

Modelling the effects of changing retention time on phytoplankton

J. Alex Elliott, Ian D. Jones & Trevor Page

CEH LANCASTER
Lancaster Environment Centre
Library Avenue
Lancaster University
Bailrigg
LANCS LA1 4AP
UK

Contact: alexe@ceh.ac.uk

Why is retention time important?

Retention time is the length of time it takes for a particle to pass through a lake system

Directly related to discharge (climate) and lake volume

For phytoplankton, changes can affect abundance, species composition and timing of blooms

Retention time and lake biology

Can be very important in short retention time lakes -

Loss process – flushing out algae

Controlling the availability of nutrients

Phosphorus (P) and phytoplankton biomass

Vollenweider model – chlorophyll related to P

Assumes P is a controlling factor

A simple model

Related to Vollenweider's model, it allows for the delivery, loss and sedimentation of phosphorus (P)

$$P = \frac{M}{(Q + \sqrt{QV})}$$

$$M = QP_i + M_s$$

$$P_i$$
 = inflow P concentration

$$M_{\rm s}$$
 = point source/internal P

$$P = \frac{QP_i}{(Q + \sqrt{QV})} + \frac{M_s}{(Q + \sqrt{QV})}$$

Theoretical effect

100_0

80_20

50_50

20_80

0_100

Theoretical effect

Testing the theory

Test the theoretical response by process-based modelling of a real lake

Run 100s of simulations over a range of retention times Use a range of nutrient sources: from 100% "diffuse" to 100% "point"

A process-based model

PROTECH (Phytoplankton Responses To Environmental CHange)

PROTECH predicts the biomass and species composition of the algal community giving it a unique world status

Model vs Observed

Total chlorophyll a (1996)

Change in annual mean chlorophyll

Seasonal changes

Seasonal changes

Diffuse-point balance effect

Annual mean

Diffuse-point balance effect

Summer mean chlorophyll

What do the results tell us?

 The simple model's assumptions were only valid in the summer when nutrient limitation occurred

 Above 60-100 d retention time, the effect reduced Duesto other limiting processes in PROTECH

What do the results tell us?

The source of the nutrients greatly determined the effect -

100% Diffuse was less sensitive to retention time change (by < 80% Diffuse, sensitivity increased)

General implications

- Lakes with retention times < c.100 d will be sensitive to discharge changes (e.g. climate effects)
- Nutrient source matters
- Summer is the most sensitive period, due to nutrient limitation

