite Water and Lake Windermere (Western Lakes) and in

Lakes Constance, Greifensee, Mondsee and Zurich (Perialpine Lakes). In most cases, expression

of one or the other seasonal growth pattern is due to the trophic status of a lake, with oligotrophic

lakes exhibiting unimodal and mesotrophic/eutrophic lakes exhibiting bimodal growth patterns

(Sommer, Gliwicz, Lampert, and Duncan 1986). Hence, lakes may shift with changes in trophic

status from e.g. bimodal to unimodal growth patterns (see chapter 2.2). On average, the seasonal

biomass maximum occurs in some of the bimodal lakes during spring (e.g., in Lakes Erken,

Greifen and Mondsee), in summer (Esthwaite Water), or spring and summer peaks are of a

similar magnitude. In lakes with a unimodal growth pattern, the annual peak usually occurs in

summer, but might be postponed until September/October, for example in Lake Wirtsjarv.
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Fig. 25 Box plots of standardized phytoplankton biomass in the CLIME lakes. Stars represent
individual measurements classified as outliers, i.e. deviating more than 1.5 standard deviations from
the monthly medians of standardized values.
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To analyze the influence of climate variability on growth pattern we study the influence of the

North Atlantic Oscillation on biomass variability of phytoplankton. The NAO oscillation has

been shown to influence the lakes in all three regions studied (this report, and for example

(Weyhenmeyer, Blenckner, and Pettersson 1999;Straile 2002;George, Mabcrly, and Hewitt 2004)

). As many lakes were influenced in addition to climate variability by changes in nutrient loads,

i.e., eutrophication and oligotrophication, we used loess fits to remove temporal trends from the

time series. The loess fits were chosen based on Akaikes information criteria. Phytoplankton data

since 1975 were included into the analysis.

Fig. 26 shows the seasonal course of correlation coefficients of detrended phytoplankton

biomass (chla) concentrations with the NAO winter index for Northern, Western and perialpine

lakes. Significant correlation of phytoplankton biomass with the NAO, i.c. influences of climate

variability on phytoplankton growth patterns, are neither restricted to a specific region nor to a

specific season.

Surprisingly, a significantly positive correlation during spring was found only in Lake VOrtsjarv,

although positive correlations of phytoplankton biomass have been reported for CLIME lakes

during spring in other studies (e.g. (Weyhenmeyer, Blenckner, and Pettersson 1999;e.g., Straile

and Adrian 2000;Gerten and Adrian 2000) and chapter 2.9) using other statistical methods and

time windows. These relationships between spring phytoplankton biomass and the NAO are

mostly mediated via the effect of the NAO on the timing of ice break-off Consequently, a similar

relationship is not expected for the Western and most large perialpine lakes which do not or only

hardly freeze.

A number of significant correlations (positive and negative) were observed during summer and

autumn, i.e. during a time period where no direct influence of the NAO can be expected.

However, it has been shown that e.g. food web interactions can postpone NAO effects into the

summer (Straile, Livingstone, Weyhenmeyer, and George 2003). This suggests that we have to be

aware of complex mechanisms relating clime variability to phytoplankton biomass in European

lakes.
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Clearly, these results have to be interpreted with care, as by doing a large number of correlations

and by choosing an alpha error of 0.05; we expect 5 % of all correlations to be significant by

chance alone. The number of significant correlations observed in Fig. 26 (n=9) is hence hardly

above the number of correlations expected by chance alone. However, a number of reasons

suggest that these significant relationships indeed suggest an influence of climate variability on

phytoplankton growth patterns in the study lakes:

the methods chosen for this comparative study did not detect all significant relationships

observed by studies concerning individual lakes, which analyses were specifically tailored to the

relevant data. For example, no significant relationships between the NAO and summer chl a

concentration in Lake Erken were observed in this comparative study. However, Pettersen et al

(2003) show that there is a clear difference in summer chl a concentrations after years with a cold

as compared to a year with a warm winter.

as for many lakes the temporal resolution is one per month, we might have missed some of the

the more subtle and short lasting effects of climate variability (see chapter 2.1)

the mechanisms for many of the reported significant relationships were studied and understood

in some detail (see this report) and hence it can be excluded that the observed relationships are to

a large extent spurious.

4 Summary

This report presents clear evidence for a European wide influence of climate variability on

phytoplankton growth patterns. It revealed a multitude of mechanisms (e.g., via influcnces on the

timing of ice-off, flushing, water levels, nutrients, grazing) on how phytoplankton growth

patterns might be more or less directly be influenced by climate variability. The multitude of

mechanisms can result into time lags between the timing of the meteorological forcing, i.e. during

winter/early spring in the case of the NAO, and its effects on phytoplankton. Also, due to the

multitude of mechanisms and due to the possibility of time lags one single climate signal such as

the North Atlantic Oscillation can influence phytoplankton growth positively as well as

negatively even within one lake during different parts of the season Likewise, during one season

phytoplankton can be positively related to climate variability in one lake and negatively in

another one. For example, there is evidence that summer chla in Lake Erken is positively related

to winter climate variability, whereas e.g., in Lake Vortsjarv phytoplankton is negatively related
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to the NAO in summer.

With our comparative analysis we did not observe clear region-specific impacts of climate

variability on phytoplankton growth patterns, with the exception that spring, ice-off mediated

effects of the NAO are more prevalent in the Northern lakes. Rather, phytoplankton in lakes will

react differently based on their morphology, geographic setting and possibly also trophic status.

This warrants further studies examining the detailed mechanisms relating phytoplankton growth

pattern to climate variability.
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