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Abstract - Numbers, measurement and calculation extend our view of the world. 
Statistical methods describe the properties of sets of quantitative data, and can test 
models (particularly the model that observed relationships arose by chance) and help 
us to draw conclusions. Links between spatial and quantitative methods, through 
coordinate geometry and matrix algebra, lead to graphical representations for 
visualizing and exploring relationships. Multivariate statistics tie into visualization to 
look at pattern among many properties. 
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1. Background 
 
Computing, in the sense of calculation, is a small part of IT applications in 
geoscience. But, even in traditional aspects of geology, the quantitative representation 
of spatial entities and models is important. To understand why, we need to look at 
some basic mathematical concepts, and see how numbers relate to properties and 
programs to physical processes. Readers with a mathematical background may prefer 
to skip at least the first part of this chapter, and those without may wish to skip detail 
irrelevant to them. 
 
2. Measurement and number 
 
Real numbers form a continuous sequence in an exact order. Given any two numbers, 
say 1.415 and 1.416, you can find as many numbers as you need between them, for 
example 1.4151 or 1.4150032. You can compare any two numbers to see if they are 
equal or if one is larger or smaller than the other. This leads to a scale of 
measurement. The continuous sequence of numbers is analogous to situations in the 
real world. For example, you can compare the thickness of any two beds of sandstone 
to see if they are the same or if one is thicker or thinner than the other. To avoid 
carrying sandstone around, you can measure their thicknesses by comparison with a 
standard tape marked in millimeters. Measurements enable comparisons between any 
two bed thicknesses. You can measure more than one property. For example, you 
could also measure the maximum grain size for the beds of known thickness and 
compare the two sets of numbers (bed thickness and grain diameter), pair by pair.  
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We can use numbers in several other ways that rely on different aspects of their 
properties and so must be handled differently (see Krumbein and Graybill, 1965 or 
Davis, 1973 for a fuller account). We can assign numbers quite arbitrarily as object 
identifiers. An identification number, such as an accession number (numbers from a 
given range issued in sequence), need bear no relationship to the object’s properties. 
Indeed it is easier to issue unique identifiers by separating identification from 
description. A program or a user who knows the identifier can find the object by 
consulting a numerical index. Integer numbers are appropriate for identifiers. 
 
The subject classification on a book or library shelf, such as a UDC number, is rather 
less arbitrary. Similar numbers apply to related subjects, and the number hierarchy 
(hundreds, tens, units) reflects subject subdivisions (part H section 2). Numbers with 
decimal fractions are convenient in book classification. One can insert additional 
subdivisions without limit, simply by adding more digits after the decimal point. By 
shelving books or arranging object identifiers in numerical order we bring together 
those on the same subject for convenient searching or browsing. A sequence of 
numbers can represent a strict order of categories. Typical ordered categories are 
Mohs’ scale of mineral hardness and the Richter scale of earthquake intensity. The 
larger the number, the higher the value, but the steps between successive values are 
not equal. 
 
Measurement compares a property of some object with a standard scale. Intervals are 
equal, although the zero value may be quite arbitrary. For example, most scales of 
temperature, unlike the Kelvin scale, place zero at a convenient but arbitrary point. It 
would therefore be foolish to say that 20oC is twice as hot as 10oC.  Nevertheless, we 
can reasonably say that the increase of temperature from 0o to 10o is half that from 0o 
to 20o. Other physical properties, such as length, have an obvious and unique zero 
value, and there is no difficulty in adding, subtracting, multiplying and dividing those 
quantitative measurements.  
 
The number field can then lead to a useful model at a deeper level than categorization. 
Equations can mimic real physical relationships. For instance, physicists can write 
equations describing the relationships of temperature with the pressure and volume of 
a closed body of gas. Equations imply the ability to calculate and maybe predict. 
Aspects of physical systems have direct analogs in well-known arithmetic operations. 
This astonishing correspondence between the physical world and mathematics is the 
basis for mathematical modeling (F 3).  
 
The quantitative approach introduces a new mode of thinking. Instead of seeing the 
subject of investigation as a set of discrete objects, such as formations and rock types, 
we view it as a continuum, with characteristics that we can measure and compare as 
they vary from place to place.  Gravity and aeromagnetic surveys, satellite imagery, or 
regional geochemical studies of stream sediments are examples. If objects are seen as 
‘things’ represented by nouns, and processes resemble verbs, then quantitative 
measurements are more akin to adjectives, describing the properties or composition of 
the objects. 
 
It is tempting to wonder how far this mode of thinking can extend. Could we, for 
instance, replace our rather arbitrary classifications of geological objects by a more 
quantitative view where we measure continual change. This is considered further in J 
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2.3, but classification is basic to science (J 2.1) and descriptions with adjectives and 
no nouns have little meaning. I argue later (L 6.3) that while, with IT support, the 
scope of quantitative studies will surely continue to expand, different modes of 
thought are complementary, each adding to the overall understanding. The more 
important role of IT may be to ensure that information of all kinds is readily available 
to the investigators. If this is correct, the scientist (or a multidisciplinary team) needs 
to understand and use an appropriate combination of methods and modes of thought.  
 
Before collecting measurements, it makes sense to consider their intended 
applications. This is the next topic. For detail, see Griffiths (1967), Krumbein and 
Graybill (1965), Davis (1973) or Swan and Sandilands (1995). 
 
3. Descriptive statistics 
 
We can manipulate numbers with simple operations of addition, subtraction, 
multiplication and division. They take us beyond individual comparisons to the 
properties of entire sets of measurements, and to general statements about 
relationships, say between grain size and bed thickness. Statistics (the branch of 
mathematics that deals with collecting, analyzing, interpreting and presenting 
numerical data) addresses these topics. One requirement is to characterize a set of 
measurements, like bed thickness, by fewer numbers that reflect the properties of the 
set as a whole. Important statistics (the measures or values calculated using the 
science of statistics) include the average value, also known as the mean. It is 
calculated by adding the measurements together and dividing the total by the number 
of measurements. We can measure the spread of values around the mean by the 
variance (the mean squared deviation from the mean) or by its square root - the 
standard deviation.  
 
Statistics leads on from the description of a single variable, that is, a set of 
measurements of a single property, to explore the relationships between pairs of 
variables measured at the same point, such as bed thickness and grain size. An 
obvious approach would be to multiply each pair of measurements together and take 
their average (the mean cross-product). But the mean and standard deviation of each 
variable would greatly affect the result, and these have been measured already. 
Instead, we can standardize each variable by subtracting the mean from each value 
and dividing the result by the standard deviation. The mean cross-product of the 
transformed variables is known as the correlation coefficient, which has a value 
somewhere between +1 and -1. The extreme values are 1 if the bed thickness 
increases precisely as the grain size increases, and -1 if one decreases precisely as the 
other increases. The value is 0 if one variable shows no relationship to the other.  
 
There are two general points here. One is that statistics measure different properties 
separately. Having calculated the mean, we remove its effects in calculating the next 
property, the standard deviation. We remove the effects of both in calculating the 
correlation coefficient. As a consequence, we can compare variation in a sequence of 
thick beds with that in a sequence of thin beds, and can judge whether the correlation 
of bed thickness and grain size is more pronounced in sandstone or in siltstone.  
 
The other general point is that we are not dealing with sharply defined relationships. 
If we had measured the properties a few millimeters away, or made twice as many 
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measurements, the results would have been different. If the processes of deposition 
had changed, with stronger currents, deeper water or different grain composition, the 
results would again differ. Statistical methods can measure the uncertainties of 
sampling and imperfect knowledge of the process. Their success depends on the skill 
with which the data are sampled and analyzed and on appreciation of the subject 
matter.  
 

 
 
Fig. 1. Calculation of simple statistics with a spread-sheet. The total thickness of Pleistocene and 
Recent sediments were recorded at twenty boreholes, together with the thickness of peat in each. 
Simple statistics were calculated with a Microsoft Excel spreadsheet to examine the frequency 
distributions and their statistical correlation. See also Fig. 3. 
 
Statistics are normally calculated by computer, particularly if the datasets are large. 
Good programs are readily available. The most flexible, although not the easiest to 
use, are subroutine libraries. The computer program normally calculates the values of 
statistical parameters using mathematical shortcuts. However, for teaching or 
exploratory purposes, spreadsheets and bar charts show intermediate steps and their 
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effects on the individual items. For instance, they can show the original measurements 
converted to standard deviations from the mean (columns D and E of Fig. 1) and the 
user can examine the measurements in a local framework that may clarify 
relationships. 
 
Some statistical programs help the user by providing an account of each method, a 
description of the algorithm, and examples of its use. The examples are unlikely to 
refer to geoscience, but it can be helpful to take an example as a template, and replace 
its variables and data with your own. An excellent range of textbooks is available on 
statistical methods and their applications. I have no plans to add to them, but do wish 
to point out the place of such techniques in geoscience investigations and to indicate 
some assumptions that constrain their application. The calculations of mean and 
standard deviation make no such assumptions. Their interpretation, however, raises 
many questions. The properties of the sets of beds constitute the population (D 4), as 
opposed to the actual measurements, which constitute a sample of the population. 
Sampling theory helps to clarify the link, so that conclusions about the population can 
be drawn from the sample, if appropriate sampling procedures (D 4) have been 
followed. 
 
Circumstances determine the appropriateness of statistics. For example, an average 
thickness calculated from 49 siltstone beds and one very much thicker conglomerate 
bed would not be helpful. The result would alter greatly if we arbitrarily included 
another thick bed. A better procedure would be to study the thickness of conglomerate 
separately. Statistical measures make sense only for a clearly defined and coherent 
population. The frequency distribution, that is the pattern of relative frequencies of 
each measured value, can be examined on a bar chart or frequency plot (Fig. 1). 
Ideally, the frequencies are greatest in the center and fall off on either side to give the 
symmetrical bell-shaped frequency distribution of the so-called normal distribution 
(Fig. 2). A surprising number of actual distributions approximate to this, perhaps after 
a simple transformation such as replacing the original values by their logarithms (F 5). 
It then makes sense to describe the distribution as a whole with a few numbers, such 
as mean and standard deviation. Otherwise, robust statistics, described in most 
modern statistics texts, offer a less complete means of description but make fewer 
assumptions. 

 
 
Fig. 2. Bell-shaped frequency curve of a normal distribution. The values of a variable that are deflected 
from their expected value (the mean) by many random events, might be expected to show this type of 
distribution. 
 
With some assumptions about the distribution and sampling scheme, it is possible, for 
example, to calculate the likely population mean and variance from the sample, and 
the probability of their lying within a particular range. A technique known as analysis 
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of variance can show how mean values relate to sources of variation. For instance, if 
the ratio of Ca to Mg were determined in a number of samples, it could be of interest 
to see how it varied between formations, or between lithologies, or between analytical 
laboratories. With a carefully designed investigation, analysis of variance might be 
able to separate out the effects of each. Examination of the frequency distribution may 
however suggest a more complex situation, such as populations of different 
characteristics being sampled together. Descriptive statistics could then mislead by 
obscuring the real complexity. 
 
Presumably measurements are made in order to draw some conclusions or to check 
some hypothesis. The conclusions must refer to something beyond the measurements 
themselves. Not “here are fifty beds that I have measured”, but rather “these beds are 
noticeably thicker than their counterparts farther east, and the beds are thicker and the 
grain size coarser towards the base of the succession”. Hypotheses about directions of 
sediment movement or deepening of the basin might in turn have prompted an interest 
in these findings. The hypotheses must be linked to the more general concepts in 
which they are embedded, and may lead to a mathematical model. 
 
The analogy between the number field and the measurement of properties extends to 
the mathematical model - an analogy between mathematical operations (operating on 
the numbers) and physical processes (affecting the properties). Thus, adding together 
the thickness of beds in a vertical section is equivalent to finding their total thickness, 
a reflection, perhaps, of the total deposition of sediment at that point. Dividing the 
total by the number of beds to find the average is equivalent to recreating the original 
number of beds, but all of the same thickness. If nothing else, this may remind us that 
there is nothing magical about calculation. However, mathematical operations can 
mimic aspects of quite complex physical operations, often surprisingly well. 
 
If you develop one or more quantitative models before or during data collection, you 
can statistically compare the predictions of the models with the observed data to see if 
they conflict. This somewhat negative view is characteristic of scientific argument. If 
the observed values lie within the range of expected values, they give no indication 
that the model fails to match reality, and the model may in consequence be accepted. 
Acceptance is always tentative, for there may be other models that would also fit and 
would be more realistic in other ways. Quantitative models can help to investigate 
simple aspects of the process, such as: is it likely that the data reflect purely random 
events? Griffiths (1967) showed how salutary this approach can be. They can also be 
designed to throw light on the deep structures of the process (Wendebourg and 
Harbaugh, 1997). Science always seeks to disprove, and if data conflict with the 
predictions of the model, this could be taken as disproof of the model’s validity.  
 
The random model, in which events proceed on the basis of chance alone, is widely 
used in statistics. It addresses the question of whether the results of analysis might 
merely be a consequence of random variation. If this can be ruled out, the argument 
for an alternative explanation is strengthened. A statistical model may have a 
deterministic element, giving precise values calculated from the mathematical model 
representing the physical process. It may also include a random element, reflecting the 
unpredicted, chance events (although as pointed out in J 2.3, some non-linear 
deterministic systems are inherently unpredictable). The random element makes it 
possible to specify not only the most likely values of the outcome of the model, but 
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also a range within which the values are likely to occur, taking random effects into 
account. 
 
If the investigation is more than simply an initial gathering of ideas, and the data will 
be widely shared, then the investigator should describe the procedures and state how 
observations and measurements were made (D 4). Another scientist following the 
same sampling scheme and procedures would not expect to obtain identical data, but 
would expect the overall statistics to match within the calculated margin of error. An 
account of the sampling scheme can also help others to decide how far to rely on the 
results. By invoking statistical arguments, the process of geoscience investigation and 
reasoning can be made more rigorous and repeatable. 
 
Quantitative methods have another role to play in geoscience. Measurements may be 
made in an exploratory way, without clear ideas about which of a range of hypotheses 
is being tested, but with hopes of unearthing a familiar pattern or detecting an 
interesting relationship (Tukey, 1977). Many geoscience investigations are concerned, 
not with the operation of physical systems, but with geological events and the 
environment in which they occurred. Sets of measurements may throw light on spatial 
patterns and interrelationships that guide the formulation of hypotheses. In 
geoscience, data are commonly displayed as a map or set of maps. Computer 
visualization studies (Cleveland, 1993, Gallagher, 1995) address the wider question of 
how to display data to detect pattern (G 2). They normally start with quantitative data 
and explore graphical means of conveying their significance to the human eye and 
brain. Field mapping faces the same problem of detecting pattern among a host of 
interrelated properties. It too can be seen as a form of spatial visualization. Statistical 
methods can then help in another way. They may offer concise summaries (like the 
mean) and reveal relationships that otherwise might not be noticed. They are unlikely 
to offer rigorous proof of the conclusions, but might point you towards a conclusion 
that you could test or support by other lines of argument more familiar in geoscience. 
 
4. Matrix algebra and spatial data 
 
The development of coordinate geometry by Descartes in the early 17th century 
gave the basis for spatial visualization of quantitative data, but also meant that spatial 
data could be brought within a quantitative framework. Position in space is measured 
by coordinates - distances from a zero point known as the origin along each of a set 
of axes at right angles. In consequence, spatial data can be manipulated, analyzed and 
managed on the computer. A range of computer techniques can be applied to 
information that would normally be recorded on maps and cross-sections. Those of us 
who think more readily in pictures than in numbers can make use of the 
correspondence between numbers and position, and between algebraic and geometric 
operations, as an easy way to gain an understanding of statistical methods. Many 
geoscientists may find it easier to visualize quantitative techniques as manipulation of 
points in variable space rather than as manipulations of numbers. 
 
The link between computation and space, between algebra and geometry, is perhaps 
most obvious in matrix algebra, which enables a sequence of related operations to be 
written as one operation. Matrix algebra is an extensive and complex study in its own 
right, and is widely used in quantitative geoscience. Most computer users who are not 
programmers themselves, can understand the results without understanding the details 
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of the method. A few words of explanation here may make the process less 
mysterious to those who lack the mathematical background. 
 
A table of quantitative values, such as those set out in a spreadsheet, can be regarded 
as a matrix. A single row of the matrix can be referred to as a row vector, and a 
single column as a column vector. The individual values or elements of the matrix are 
referred to in the spreadsheet by a letter indicating the column and a number 
indicating the row. In matrix algebra, the notation is slightly different, with the row 
and column both indicated by numbers. Letters are used, not to designate a specific 
column, but as placeholders that can be replaced by any number. Algebraic statements 
using the placeholder (or index) are thus quite general, and not tied to any particular 
numeric values. The matrix as a whole can be referred to by a name, in algebra 
usually a capital letter in bold type. The element has the same name, in lower case 
with the row and column numbers as suffixes. Thus the element xij is in row i and 
column j of the matrix X. A typical notation in a programming language is X(i,j) 
where X is a name that could be several characters in length.  
 
Matrices of the same size, that is, the same number of rows and columns, can be 
added. Z=X+Y means that each zij = xij + yij . Subtraction follows the same pattern. 
Multiplication, Z = X.Y, requires that the number of columns in X is equal to the 
number of rows in Y. The element zij  is found by adding the products of the elements 
in the ith row of X with the corresponding elements in the jth column of Y.  
 zij = xi1.y1j + xi2.y2j . . . xin.ynj   
The ellipsis (. . .) indicates continuation of the preceding series in the same way, and n 
is the number of columns in X. 
 
A problem frequently encountered in statistics and in some geophysical topics is that 
of solving a set of simultaneous equations, which could be written as A = x, where x 
is a column vector. In matrix notation, the general solution is A-1 . Thus matrix 
algebra is useful where each new value is dependent on several existing values in 
some systematic way. It provides a more compact and so more powerful notation than 
writing out each individual operation. 
 
Returning to coordinate geometry, let us suppose that x, y and z are variables holding 
the latitude, longitude and elevation of a point in space. They can first be brought to 
the same units, say meters from an origin at mean sea level on the lower left corner of 
a map sheet. A set of points within the map sheet, say where samples had been 
collected, could be numbered with an index i, which takes the values 1, 2, 3 . . . n. As 
similar types of measurement are made for each sample, it is convenient to refer to 
them all in the same way. Each has an x, y and z value to indicate its location. To 
identify each sample, it can be given a suffix; thus the ith sample is located at xi, yi, zi. 
The three values together, placed in brackets (xi, yi, zi), form a vector, in the sense of a 
set of numbers referring to the properties of an object. In this case, because the 
elements of the vector are geometrical coordinates, (xi, yi, zi) also denotes a vector in 
the geometric sense - a line from the origin (0,0,0) with length, orientation and 
direction.  
 
As x, y, and z, once they are measured in the same units, refer to similar things, it is 
convenient to refer to them with the same letter, say x1, x2, x3 (or xj, where j=1,2,3). 
The values of x then have two suffixes, and the values can be arranged as a table with 

Loudon, T.V., 2000. Geoscience after IT: Part F  (postprint, Computers & Geosciences, 26(3A)) 



rows i, numbered from 1 to n and columns j, numbered from 1 to 3. In Fortran, the 
matrix is referred to by the more general term of an array. It is one-dimensional if it 
has one suffix, two-dimensional if it has two, and so on, whether or not this is its 
geometric dimension. The geometric operations that might be applied to these vectors 
are described in G 4. Their algebraic equivalents may involve changing each of the 
values of each row vector (xi1, xi2, xi3) in a way that depends on all three of the current 
values. If the corresponding values after the operation are called y, then we can write  
 yi1 = axi1 + bxi2 + cxi3 
with similar equations for yi2 and yi3 , making three in all. Rather than referring to the 
constants, such as a, b and c, with separate letters, they can be seen as a matrix in their 
own right with three rows and three columns, say T. The transformation of the entire 
data matrix X  to new values Y can then be written as Y = XT. Some important 
geometric operations have equivalents in matrix algebra that can be implemented on a 
computer system. As described in G 4, the transformation matrix T can represent 
familiar operations of moving objects about and changing their shape. It is a basic tool 
in creating computer maps and multidimensional spatial models. 
 
5. Multivariate statistics 
 
The link between numbers and space, between algebra and geometry, works in both 
directions. Spatial features can be represented by numbers; quantitative data points 
can be visualized as a cloud of dots. They can be manipulated in a space where the 
coordinate axes, at right angles to one another, are marked off in the units of 
measurement of the individual variables. The units refer to any measured property, 
such as bed thickness, grain size, gravity or uranium content. There is no limit to the 
number of axes, but we have trouble visualizing more than three at a time, as we 
appear to live in a three-dimensional world. Visualization may help us to understand 
the statistical relationships of a set of variables (see Cook, 1998). Statistics is 
concerned not just with single variables and comparison of different sets of 
measurements of the same variable, but also with the relationships between different 
properties of the same objects. This leads to techniques of multivariate analysis (a 
variate is a variable that exhibits some random variation). 
 
Given a set of quantitative data, say, a collection of measurements of fossil shells, 
statistical methods are a guide to possible conclusions. Many different properties 
could be measured on each shell, such as length, breadth, thickness, length of hinge-
line, and number of growth lines. We might wish to investigate how the properties are 
related to one another. We might also need some means of measuring the 
characteristics of the set of measurements as a whole, to compare them with another 
set from a different locality. The task has moved from comparing individual 
measurements to that of comparing aggregates of measurements, that is, a set of 
distinct items gathered together.  
 
A starting point, however, is to look at the characteristics of each variate in terms of 
statistics such as the mean and standard deviation (F 3). Each variate can then be 
standardized to zero mean and unit standard deviation. This frame of reference may 
make it easier to compare their relative variation. The cloud of standardized data 
points is centered on the origin and has equal spread or dispersion along each axis. 
Measures, such as skewness and kurtosis, based on the third and fourth powers of the 
deviations from the mean, can be calculated to assess the symmetry and shape of the 
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frequency distribution of each variable (F 3). However, there is no substitute for their 
visual inspection with a bar chart, histogram or scatter diagram.  
 
Some frequency distributions are quite unevenly distributed about the mean, such as 
the grain size of sediments or thickness of beds in a vertical section. A log 
transformation, which compresses the scale at the higher end, can bring the 
distribution to a more tractable form. Many other transformations are possible, and 
may be justified simply because the subsequent analysis is more straightforward. It is 
more satisfying if there is a physical justification for the transformation. For example, 
if an organism doubles in size each year, the distribution of size at random times will 
be logarithmic, reflecting a multiplicative rather than an additive process. Replacing 
the original measurements by their logarithms converts the numbers to a simple 
straight-line distribution. 
 
Statistical reasoning, as opposed to description, tends to assume that variates 
approximately follow the so-called normal distribution - the familiar bell-shaped 
curve of Fig. 2. Under a number of assumptions, it is possible to compare the actual 
sample with that expected from a random set of events, and determine the likelihood 
of this “null hypothesis” being incorrect. A number of excellent textbooks, including 
some for geoscientists (for example, Davis 1973), give fuller information on these 
powerful methods. 
 
The relationship between two variates can be measured by the correlation coefficient 
(F 3), or by a regression equation. The regression equation predicts the value of one 
variable (y) from that of another (x). The regression equation describes a line, using 
the formula y=a+bx, selecting the values of a and b to minimize the sums of squares 
of deviations between the measured and calculated values of y (see Fig. 3). The 
average squared deviation is a measure of the closeness of fit of the data to the line. 
The line that best fits the data could be regarded as a mathematical model of the 
relationship. As before, transformations that give the individual distributions a shape 
like the normal distribution are helpful. The null hypothesis of no correlation can be 
tested, given a number of assumptions, and only if it fails is there a need for a 
scientific explanation of the relationship. 
 
The situation becomes more interesting where several variates are measured on the 
same items. You may be able to visualize the data as a cloud of dots in n dimensions, 
each dot representing one item, and each axis representing the standardized 
measurements for one variate. This is easiest with 2 or 3 variates, but the calculations 
are similar in higher dimensions. Each axis is regarded as independent of the others, 
which in geometry means that they are shown at right angles to one another. View the 
cloud in any two dimensions, and a correlation may be apparent that can be measured 
by the correlation coefficient. The correlation coefficients can be calculated for each 
pair of variates separately and shown as an n x n matrix, where n is the number of 
variates. There may be underlying processes that affect many of the variates together. 
Possibly there are several such processes affecting different variates in different ways. 
The matrix of correlation coefficients may throw light on the structure of the data 
which in turn might suggest underlying causes.  
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Fig. 3. Line of best fit between two variables. The data of Fig. 1 are plotted here to examine their 
correlation, and a regression line added. The chart was prepared from the spreadsheet with Microsoft 
Excel software. 
 
One procedure for analyzing the correlation matrix is known as principal component 
analysis.  It simply rotates the cloud of points in n dimensions (try visualizing it in 
three), until the largest variance is along one axis (the first principal axis), the greatest 
remaining variability along the second, and so on. The least variance is that around 
the final principal axis. The number of principal axes is the same as the original 
number of variates. They are still at right angles, but have been rotated together, as 
described, to a new orientation. When the points are referred to the new frame of 
reference (the principal axes), the new variates are known as the principal 
components. It is likely that most of the total variance will be accounted for by the 
first few components. If the remainder show no interesting pattern and appear merely 
to reflect random effects, they can be disregarded. The result from the principal 
component analysis (PCA) program is thus a smaller set of new variates and a 
statement of how much of the variance each represents. The relative contribution of 
each of the original variates to each principal component is defined. The challenge for 
the geoscientist is to decide whether the principal components reflect underlying 
causal processes, or if not, how they might be accounted for. For example, the 
measurements of many aspects of the size and shape of fossil shells might be related 
to a few features of the environment like wave energy, nutrient availability, depth and 
clarity of water. This approach has been extended and elaborated as factor analysis 
(see Reyment, Jöreskog, 1993). 
 
As well as the correlation coefficient between two variables, we noted the regression 
equation as an alternative way of looking at the relationship. This again is not limited 
to two variates. An equation y = a + bx1 + cx2 + . . . + gxn  representing a straight line 
in n dimensions, can be fitted to n variates x1 to xn, so that the value of the selected 
variable y can be predicted from all the x variates, minimizing the total sum of squares 
of differences between its measured values and the values predicted by the equation. 
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Unlike PCA, which treats all variates alike, multiple regression focuses on one 
variate, with all the others seen as contributing to its variation. 
 
As an aside, if the number of terms in a regression equation is greater than the number 
of data points, additional information is required to give a unique equation. Methods 
of linear programming achieve this by introducing an objective function that must 
be maximized to yield the greatest benefit to the system. This has applications in 
allocating raw materials to different products, as in models that allocate chemical 
elements to the mineral constituents of a crystallizing igneous rock.  The more usual 
statistical case is overspecified, with many more data points than terms in the 
equation, and the least-squares criterion just mentioned, or a similar alternative, is 
used to arrive at a unique surface. 
 

 
 
Fig. 4. Generation of polynomial curves. The basis functions for a cubic polynomial, and the combined 
curve from adding them together, are shown in A. In B, the coefficients are altered to give a different 
curve, which is still smooth, has the same number of inflection points, and heads for plus or minus 
infinity at each end. 
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The form of the regression equation suggests how it is possible to fit curves other than 
straight lines to a relationship between two variables x and y. From the values of x, it 
is a straightforward task to calculate x2, x3, . . . xn. We can then write an equation 
similar to that given above:  
 y = a + bx + cx2 + . . . + gxn  
If we look at a graph of the powers of x (Fig. 4), we see that adding them in different 
proportions can generate quite complicated curves. 
 

 
 
Fig. 5. Complex periodic curve. The upper diagram shows how sine waves can be combined to 
approximate even awkward shapes, such as a square wave. A single wave offers a first approximation, 
which can be improved by combining it with appropriately weighted harmonics, shown individually in 
the lower diagram. 
 
Many natural sequences are periodic, retracing a sequence again and again, like 
rotations of the Earth around the Sun. This type of sequence can be mimicked 
mathematically by a series in which, instead of an x value increasing along a line, we 
take an angle θ measured out by a radius rotating around a circle from 0 to 360o 
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repeatedly. As it rotates, the sine of the angle θ changes from 1 to 0 to -1 and back 
again. A complex periodic curve (see Fig. 5) can be generated by taking, not powers 
of x, but sines of multiples of the angle θ: 
 y = a + bsinθ  + csin2θ + . . . + gsinnθ 
The power series and the sine and cosine series have the mathematical property that 
successive terms have a smaller influence as the series continues. They are therefore 
suitable for approximating to an arbitrary curve. The slope and curvature at any point 
are readily calculated from the equations, and the form of the power series is suited to 
statistical calculation. They are not appropriate, however, for extrapolating the 
relationship beyond the data points. The periodic curve repeats itself indefinitely, and 
the power series heads off to infinity. 
 
Statistical tests (to which power series are well suited) can measure the “goodness of 
fit”, that is, how well the curve fits the data, compared with expectations from a 
random relationship. The test is based on a number of assumptions, notably that a 
random sample has been obtained from an underlying distribution that is close to the 
normal, bell-shaped, curve. It follows that the sample is expected to be drawn from a 
single, homogeneous population. There are situations where we suspect that this is not 
the case. Our sample could have been drawn, without our knowing it, from 
populations that were formed in different ways by different processes, and they might 
have quite different properties. It is convenient, therefore, to have a means of 
searching for different groups within the dataset.  
 
Cluster analysis does this by looking for the most similar items in a dataset, 
combining them as one item, looking for the next most similar items, and so on until 
all the items in the dataset are combined. The similarity of two items, or its opposite, 
can be measured in various ways, such as the distance between them in standardized 
variate space. If the dataset is homogeneous, the clustering will proceed uniformly. If 
there are a number of natural groups or clusters, then the clustering is more likely to 
proceed with sudden breaks. Closely similar items are brought together, followed by a 
break before the next most similar items are found. This is a hierarchical process with 
clusters of clusters amalgamating as bigger clusters. Further examination of the 
characteristics of each cluster may suggest why they fall into groups (different 
species, different environments, different weathering, and so on). Cluster analysis can 
point to the existence of non-homogeneous populations, and lead to better analysis. If 
it is known before the investigation that several groups are present, discriminant 
analysis (see Davis, 1973) provides equations for assigning new items to appropriate 
groups. Techniques of this kind are used in numerical taxonomy, where 
measurements of sets of properties are the basis for classification. They may not be 
appropriate where objects are classified on the basis of an underlying qualitative 
model, as is often the case in geoscience (J 2.3). 
 
Most multivariate techniques can simply be regarded as arithmetic transformations of 
a set of numbers, and do not necessarily require any underlying assumptions. The 
results may suggest ideas to a geoscientist who can then proceed to test them by other 
means. Calculating the descriptive statistics is then purely an exploratory exercise. 
Visualization, by displaying patterns through interactive graphics, follows this 
approach (see Cleveland, 1993). However, statistical tests of significance, and indeed 
any conclusions that depend on the numbers themselves, almost certainly imply some 
assumptions. Perhaps the most important and the most difficult requirement is to 
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ensure that the items recorded (the sample) are truly representative of the population 
about which the conclusions are drawn. This applies of course not just to quantitative 
measurements but to any observation of the natural world. There is, however, a 
danger that in the course of carrying out the complex manipulations of the data, 
original constraints and limitations are forgotten. The subject matter is all important. 
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