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 1 

Abstract 2 

 3 

Ground level ozone pollution is already decreasing global crop yields (from 4 

approximately 2.2-5.5 % for maize to 3.9-15 and 8.5-14 % for wheat and soybean), to 5 

differing extents depending on genotype and environmental conditions, and this 6 

problem is predicted to escalate given climate change and increasing ozone precursor 7 

emissions in many areas. Here we summarise how ozone pollution affects yield in a 8 

variety of crops, thus impacting global food security. Ozone causes visible injury 9 

symptoms to foliage, comprising patches of necrotic tissue; it induces early 10 

senescence and abscission of foliage; it can reduce stomatal closure and thereby 11 

carbon uptake, and/or directly reduce photosynthetic carbon fixation; it can moderate 12 

biomass growth via carbon availability or more directly; it can decrease translocation 13 

of fixed carbon to edible plant parts (grains, fruits, pods, roots) either due to reduced 14 

availability at source, redirection to synthesis of chemical protectants, or due to 15 

reduced transport capabilities via phloem; decreased carbon transport to roots reduces 16 

nutrient and water uptake and affects anchorage; ozone can moderate or bring forward 17 

flowering and induce pollen sterility; it induces ovule and/or grain abortion; and 18 

finally it reduces the ability of some genotypes to withstand other stresses such as 19 

drought, high vapour pressure deficit (VPD) and high photon flux density (PFD) via 20 

effects on stomatal control. This latter point is emphasized here, given predictions that 21 

atmospheric conditions conducive to drought formation that also give rise to intense 22 

precursor emission events will become more severe over the coming decades. 23 

 24 
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security, ozone pollution, stomatal conductance, water use. 2 

Introduction 3 

 4 

Although essential in the upper atmosphere, gaseous ozone is also present in the lower 5 

atmosphere where it is a pollutant formed from the effects of sunlight on vehicular 6 

and industrial emissions. In the northern hemisphere, mean background ozone 7 

concentrations have risen from approximately 10-15 ppb in pre-industrial times to the 8 

current level of 35 ppb (Vingarzin, 2004; see Fuhrer, 2009). Effects of phytotoxic 9 

ozone on crop yields have been studied extensively in the last 30 years, and several 10 

syntheses of these findings exist (e.g. Mills et al., 2007; Emberson et al., 2009; Feng 11 

et al., 2009; Pleijel, 2011). On the whole, wheat and soybean are particularly 12 

sensitive; potato, rice and maize are moderately sensitive, whilst barley has been 13 

found to be ozone resistant, with South Asian varieties of food staples being at least as 14 

sensitive as those grown in the USA and Europe (Emberson et al., 2009). Global 15 

models indicate that ozone reduced crop yields by a larger margin than the reduction 16 

attributable to climate change in the year 2000 (Van Dingenen et al., 2009; The Royal 17 

Society, 2008). Estimated reductions of global yields ranged from 2.2-5.5 % for 18 

maize, to 3.9-15 % and 8.5-14 % for wheat and soybean (Avnery, 2011a). Economic 19 

losses for Europe in 2000, based on ozone effects on 23 crops, were estimated to be 20 

6.7 billion Euros (Holland et al., 2006); and global crop production losses in the same 21 

year were estimated to have been 79-121 million metric tons worth $11-18 billion 22 

(USD2000; Avnery, 2011a). In a recent meta-analysis of 30 experiments representing 23 

nine countries in North America, Europe and Asia, and spanning 18 wheat genotypes, 24 
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average wheat yield improvement by removing ozone from the air entering open 1 

topped chambers in the field was 9% (Pleijel, 2011). 2 

 Crop plants are often irrigated, or planted to coincide with adequate rainfall, 3 

which, as well as maximizing growth, induces the opening of stomatal pores in the 4 

leaf surface for gas exchange for photosynthesis. It is through these open pores that 5 

ozone gains entry to the plant. Yield is reduced by cumulative ozone effects on 6 

several aspects of growth and productivity over the course of the growing season, and 7 

more immediately visible effects are induced by ozone “episodes” or concentration 8 

peaks frequently superimposed on the background level in spring and summer 9 

months. Such episodes, lasting for several days and covering scores to thousands of 10 

square kilometres, occur when local climatic conditions conducive to ozone formation 11 

and persistence coincide with significant precursor emissions. Ozone concentrations 12 

are elevated to peaks of above 60 ppb each day, with concentrations as high as 150-13 

180 ppb being recorded in years such as 2006 in many areas of the Mediterranean 14 

Basin and central Europe (EAA Technical report, 2006). 15 

 The visible injury symptoms manifest as chlorotic or necrotic patches on the 16 

leaf surface in the form of stippling, which can coalesce to form larger injured areas, 17 

and these leaves often senesce and abscise early. Other visible yield impediments 18 

stem from reductions in general plant biomass growth, and reduced flowering. Less 19 

visible ozone effects include reduced grain/pod filling, and/or ovule and grain 20 

abortion in later developmental stages (see below). Thus, in field crops such as some 21 

varieties of wheat, rice, maize, bean, soybean, oil seed rape and sorghum, ozone 22 

reduces grain size, grain weight, grain nutritional quality and/or grain number (e.g. 23 

Mulholland et al., 1998; Biswas and Jiang, 2011). In pod crops such as bean, pods are 24 

smaller, or of a reduced number. In tuber crops such as potato, tuber size rather than 25 
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tuber number is reduced. Crop quality, for example protein or oil content of pods or 1 

grains, can also be affected (see Fuhrer, 2009). 2 

 Furthermore, ground-level background ozone concentrations are still 3 

increasing (by an average of 0.3 ppb per year), as a result of increased human activity, 4 

and this is predicted to reduce global yields still further, particularly given that climate 5 

change will exacerbate ozone formation in some regions (The Royal Society, 2008; 6 

see Fuhrer, 2009). Avnery et al. (2011b) predict that global yield losses in the year 7 

2030 will be worth up to $35 billion (USD), with losses of 4-26 % expected for 8 

wheat, 9.5-19 % for soybean and 2.5-8 % for maize dependent on scenario used. The 9 

frequency of episodes is also predicted to increase, and this may be especially severe 10 

in Southern Asia and in Africa (The Royal Society, 2008). Not only does this threaten 11 

agricultural sustainability in general, but our research shows that current global 12 

models may have underestimated the potential impact of future ozone concentrations 13 

on crop damage, because ambient ozone concentrations can prevent stomata of some 14 

sensitive genotypes from closing as fully as usual in response to stresses such as 15 

drought and high VPD (see below). This is relevant to the vulnerability of “local” 16 

food supply in an unpredictable climate. 17 

 Here we describe how ozone is reducing our food supply, with emphasis on its 18 

effects in a variable and changing environment. 19 

 20 

Mechanisms for ozone-induced yield reduction 21 

 22 

Figure 1 depicts ozone impacts on carbon gain and use affecting yield. It should be 23 

noted that whilst some genotypes may be more vulnerable to one in particular of these 24 

mechanisms, it is most likely that several of these interact to curtail productivity, and 25 
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that these interactions will be altered by the environment (e.g. Guidi et al., 2010; 1 

Biswas and Jiang, 2011). It should also be noted that the effects of ozone described in 2 

this section refer in the main to those known to occur in relatively unstressed plants, 3 

however we describe, within a separate section below, the fact that ozone effects on 4 

plants experiencing abiotic stress such as a lack of soil moisture can respond very 5 

differently. Thus we include separate sections below describing ozone effects in 6 

plants experiencing additional abiotic stress (ozone by environment interactions), 7 

particularly in terms of plant signalling and stomatal behaviour, that may then impact 8 

on our food supply.  9 

 10 

Visible injury 11 

Inside leaves, ozone interacts with the contents of the sub-stomatal apoplast and with 12 

adjoining cell membranes and walls, to form reactive oxygen species (ROS) such as 13 

hydrogen peroxide, superoxide, and hydroxyl radicals (reviewed in Fiscus et al., 14 

2005). This induces a chain reaction whereby further oxidative bursts occur within 15 

adjoining cells. ROS that remain un-scavenged can cause a variety of foliar injury 16 

symptoms such as inter-veinal necrosis and early senescence and abscission as 17 

described above. Such symptoms have been confirmed on 27 crop species growing in 18 

farmer’s fields across Europe (Mills et al., 2011), and are caused by free-radical 19 

induction of unregulated and/or programmed cell death. Evidence is growing that 20 

these processes are in part mediated via the plant hormones ethylene, jasmonic acid 21 

and salicylic acid (see Fiscus et al., 2005 and Kangasjärvi et al., 2005, for reviews). 22 

 Visible injuries are one way in which ozone can eventually reduce yield, even 23 

if they only occur at early vegetative stages of crop growth. Leaf injury, senescence 24 

and/or abscission directly reduce yields in leafy biomass crops such as alfalfa, lettuce, 25 
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spinach, chicory and cabbage. However in non-foliage crops visible injuries also 1 

affect yield (e.g. of grain and pod crops) by reducing the amount of leaf area per se, or 2 

the amount of healthy green leaf area available for carbon fixation for further biomass 3 

growth and/or grain filling (e.g. Mulholland et al., 1998; McKee and Long, 2001; see 4 

below). 5 

 6 

Carbon acquisition, transport and use 7 

Many yield-depressive ozone effects on biomass growth and grain filling are only 8 

measurable post harvest, as effects are often cumulative across the full growing 9 

season (Wittig et al., 2007; 2009; Singh and Agrawal, 2010). Farmers may be 10 

unaware that such crop losses are caused by ozone. Such reductions in biomass 11 

growth have traditionally been linked to ozone-induced reductions in biochemical 12 

photosynthetic carbon fixation processes (reviewed in Fiscus et al., 2005). Ozone-13 

induced stomatal closure has also been implicated (Torsethaugen et al., 1999; 14 

McAinsh et al., 2002; Overmeyer et al., 2008) in reducing carbon availability. 15 

Furthermore, logically, direct reductions of shoot and root cellular expansion via 16 

ozone-induced ethylene generation can be implied (see Wilkinson & Davies, 2010; 17 

and below). 18 

 Reductions in whole plant biomass induce yield reductions in grain and pod 19 

crops by reducing the availability of leaf surface area to fix and provide carbon (C) for 20 

reproductive parts (Figure 1). The Figure depicts the various different contributions to 21 

the reduced availability of photosynthate for grains or pods, stemming from a) 22 

reduced photosynthetic efficiencies, b) reduced stomatal conductance (gs), c) reduced 23 

green foliage biomass (e.g. McKee & Long, 2001) as a result of reduced new growth, 24 

shortening of the life-cycle, injury, senescence and abscission, d) reduced root 25 
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biomass, e) reduced partitioning of available C to grains/pods in favour of synthesis of 1 

protective chemicals (Betzelberger et al., 2010; see below), or as a result of reduced 2 

phloem translocation efficiency (e.g. Grantz, 2006; McKee & Long, 2001). 3 

 The ozone-induced reduction in root biomass (which indirectly reduces yield) 4 

is understood to arise either from a reduction in C translocation from the shoot to the 5 

root via the phloem (either due to reduced availability at source or as a result of the 6 

blockage of phloem sieve plates with callose tissue – e.g. Wittig et al., 2009; Grantz, 7 

2006; Asensi-Fabado et al., 2010); and/or from an effect of ozone on the 8 

concentrations of the plant hormones such as ethylene that control root growth 9 

(suggested in Wilkinson & Davies, 2010). Ozone-induced reductions in root biomass 10 

impact indirectly on the shoot and therefore on grain/pod production via a reduction in 11 

the ability of the plant to take up the nutrients and water required to sustain growth 12 

and yield. In addition root biomass crops such as potato, onion and carrot are directly 13 

vulnerable to reductions in root biomass (e.g. Asensi-Fabado et al., 2010). 14 

 15 

Effects on reproductive parts 16 

There are direct effects of ozone to reduce bud formation and flowering, to cause 17 

pollen sterility, and to induce flower, ovule or grain injury and abortion which are 18 

discussed in detail by Black et al. (2000; 2007) and Mulholland et al. (1998). Some of 19 

these effects may potentially occur through plant hormones such as ethylene (see 20 

below). 21 

 22 

Ozone and growth stage 23 

Some studies suggest that ozone exposure in the vegetative phase is most yield 24 

depressive, whilst others describe that the reproductive stage is most vulnerable (e.g. 25 
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Heagle, 1989; Mulholland et al., 1998), with, for example, the sensitivity of seed crop 1 

yield to ozone having been shown to be greatest during the period between flowering 2 

and seed maturity in some studies (e.g. Lee et al., 1988; Pleijel et al., 1998). However, 3 

Singh and Agrawal (2010) showed that the presence of ethylene diurea (EDU – a 4 

compound that can be used to protect plants against ozone damage via an unknown 5 

mechanism, that is used as an experimental tool) was necessary at all stages of wheat 6 

crop production, in order to prevent ozone-induced yield penalties, implying that 7 

ozone effects on yield were more cumulative. Vulnerability at a given key stage of 8 

crop development, or vulnerability that arises more cumulatively, is likely to be 9 

genotypically determined, and/or to be dependent on prevailing environmental 10 

conditions. 11 

 12 

The basis of genotypic sensitivity to ozone 13 

 14 

Crop species differ widely in their susceptibility to ozone, and lists of 15 

species/genotypes that fall into sensitive and resistant categories can be accessed 16 

elsewhere (e.g. Heagle et al., 1989; Mills et al., 2007). There is a wide intra- as well 17 

as inter-specific variation in plant sensitivity to ozone (e.g. Brosche et al., 2010; 18 

Biswas et al., 2008; Maggs and Ashmore, 1998) and recent studies have identified 19 

some genetic loci associated with ozone resistance and/or susceptibility in wheat and 20 

rice (e.g. Ainsworth et al., 2008; Frei et al., 2010), amongst other crops. 21 

 However it must be noted that the definition of crop “sensitivity” to ozone can 22 

be rather imprecise. For example crops can be sensitive to ozone regarding the visible 23 

injury symptoms seen on foliage at early growth stages, but, apart from in foliage 24 

crops (such as leafy salad crops and alfalfa) this does not necessarily give rise to an 25 
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equivalent negative impact on grain/pod/fruit yield in fully developed crops. 1 

Indeterminate species often possess sufficient compensatory flexibility to avoid 2 

reductions in seed production in spite of ozone effects at the vegetative stage (e.g. 3 

Black et al., 2007). Sawada and Kohno (2010) have shown in rice, and Picchi et al. 4 

(2010) in wheat, that cultivars in which grain yields are most impacted by ozone are 5 

those which showed the least visible injury symptoms to foliage. Picchi et al. (2010) 6 

proposed that this may be related to genotypic variation in the extent of the stomatal 7 

closure response to ozone. Cultivars where ozone closes stomata could be said to be 8 

relatively ozone insensitive in reference to visible injury, as the ozone “dose” will be 9 

reduced subsequent to this closure, preventing further foliar injury. However 10 

prolonged stomatal closure reduces C fixation, and thereby the amount of assimilate 11 

available for grains/pods/leaves, thus these cultivars may be more “sensitive” to ozone 12 

in terms of yield. 13 

 Nevertheless there is scope for the impacts of increased ozone concentrations 14 

on food security to be mitigated by choosing/developing genotypes with greater ozone 15 

tolerance with respect to yield. Genotypic variability in sensitivity to ozone can arise 16 

through several mechanisms: 17 

 18 

The extent of detoxification 19 

Some of the genotypic variability in ozone tolerance has been attributed to levels of 20 

detoxifying antioxidants (ascorbic acid - AsA, glutathione, tocopherol, carotenoids, 21 

flavonoids, and phenolics) and/or ROS scavengers (superoxide dismutase, catalase, or 22 

peroxidases) present in and/or generated by certain genotypes in response to ozone 23 

stress (Blokhina et al., 2003; Conklin and Barth, 2004; Eltayeb et al., 2007). Naturally 24 

occurring genetic variation in ozone tolerance of visible leaf injury in rice was 25 

http://jxb.oxfordjournals.org/content/61/5/1405.full#ref-9#ref-9
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dissected into two distinct quantitative trait loci (QTLs; Frei et al., 2008). These were 1 

developed into two chromosome segment substitution lines (Frei et al., 2010). 2 

Tolerance in one of the lines was related to lower expression of genes encoding 3 

ascorbic oxidase, and AsA catabolism was proposed to be reduced such that this line 4 

had higher concentrations of apoplastic AsA when exposed to ozone. Genes related to 5 

ethylene and jasmonic acid metabolism were also differentially regulated between the 6 

tolerant and sensitive lines. 7 

 8 

Changes in stomatal conductance 9 

Inherent rates of stomatal conductance (gs) have also been linked to variability of 10 

susceptibility of wheat and rice varieties to ozone. In general, modern wheat cultivars 11 

released in the last two decades are the most vulnerable, and these also display highest 12 

gs (Biswas et al., 2008; but see Biswas and Jiang, 2011). It is thought that breeding 13 

for high yield has a functional link to increased stomatal CO2 influx. Unfortunately, 14 

large stomatal apertures also allow larger ozone flux to the internal leaf parts (Brosche 15 

et al., 2010). Evidence for this hypothesis is provided by some of our findings in 16 

clover clones: Figure 2 shows that an ozone-sensitive clover accession (NC-S) has a 17 

higher level of gs in drying soil than its ozone-resistant counterpart (NC-R; originally 18 

selected by Heagle et al., 1994). Importantly, this difference is particularly dramatic in 19 

the presence of ozone, and we propose that ozone may prevent full stomatal closure 20 

under drought. Poor stomatal closure under drought implies both excessive water loss 21 

and inwardly directed ozone flux, giving rise to poor plant performance (Wilkinson & 22 

Davies, 2009; 2010; see below). Whilst clover is an important pasture crop, we expect 23 

that this mechanism will also dictate some of the varietal sensitivity to ozone in 24 

human staples. For example it was recently demonstrated that genotypic variation in 25 
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the sensitivity of stomatal aperture to external factors may be linked to yield tolerance 1 

to ozone in wheat (Biswas and Jiang, 2011; see below).  2 

 3 

Changes in photosynthetic capacity 4 

Flowers et al. (2007 – snap bean), Biswas and Jiang (2011 – wheat), Betzelburger et 5 

al. (2010 - soybean) and Pang et al. (2009 – rice) amongst others, have determined 6 

that genetic variability in ozone susceptibility in terms of yield is related to direct 7 

ozone effects on biochemical photosynthetic processes. However it is important to 8 

note that genetic variability in photosynthetic capacity, will, to some extent, depend 9 

on genetic variability in both gs-related parameters, and in the efficiency of ozone 10 

detoxification, which both contribute to the final amount of ROS present at the 11 

photosynthetic apparatus. 12 

The extent of ethylene production 13 

The production of the gaseous plant hormone ethylene from shoot tissues is frequently 14 

observed in plants exposed to ozone pollution (see Kangasjärvi et al., 2005; 15 

Wilkinson & Davies, 2009; 2010), including many crop species (see Wilkinson & 16 

Davies, 2009), and the extent of ozone-induced ethylene production has been shown 17 

to be commensurate with visible leaf injury and abscission (e.g. Mehlhorn et al., 1991; 18 

Tamaoki et al., 2003; Overmyer 2008). Recently ethylene accumulation has been 19 

associated with stomatal closure per se, as well as being correlated with genetic 20 

variability in the extent of ozone-induced stomatal closure (Kangasjärvi et al., 2005; 21 

see Wilkinson & Davies, 2009; 2010). It has also been shown to be involved in ozone-22 

induced disruption of the plant’s defence mechanisms against abiotic stresses such as 23 

drought, by altering the sensitivity of stomata to a second plant hormone, abscisic acid 24 
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(ABA; Wilkinson & Davies, 2009; 2010; see below), and ozone-sensitivity in terms 1 

of leaf injury is greater in ethylene over-producers (see Kangasjärvi et al., 2005), than 2 

in ethylene-insensitive Arabidopsis mutants (Overmyer et al., 2008). We predict that 3 

genotypic variability in ethylene production of human staples will also determine 4 

yield responses to ozone, because a) there is much data demonstrating variable 5 

ethylene generation by crop plants in response to ozone (see above), and b) because 6 

outside of ozone biology, ethylene is also known to play a role in leaf and root 7 

growth, in carbon partitioning to grains, and in grain abortion (see below). 8 

 9 

Ozone by environment interactions 10 

 11 

There is a great deal of variability in injury, yield, growth and stomatal responses to 12 

ozone (e.g. Wittig et al., 2007; 2009), some as a result of inherent genetic variability 13 

as described above, and/or some that arises as a result of variable growth conditions. 14 

Interactions between ozone stress and atmospheric CO2 concentrations have been 15 

reviewed elsewhere (e.g. Long et al., 2005). Here we highlight the fact that ozone 16 

episodes frequently co-occur with climatic conditions that also induce soil drying. 17 

 It is widely understood that drought-induced stomatal closure will limit ozone 18 

uptake, thereby mitigating ozone-induced crop yield losses (e.g. Fuhrer, 2009; 19 

Fagnano et al., 2009). However several studies have established that drought is not 20 

always protective in the presence of ozone concentrations in the ambient range (see 21 

Wilkinson & Davies, 2009; 2010; Biswas and Jiang, 2011), and we show here that 22 

some genetic variability in ozone sensitivity may be related to the extent to which 23 

ozone reduces the sensitivity of stomatal closure to soil drying (Fig 2). Paoletti and 24 

Grulke (2010) also describe that stomata open and close less sensitively in response to 25 
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changes in light intensity, and Biswas and Jiang (2011) very recently demonstrated 1 

that faster stomatal control in response to changing light intensity occurred in ozone-2 

stressed plants of a more ozone-tolerant primitive tetraploid wheat species than in 3 

those of a less tolerant recently released genotype of hexaploid wheat. However, 4 

stomatal control became slower in the tetraploid species when ozone stress was 5 

combined with drought, and the primitive species lost ozone tolerance. 6 

  We have shown that in drying soil, or when leaves are detached from the 7 

plant and allowed to dry out, stomata of some species close much less sensitively in 8 

ozone-polluted air (Mills et al., 2009; Wilkinson & Davies, 2009; 2010; Figs 2-3). 9 

This effect will reduce the protective effect of drought-induced stomatal closure on 10 

the ozone dose that these plants receive, and on the regulation of plant water loss (e.g. 11 

McLaughlin et al., 2007), and therefore increase vulnerability to the drought episode 12 

(particularly when combined with a reduced root biomass – Wittig et al., 2009), with 13 

secondary impacts on leaf water potential and xylem cavitation likely. We predict that 14 

this will eventually cause secondary reductions in growth and yield, and/or increased 15 

injury, abscission, senescence and death (Wilkinson & Davies, 2009; 2010), 16 

particularly if the vulnerable plants begin to experience additional/subsequent stresses 17 

such as wind, biotic attack, high light/VPD or flood/storm conditions. Our recent data 18 

(in preparation) describe a growing number of species, including some crops (notably 19 

Phaseolus vulgaris), that exhibit ozone-induced reductions in the stomatal closing 20 

response either in the presence or absence of soil drying. We describe below the 21 

potential mechanism behind these effects, and behind the linked ozone effect whereby 22 

stomata also close less sensitively in response to other stresses such as high salinity, 23 

light and VPD (e.g. Robinson et al., 1998; Paoletti and Grulke, 2010; Biswas and 24 
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Jiang, 2011). We speculate on how genetically widespread these effects might be, thus 1 

exploring their consequences for food security. 2 

 3 

Ozone-induced disruption of plant signalling. 4 

 5 

The concentration of ABA in plant tissues usually increases linearly with soil drying. 6 

Generally stomata close and leaves grow more slowly in response to ABA sent 7 

upwards from the roots, reducing the loss of valuable water to the air (for reviews see 8 

Davies and Zhang, 1991; Wilkinson and Davies, 2002; Tardieu et al., 2010). ABA 9 

also moderates stomatal aperture and leaf growth in response to other stresses such as 10 

high VPD, high salinity and temperature extremes. Signals from the aerial 11 

environment (e.g. VPD, light, CO2, temperature and air-borne pollutants) can directly 12 

affect concentrations of signalling molecules such as ABA. Ozone has been shown to 13 

increase ABA concentrations in some genotypes, but to decrease it or have no effect 14 

on it in others (see Wilkinson & Davies, 2009). The sensitivity of guard cells, leaf 15 

cells and/or cells of reproductive organs to a given concentration of ABA can also be 16 

altered by the aerial environment. In some genotypes ozone increases plant calcium 17 

concentrations and this is associated with ozone-induced stomatal closure and reduced 18 

C fixation, possibly by increasing stomatal sensitivity to ABA (McAinsh et al., 2002). 19 

We proposed that the implications of a recently defined effect of ozone to reduce the 20 

responsiveness of stomata to ABA signalling (Wilkinson & Davies, 2009; 2010) 21 

could have as yet unexplored and serious consequences for food security, via the 22 

effect of ozone to increase gaseous ethylene production. 23 

 It has long been known that ozone increases the generation of ethylene from 24 

the leaves of sensitive plants (see above). Outside of ozone science, ethylene has 25 
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traditionally been regarded as a shoot growth inhibiter and a promoter of ripening, 1 

senescence and abscission (Abeles et al., 1992; Morgan and Drew, 1998). However, 2 

evidence has also recently been emerging for a role for ethylene in stomatal 3 

movements in the unpolluted plant (Desikan et al., 2006; Tanaka et al., 2007). This 4 

directed our investigations to show (Wilkinson & Davies, 2009) that an ozone-5 

induced up-regulation of ethylene was responsible for the observed ozone-induced 6 

reduction in stomatal sensitivity to ABA, drought and other closing stimuli described 7 

above (Figs 2-3). A “cartoon” of the effect of ozone to disrupt the stomatal response 8 

to ABA via ethylene is shown in Figure 4. We propose that this may occur in response 9 

to any stress that produces ABA (or increases its access to xylem transport pathways) 10 

such as high VPD/temperature, high salinity, high light stress or nutrient deficiency 11 

(Rossel et al., 2006; Wilkinson & Davies, 2002; Wilkinson & Hartung, 2009). 12 

 We have predicted (Wilkinson & Davies, 2009; 2010; Wilkinson & Hartung, 13 

2009) that many crop plants (in addition to Phaseolus vulgaris) will be susceptible to 14 

ozone via disruption of the stomatal signalling mechanism in this way, by searching 15 

the literature for those in which ozone is known to up-regulate ethylene. These 16 

include varieties of pea and pinto bean (Mehlhorn et al., 1991), potato (Sinn et al., 17 

2004), tomato (Bae et al., 1996), snap bean (Elagoz & Manning, 2005) and some 18 

wheat and rice cultivars (e.g. Tiwari et al., 2005); and for those in which stomatal 19 

responses to the environment are known to be “sluggish”, e.g. snap bean (Paoletti and 20 

Grulke, 2010). Recently Biswas and Jiang (2011) showed differential stomatal control 21 

in wheat species under combined ozone and drought stress, although it was difficult to 22 

directly implicate this effect in yield differences. 23 

 In addition to its effects on senescence, abscission and stomatal closure, it has 24 

long been known that ethylene can directly reduce shoot growth and root growth in 25 
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non-polluted plants (Abeles et al., 1992; Morgan & Drew, 1997; Wilkinson & Davies, 1 

2010; Pierik et al., 2007). We have proposed (Wilkinson & Davies, 2010) that ozone 2 

also reduces leaf and root biomass via the up-regulation of ethylene production in 3 

ozone sensitive species, in addition to or instead of the general reduction in carbon 4 

fixation which has traditionally been assumed to be the basis for ozone-induced 5 

reductions in plant biomass growth. It is likely that ethylene also has a more direct 6 

impact on grain yield in response to ozone stress. A clear link between ethylene and 7 

yield susceptibility to heat stress has been demonstrated in certain wheat genotype 8 

classes (Hays et al., 2007). Yang et al. (2006) also demonstrated that higher 9 

ABA/ethylene ratios were associated with superior grain quality and higher grain 10 

filling rates (Figure 5). The importance of the biology of stress ethylene in the 11 

regulation of grain filling and yield in rice is already recognized (e.g. Naik and 12 

Mohapatra, 2000). It seems reasonable to assume that ozone-induced ethylene will 13 

have similarly direct detrimental effects on grain yields and quality. This remains to 14 

be tested and will generate valuable knowledge related to mitigating ozone effects on 15 

yield. 16 

 17 

Implications for food security 18 

 19 

There is clear evidence that the effects of ozone pollution described here are already 20 

occurring in many areas of the world (e.g.  Europe - Mills et al., 2011 ; SE Asia - 21 

Emberson et al., 2009). Furthering our understanding of the mechanisms by which 22 

ozone impacts on crop species, including how ozone interferes with hormonal 23 

signalling in response to a variable environment, may help us to develop new ways of 24 

protecting food crops from the current and increasing threat from ozone. Since the 25 
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highest ozone concentrations are predicted to occur in those areas of the world where 1 

the population is increasing most rapidly (The Royal Society, 2008), and where water 2 

is likely to be most scarce (Bates et al., 2008), there are urgent needs for global 3 

cooperation in reducing ozone precursor emissions, development of management 4 

methods for protecting crops from ozone in the field under variable environments, and 5 

selecting and breeding for new ozone-tolerant varieties of our most important staple 6 

food crops.  7 

 8 
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 4 

Figure Legends 5 

 6 

Figure 1. Effects of ozone on carbon gain and carbon use that impact on crop yield. 7 

 8 

Figure 2. Stomatal conductance (gs) in sensitive (NC-S) and resistant (NC-R) clover 9 

accessions in drying soil (50 % full capacity, assessed via daily weighing of evapo-10 

transpirational water loss) in the presence (70 ppb) and absence (15 ppb) of elevated 11 

ozone concentrations; temperature maintained at 21-23oC; photon flux density 6-700 12 

µmol m-2 s-1 during a 14h photoperiod. Ozone exposure was carried out in 1.0 m3 13 

boxes inside a greenhouse. Measurements were initiated 10 days after transfer to 14 

ozone treatments, plants purchased as root plugs and allowed to re-grow in a 15 

greenhouse for 2 weeks prior to ozone treatment initiation. Gs was measured weekly 16 

at 10.00 h using a porometer (AP4, Delta-T Devices, Cambridge, UK); n=12-16, two 17 

gs measurements for each of 6-8 plants; SE and significant differences (*P < 0.05, 18 

**P < 0.01, Student’s t-test).) between NC-R and NC-S are shown. 19 

 20 

Figure 3. Effect of ozone concentration (ctrl = 15 ppb; + ozone = 70 ppb) on the 21 

response of the pasture forb Leontodon hispidus stomatal conductance (gs) to soil 22 

drying. Re-calculated from Wilkinson & Davies (2009; Plant, Cell & Environment 23 

32, 949-959). Significant differences (*P < 0.05, **P < 0.01, Student’s t-test) between 24 

well-watered (WW) and droughted (DD) treatments are shown. 25 
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 1 

Figure 4. Model describing effects of ozone-induced ethylene production on ABA-2 

induced stomatal closure. Under stresses such as soil drying (and high PFD, high 3 

VPD) ABA is up-regulated, and it closes stomata so that leaves retain water. However 4 

in some sensitive genotypes ozone-induced ethylene causes stomatal guard cells to 5 

lose their sensitivity to ABA such that stomatal pores remain more open. Plants will 6 

take up more ozone and lose more water than they would have done in the absence of 7 

ozone. 8 

 9 

Figure 5. Relationships between grain-filling rate and concentrations of ABA (a), 10 

ethylene (b), and the ratio of ABA to ACC (c) in superior (closed symbols) and 11 

inferior (open symbols) grains of wheat (cvs Yangmai 6 and Yangmai 11) during 12 

linear grain growth. Treatments were well-watered (WW), moderately soil-dried 13 

(MD) and severely soil-dried (SD). Reprinted with kind permission from New 14 

Phytologist. From Yang et al., 2006, New Phytologist 171, 293-303. 15 
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Weeks from start of ozone/drought treatment
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Time from start of soil drying treatment (days)
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