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Watanabe T, Yamamura T, Watanabe M, Yasuo S, Nakao N,
Dawson A, Ebihara S, Yoshimura T. Hypothalamic expression
of thyroid hormone-activating and -inactivating enzyme genes in
relation to photorefractoriness in birds and mammals. Am J
Physiol Regul Integr Comp Physiol 292: R568 –R572, 2007;
doi:10.1152/ajpregu.00521.2006.—Photorefractoriness is the in-
sensitivity of gonadal development to the stimulatory effects of
long photoperiods in birds and to the inhibitory effects of short
photoperiods in small mammals. Its molecular mechanism remains
unknown. Recently, it has been shown that reciprocal expression of
thyroid hormone-activating enzyme [type 2 deiodinase (Dio2)] and
-inactivating enzyme [type 3 deiodinase (Dio3)] genes in the
mediobasal hypothalamus is critical for photoperiodically induced
gonadal growth. Since thyroid hormones are required not only for
photoinduction, but also for the induction of photorefractoriness,
we examined the expression of these genes in relation to photore-
fractoriness in birds and mammals. Transfer of birds to long
photoperiods induced strong expression of Dio2. This was main-
tained in tree sparrow when they later became photorefractory, but
decreased somewhat in quail. In hamsters, transfer to long photo-
periods also induced strong expression of Dio2. High values were
not maintained under long photoperiods, and, indeed, expression
decreased at the same rate as in animals transferred to short
photoperiods. There was no renewed expression of Dio2 associated
with testicular growth as animals became refractory to short
photoperiods. Expression of Dio3 was high under short photope-
riods and low under long photoperiods in all the animals examined,
except for the short photoperiod-refractory hamsters. Our present
study revealed complex regulation of deiodinase genes in the
photoinduction and photorefractory processes in birds and mam-
mals. These gene changes may be involved in the regulation of
photorefractoriness, as well as photoinduction.

Eurasian tree sparrow; Japanese quail; Djungarian hamster

THE MAJORITY OF BIRD AND MAMMAL species living outside the
tropics uses a changing photoperiod to time their breeding
seasons, but the photoreceptive and neuroendocrine mecha-
nisms involved differ markedly between them (10, 15). Also,
the degree of gonadal regression outside the breeding season is
greater in birds, which may be an adaptation to flight, and the
duration of breeding seasons of birds tend to be more restricted
and asymmetrical than those of mammals. Although the times
of gonadal maturation and regression are controlled by photo-
period in both birds and mammals, the period of gonadal

maturation, the breeding season, is rarely symmetrical with the
annual change in photoperiod. The asymmetry is caused by
photorefractoriness.

Photorefractoriness is the switch from an active to an inac-
tive reproductive state, or vice versa, that occurs apparently
spontaneously at some stage during prolonged exposure to a
particular photoperiod (19, 20). In the case of birds, transfer
from a short to a long photoperiod initially induces gonadal
maturation, but some time later gonadal regression occurs as
birds become refractory to the long photoperiod (8, 10, 28).
Some species, e.g., Japanese quail (Coturnix japonica), do not
show spontaneous gonadal regression but become predisposed
to undergo regression when the photoperiod is reduced some-
what, but to a photoperiod still longer than earlier required to
induce maturation. This is relative, as opposed to absolute,
photorefractoriness (25). In the case of small mammals, such as
hamsters, transfer from a short to a long photoperiod also
induces immediate gonadal maturation, and subsequent trans-
fer to a short photoperiod induces immediate regression. Pho-
torefractoriness in mammals is the spontaneous renewed go-
nadal maturation that occurs later during prolonged exposure to
a short photoperiod (18–20). Although the same term, pho-
torefractoriness, is used for both phenomena, the process in
mammals may be opposite to that in birds. Refractoriness to
short photoperiods in mammals may be equivalent to the
termination of photorefractoriness to long photoperiods in
birds. Both occur during exposure to a short photoperiod and
involve reactivation of the reproductive system. In birds this
reactivation is characterized by renewed photosensitivity, but,
unlike mammals, is not normally associated with spontaneous
rapid gonadal maturation.

Recently, it has been shown that local activation of thyroid
hormone in the mediobasal hypothalamus (MBH) is critical for
long photoperiod-induced testicular growth in Japanese quail
(32, 35). Long photoperiods induce expression of type 2
deiodinase (Dio2) gene and reduce expression of type 3 deio-
dinase (Dio3) gene. Dio2 is the thyroid hormone-activating
enzyme; it converts the prohormone thyroxine (T4) into the
bioactive form T3 by outer-ring deiodination. The inactivating
enzyme (Dio3) converts both T4 and T3 into inactive metabo-
lites reverse T3 and T2, respectively, by inner-ring deiodina-
tion. It is well established that thyroid hormones are involved
not only in photoinduction, but also in photorefractoriness (5,
10). Removal of the thyroid gland blocks photorefractoriness
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in the European starling, American tree sparrow, European
house sparrow, and Japanese quail (6, 11, 16, 23, 27). In the
present study, therefore, we examined expression of Dio2 and
Dio3 in relation to photorefractoriness in Eurasian tree spar-
rows (Passer montanus), which show absolute photorefracto-
riness, and Japanese quail, which show relative photorefracto-
riness.

As is the case in birds, thyroid hormones are involved in the
regulation of seasonal reproduction in mammals. Thyroidec-
tomy blocks transition of seasonal reproduction in sheep (19,
20), and photoperiodic regulation of Dio2 is observed in the
Djungarian hamster (Phodopus sungorus) and goat (Capra
hircus) (26, 31). Moreover, in hamsters, Dio2 expression is
suppressed by melatonin administration (26), and exogenous
thyroid hormone administration elicits a long photoperiod
response under short photoperiods (13). Although cDNA mi-
croarray analysis identified a class of genes encoding thyrox-
ine-binding proteins whose expression is associated with
refractoriness (21), a molecular mechanism for mammalian
refractoriness remains elusive. Therefore, we examined ex-
pression of Dio2 and Dio3 in the hypothalamus of photo-
stimulated and photorefractory hamsters.

MATERIALS AND METHODS

Animals and housing. Male tree sparrows were caught from the
wild in Nagoya during August 2003. They were kept under 8 h light:
16 h dark (8L16D) condition for 3 mo at 24 � 1°C in light-tight boxes
(55 � 210 � 62 cm). Male 4-wk-old Japanese quail were obtained
from a local dealer and kept in the same conditions until 8 wk old.
Djungarian hamsters were kept in our colony under 14L10D condi-
tions until weaning at 3 wk old and then transferred into light-tight
boxes. In the light-tight boxes, light was supplied by fluorescent lamps
with a light intensity of 200 lux measured at the level of the animal’s
head. Food and water were provided ad libitum for all animals, and
sunflower seeds were given once per week to hamsters. Animals were
treated in accordance with the guidelines of Nagoya University.

Light schedules. Sparrows and quail were transferred from short
photoperiods (8L16D) to long photoperiods (18L6D). Brains were
collected before transfer (0 wk; photosensitive), 6 wk after transfer
(photostimulated), and 20 wk after transfer (absolutely photorefrac-
tory in sparrows, relative photorefractory in quail). In each case, this
was done at the midpoint of the light phase.

To examine the effects of long photoperiods, hamsters were moved
to 8L16D after weaning to induce testicular regression as previously
described (26). One group of animals was continuously kept under
8L16D, and another group was transferred to 14L10D at 7 wk of age.
Brains were collected at 9 wk of age. To examine gene expression in
refractory animals, hamsters were kept under 14L10D after weaning.
When 7 wk old, animals for the refractory group were transferred to
10L14D, and control animals were kept under 14L10D. Brains were
collected (at the midpoint of the light phase) before transfer to
10L14D (0 wk; photostimulated), 6 wk after transfer (gonadal re-
gressed), and 27 wk after transfer (refractory).

In situ hybridization. In situ hybridization was carried out accord-
ing to previous work (34). Antisense 45-oligomer oligonucleotide
probes were labeled with [33P]deoxy-ATP (NEN Life Sciences, Bos-
ton, MA) using terminal deoxyribonucleotidyl transferase (Invitrogen
Life Technologies): sparrow and quail Dio2, 5�-gatggttcagcctcaat-
gaatatcaagacggaaatacattctgta-3�; sparrow Dio3, 5�-ggatgatgtagagc-
ctctcgaagtaggcaccgtaggcggcgctgg-3�; quail Dio3, 5�-tctcctcctggat-
gacgtagagccgctcgaagtaggcgccgtagg-3�; hamster Dio2, 5�-tgcttgagta-
gaatgaccgagtcatagagcgccaggaagaggcag-3�; and hamster Dio3, 5�-
ctggtaaccgtcggggccacggcctccctggtacatgatggtgcc-3�. Coronal sections
(20 �m thick) were prepared using a Cryostat (model CM3050S;

Leica, Nussloch, Germany). Hybridization was carried out overnight
at 42°C. After the glass slides were washed, they were air-dried and
apposed to Biomax-XR film (Eastman Kodak, Rochester, NY) for 2
wk with 14C-labeled standards (American Radiolabeled Chemicals,
St. Louis, MO). Relative optical densities were measured using a
computerized image analysis system (MCID Imaging Research, St.
Catharines, Canada) and were converted into relative radioactive
values (nanocuries) using 14C-labeled standards. Specific hybridiza-
tion signals were obtained by subtracting background values obtained
from adjacent brain areas that did not exhibit a hybridization signal.

RESULTS

Expression of Dio2 and Dio3 in photorefractory birds. In
sparrows, there was significant testicular growth 6 wk after
transfer to long photoperiods, followed by complete regression
after 20 wk, as birds became absolutely photorefractory [one-
way ANOVA, F(2,9) � 44.6, P � 0.0001, Fisher’s least
significant difference (LSD) post hoc test, P � 0.0001, n �
4](Fig. 1A). In contrast, in relative photorefractory quail, the
increase in testis size after 6 wk of photostimulation was
maintained at 20 wk, as expected [one-way ANOVA,
F(2,11)�138.3, P � 0.0001; Fisher’s LSD post hoc test, P �
0.0001, n � 4–5](Fig. 1B).

Expression of Dio2 and Dio3 was observed in the basal
tuberal hypothalamus, consisting of the infundibular nucleus
and the median eminence in both sparrow and quail (Fig. 2, A
and B). This is consistent with previous reports. In sparrows,
expression of Dio2 was significantly increased 6 wk after
transfer to long photoperiods, and this high expression was
maintained at 20 wk [one-way ANOVA, F(2,10) � 20.6, P �
0.0005; by Fisher’s LSD post hoc test, P � 0.001, n � 4 or 5]
(Fig. 2A). In quail, expression of Dio2 was also significantly
increased 6 wk after transfer to long photoperiods, but expres-
sion was somewhat attenuated at 20 wk [one-way ANOVA,
F(2,11) � 63.5, P � 0.0001; Fisher’s LSD post hoc test, P �
0.005, n � 4–5] (Fig. 2B). These experiments were repeated
using different series of animals with consistent results (data
not shown). In contrast to Dio2, expression of Dio3 was high
under short photoperiods (0 wk) but almost undetectable 6 wk
and 20 wk after transfer to long photoperiods in both sparrow
and quail [sparrow: one-way ANOVA, F(2,10) � 41.8, P �
0.0001, Fisher’s LSD post hoc test, P � 0.0001, n � 4–5;

Fig. 1. Effect of long photoperiods on testicular length in absolute photore-
fractory Eurasian tree sparrow (A) and relative photorefractory Japanese quail
(B). Testicular length was measured before transferring to long photoperiods (0
wk; photosensitive state), 6 wk after transfer to long photoperiods (photostimu-
latory state), and 20 wk after transferred to long photoperiods (photorefractory
state in sparrow). Values are means � SE (n � 4–5). Different characters
indicate significant differences [one-way ANOVA and Fisher’s least signifi-
cant difference (LSD) post hoc test].
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quail: F(2,8) � 209.2, P � 0.0001, Fisher’s LSD post hoc test,
P � 0.0001, n � 3–4](Fig. 2, A and B).

Expression of Dio2 and Dio3 in long-day-stimulated and
short-day-refractory hamsters. When hamsters were trans-
ferred from short to long photoperiods, testicular mass in-
creased (Mann-Whitney U-test, P � 0.01, n � 5) (Fig. 3).
When hamsters were transferred from long to short photope-
riods, testicular mass was decreased at 6 wk and then returned
to long photoperiod values at 27 wk as hamsters became
refractory to short photoperiods. High testicular mass was
maintained in animals that had been kept on long photoperiods
[two-way ANOVA, F(2,26) � 55.3, P � 0.0001; Mann-
Whitney U-test, P � 0.01, n � 5–7] (Fig. 3).

Dio2 expression was found in the ependymal cell layer
lining the infralateral walls of the third ventricle and the
cell-clear zone overlying the tuberoinfundibular sulcus, as
previously described (Fig. 4A). Dio3 expression was observed
only in the ependymal cell layer lining the infralateral walls of
the third ventricle (Fig. 4B). When animals were transferred
from short to long photoperiods, a significant increase in Dio2
expression and decrease in Dio3 expression were observed
(Mann-Whitney U-test, P � 0.01, n � 5) (Fig. 4). Interest-
ingly, when hamsters were maintained under long photoperi-
ods continuously, expression of Dio2 decreased [one-way
ANOVA, F(3,16) � 15.9, P � 0.0001, Fisher’s LSD post hoc

test, P � 0.05, n � 5–7] (Fig. 4A). When hamsters were
transferred from long to short photoperiods, expression of Dio2
also decreased; there was no significant difference between
long and short photoperiod animals [two-way ANOVA,
F(3,18) � 0.712, P � 0.5, n � 5–7] (Fig. 4A). Expression of
Dio3 was undetectable under long photoperiods. Strong ex-
pression of Dio3 was observed in hamsters shortly after trans-
fer to short photoperiods, but this was not maintained; there
was no expression of Dio3 in hamsters as they became refrac-
tory to short photoperiods [(two-way ANOVA for the compar-
ison between LD3SD and LD3LD), F(2,26) � 156.0, P �
0.0001; Mann-Whitney U-test, 6 wk: P � 0.01 (asterisk); 27
wk: P � 0.8; one-way ANOVA for the comparison among the
SD group, F(2,14) � 63.9, P � 0.0001; Fisher’s LSD post hoc
test, P � 0.05, n � 5–7] (Fig. 4B).

DISCUSSION

In the present study, we examined expression of Dio2 and
Dio3 in absolutely photorefractory Eurasian tree sparrows and
in relative photorefractory Japanese quail. In these species,
expression of Dio2 and Dio3 was directly related to photope-
riod (i.e., high expression of Dio3 and low expression of Dio2
under short photoperiods and high expression of Dio2 and low
expression of Dio3 under long photoperiods), but did not relate
to gonadal status. Differences in reproductive state depend on
the amplitude and frequency of pulsatile secretion of gonado-
tropin-releasing hormone (GnRH). Unlike mammals, there is a
profound physiological switch-off of the GnRH system in
seasonally breeding birds (10), including sparrows (6). In
absolutely photorefractory birds, a dramatic decline in hypo-
thalamic GnRH content is observed by radioimmunoassay and
immunocytochemistry, suggesting that the GnRH system is
regulated at the level of synthesis, as well as secretion (3, 10,
22). In contrast to species that become absolute photorefrac-
tory, relative photorefractory quail show no decline in hypo-
thalamic GnRH (12). This suggests a fundamental difference
between the mechanisms underlying the two forms of photore-
fractoriness (10).

Thyroid hormones are involved in both photoinduction and
photorefractoriness. In the previous study, we observed sea-
sonal morphological changes in the neuro-glial interaction
between GnRH nerve terminals and glial endfeet in the median
eminence of Japanese quail (29). Since these morphological
changes were also caused by T3 administration, long-photope-

Fig. 2. Expression of thyroid hormone-activating (Dio2) and
-inactivating (Dio3) enzyme genes in sparrows (A) and quail
(B). Top: representative autoradiograms for Dio2 and Dio3
expressions in the basal tuberal hypothalamus. Bottom: quanti-
tative results of Dio2 (E) and Dio3 (F). Values are means � SE
(n � 3–5). Different letters (lower case for Dio2 and upper case
for Dio3) indicate significant differences (one-way ANOVA
and Fisher’s LSD post hoc test).

Fig. 3. Effect of different photoperiods on testicular weight in hamster. Left:
animals were transferred from short (SD) to long (LD) photoperiods (�) or
continuously kept under short photoperiods (■ ) for 2 wk. In the right side of the
graph, animals were transferred from long to short photoperiods (F) or
continuously kept under long photoperiods (E). Values are means � SE (n �
5–7). *Significant difference between the short photoperiod and long photo-
period groups (Mann-Whitney U-test).
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riod-induced T4 to T3 conversion by Dio2 may regulate GnRH
secretion in quail during photoinduction (30). Starlings and
sparrows become photoperiodically blind following thyroidec-
tomy (5, 6). In these species, prevention of photorefractoriness
by thyroidectomy is associated with maintenance of high
hypothalamic GnRH levels typical of photosensitive birds (6,
7, 22) and thyroidectomy of photorefractory birds results in an
increase in GnRH (9). These reports suggest that thyroid
hormones are required to reduce GnRH synthesis during the
photorefractory state, rather than a decrease in secretion. The
maintenance of high expression of Dio2 and low expression of
Dio3 as tree sparrows became photorefractory in the present
study supports the idea that photorefractoriness is not due to an
inhibition of GnRH secretion, i.e., a reversal of what happens
during photostimulation. Rather, T3 may be involved in the
long-photoperiod process leading to decreased GnRH synthe-
sis. However, quail also maintained high expression of Dio2,
although somewhat less than during photostimulation, as they
became relatively photorefractory. Yet this is not associated
with a decrease in hypothalamic stores of GnRH.

In short-day breeders, such as sheep and goats, thyroid
hormones are required for the transition from estrus to anestrus
in the spring. In the previous study, we found high expression
of Dio2 in the hypothalamus of goats during this transition
stage (31). As possible homologies between photorefractori-
ness in long-day birds and short-day mammals have been
pointed out (19, 20), the present results also appear to suggest
that the mechanism regulating short-day breeders and long-day
breeders may not be so radically different as previously
thought.

In the present study, we have also examined expression of
Dio2 and Dio3 in Djungarian hamsters. Consistent with our
previous report (26), we observed significant induction of Dio2
expression when transferred from short to long photoperiods.
However, expression of Dio2 decreased when hamsters were
continuously kept under long photoperiods. Barrett et al. (1)
have reported that they failed to detect photoperiodic change of
Dio2 expression in their Siberian hamster. In the present study,
we did not find statistically significant difference in Dio2
expression between short and long photoperiod hamsters when
we transferred animals from long to short photoperiods. This

may explain the discrepancy between the results of our previ-
ous study and that of Barrett et al., because they examined
expression of Dio2 in animals transferred from long to short
photoperiods. Recently, Revel et al. (24) reported photoperi-
odic regulation of Dio2 in Syrian hamster (Mesocricetus au-
ratus). In contrast to Djungarian hamsters, Dio2 expression
remained elevated in the long photoperiod for at least 28 wk in
the Syrian hamsters. Although these two hamsters are known
to be good photoperiodic models, differences in photoperiodic
responses are reported (4, 14, 17, 33). Although both species
exhibit gonadal regression when exposed to short photoperi-
ods, they show opposite body weight changes (i.e., Djungarian
hamsters lose weight, but Syrian hamsters gain weight follow-
ing short photoperiod exposure) (2). In addition, puberty is
apparently unaffected by the photoperiod in Syrian hamsters
(4, 14), while it is highly affected by photoperiod in Djungarian
hamsters (17, 33). Differences in Dio2 expression profiles may
contribute to the different photoperiodic responses between the
two hamsters.

In contrast to Dio2, marked increase in Dio3 expression was
observed in short photoperiod hamsters. Since Dio3 metabo-
lizes both prohormone T4 and bioactive T3, Dio3 may contrib-
ute to testicular regression when hamsters are transferred from
long to short photoperiods. In short-day refractory hamsters,
expression of Dio2 and Dio3 was undetectable. Consistent with
the present results, a low level of Dio2 expression is reported
in the short-day refractory Syrian hamster (24). It is of note that
the expressions of a class of genes encoding thyroxine-binding
proteins (TBPs; transthyretin, T4-binding globulin, and albu-
min) are downregulated and that T4 uptake was diminished in
the hypothalamus of refractory Siberian hamsters (21). Al-
though the molecular mechanism regulating refractoriness to
short photoperiods in hamsters remains unknown, lack of
expression of thyroid hormone-activating and -inactivating
enzyme genes and TBPs may suggest that refractoriness to
short photoperiods in hamsters is not thyroid dependent.

It has been known for several decades that thyroid hormones
are involved in regulation of photorefractoriness (6, 11, 16, 23,
27). Our present study revealed complex regulation of deiodi-
nase genes in the photoinduction and photorefractory processes
in birds and mammals. This is a first step toward understanding

Fig. 4. Effect of different photoperiods on Dio2 (A) and Dio3
(B) expression in hamsters. Representative autoradiograms are
shown top. Quantitative results are shown bottom. Left: animals
were transferred from short to long photoperiods (�) or con-
tinuously kept under short photoperiods (■ ) for 2 wk. Right:
animals were transferred from long to short photoperiods (F) or
continuously kept under long photoperiods (E). Values are
means � SE (n � 5–7). Different characters indicate significant
differences within the long photoperiod group (A) and short
photoperiod group (B), respectively (one-way ANOVA and
Fisher’s LSD post hoc test). *Significant difference between the
short and long photoperiod groups (Mann-Whitney U-test).
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the molecular mechanism regulating photorefractoriness but
many questions remain.
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