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Abstract 

 
The evapotranspiration (E) from a sugar-cane plantation in the southeast Brazil was 

measured by the eddy covariance method during two consecutive cycles. These 

represented the second (393 days) and third year (374 days) re-growth (ratoon). The 

total E in the first cycle was 829 mm, accounting for 69% of rainfall; while in the 

second cycle it was 690 mm, despite the total rainfall (1353 mm) being 13% greater. 

The ratio of E to available energy, the evaporative fraction, exhibited a smaller 

variation between the first and second cycles: 0.58 and 0.51, respectively. The 

estimated interception losses were 88 and 90 mm, respectively, accounting for 

approximately 7% of the total rainfall. The sugar-cane yield in the second cycle 

(61.5±4.0 t ha
-1

) was 26% lower than the first cycle, as well as lower than the regional 
 

average for the third ratoon (76 t ha
-1

). The below average yield was associated with 

less available soil water at the beginning of the cycle, with the amount of rainfall 

recorded during the first 120 days of re-growth in the second cycle being 16% of that 

recorded in the first (203 mm). 
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Introduction 
 
 
 
 

During the last decade global biofuel production has increased. This has occurred 

mainly in the United States and Brazil (Qin et al., 2011); most of the industrial 

ethanol produced in the world is made either from corn in the United States or sugar- 

cane in Brazil (Waclawovsky et al., 2010). 

The increasing demand for production of biofuels as an alternative to fossil fuel 

burning is promoting the conversion of existing agricultural areas (Loarie et al., 

2011). This trend may intensify with the introduction of second generation biofuels 

(lignocellulosic), unless they are based on waste biomass or the land-use changes 

occur in abandoned agricultural lands (Fargione et al., 2008). 

However, high growth rates are likely to be associated with high evapotranspiration 

rates (e.g. Hall et al, 1998), and the impacts on water resources of widespread 

bioenergy-crop planting of should be addressed. These impacts should be included in 

any energy or economic cost-benefit analysis of biofuel production (Das et al., 2011). 

Currently, the area of the world under sugar-cane is approximately 20 million 

hectares. This area is spread over 70 countries (Galdos et al., 2009), but the leading 

country is Brazil with 9.5 million hectares in 2009. Nearly 60% of this area is found 

in São Paulo state (Pinheiro et al., 2010). The average sugar-cane yield in the 

southeast of Brazil attained after the first year of establishment in rain-fed conditions 

is 104 t ha
-1

, the productivity of the re-growth from the stubble, known as the ratoon 

crop (Cuadra et al., 2012), decreases at a rate of approximately 10% per year between 

the four successive harvests (ratoons). This reduction is mainly due to the cumulative 

stool damage during harvest (Bull, 2000). When it falls beyond about 70 t ha
-1 

the 

plantation is re-established (Macedo et al., 2008). 
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To meet the growing demand for biofuel, future sugar-cane expansion in Brazil will 

probably occur in some low rainfall areas, where the crop may be expected to exhibit 

some water stress (Manzatto et al., 2009; Waclawovsky et al., 2010; Marin et al., 

2011); this is already the case in the western region of São Paulo state where the 

replacement of pasture has been going on for the last 15 years (Martinelli and Filoso, 

2008). 

 
The eddy-covariance method offers the capability of directly measuring the 

evapotranspiration, including the evaporation of intercepted rainfall and from soil 

during the time when the canopy cover is not complete, and at the characteristic field- 

scale of crops (Suyker and Verma, 2009; Denmead et al., 2010). In this study we 

present two years of eddy-covariance data, covering two complete annual cycles of a 

representative sugar-cane plantation. The objectives are to establish the controls of 

climate (rainfall, soil water content and saturation deficits) on the crop development, 

to assess its water use, and to clarify its likely effect on the regional water budget – an 

important issue (Loarie et al., 2011), as the water availability is considered the major 

cause of inter-annual yield variation (van den Berg et al., 2000). 



5 
 

Materials and Methods 
 
 
 
 

1-Site 

 
The sugar-cane plantation, which belongs to the company Usina Santa Rita (USR), 

was situated in Luiz Antonio municipality in São Paulo State, Brazil (21
o 

38’ S, 47 
o
 

47’ W at 552 m altitude). The distance between planting rows was 1.4 m. The 

continuous area (> 400 ha) exhibited a small slope of less than 2% and was 

surrounded by pasture, citrus fruit orchards and the native savanna forest (Cerrado). 

The soil (Typic Haplustox) texture fractions are 22% clay, 74% sand and 3% silt, and 

the mean dry bulk density (db) down to 2.6 m depth is 1500 kg m
-3

. Compaction 

resulting from previous mechanical harvesting has created a denser layer between 10 
 

cm and 25 cm (db = 1636 kg m
-3

). The available soil water between the potentials of - 

 
0.01 and -1500 kPa was 136 mm in the first meter. 

 
The mean annual precipitation (from the years 1971 to 2007) and standard deviation is 

1517±274 mm with the maximum in December (274±97 mm) and the minimum in 

July and August (27±34 mm). The mean annual temperature is 22 ºC, varying from 24 

ºC in January to 19 ºC in July. 

 
The sugar cane was planted in 2003 and there had been two previous harvests with 

stubble burning in the years 2004 and 2005. The data reported here covered the first 

cycle of second re-growth (ratoon), which started on 14 April of 2005 and extended to 

the harvest on 11 May 2006; and the second cycle or third ratoon that finished on 20 

May 2007 (DoY 140).  The length of each cycle was thus 393 and 374 days, 

respectively. 

 

 
 

2-Instrumentation 
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Fluxes of momentum, sensible (H) and latent heat (LE) were measured by a three- 

dimensional sonic anemometer (R2A, Gill, UK) installed at the top of a 9 m lattice 

tower (0.5 m cross-section) and a closed-path infra-red gas analyzer (IRGA, LI6262, 

LICOR, USA). The air was pumped (KNF Neuberger, Germany) at a rate of 5 l min
-1

, 

from an input co-located with the sonic anemometer through to the IRGA down 10 m 

of polyethylene tubing (4 mm internal diameter). The tubing was heated to keep it 

warmer than the ambient air and the air passed through two 1.0 µm pore-size 

membrane filters (Gelman Acro 50, Pall Corporation, USA). The IRGA reference was 

connected to a nitrogen gas cylinder and the calibrations were performed every two 

weeks. All the raw data (21 Hz) were stored on a data-logger flash card (CR1000, 

Campbell SI, USA) for subsequent analysis. 

During 30 days in 2007 (DoY 100-130), an open-path IRGA (LI7500, LICOR, USA) 

was available for comparison with the closed-path system. It was deployed below the 

sonic anemometer at an angle of approximately 30
o 

with the vertical. 

The air temperature, humidity (HMP45 Vaissala) and rainfall (Hydrological Inst.) 

 
were measured at 6 m height. The net radiation (Rn, LITE, Kipp and Zonen, The 

Netherlands), incident and reflected fluxes of photosynthetically active radiation 

(PAR, LITE, Kipp and Zonen, The Netherlands) and global solar radiation (Rg, 

CM3,Kipp and Zonen, The Netherlands) were collected by sensors installed on a 

horizontal mast 2.5 m away from the tower at 7 m height. The soil heat flux (G) was 

measured using four plates (REBS, USA) installed in different rows and inter-rows. 

The soil water content (SWC) was measured by 10 reflectometers (CS615, Campbell 

SI, USA) installed in a vertical profile, with each sensor representing layers of 30 cm, 

down to 3 m depth. 
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3-Data processing 
 
 
 
 

The covariances between vertical wind speed (w), and the sonic temperature and the 

water vapor were obtained from the fluctuations relative to 30 minute block averages. 

Coordinate rotation (Kaimal and  Finnigan, 1994) was applied to force the mean w=0. 

The water vapor time of travel down the sampling tube was assessed by continuously 

computing the absolute maximum correlation coefficients between w and a range of 

delayed signals (Moncrieff et al., 1997). The frequency response corrections were 

empirically derived based on the low-pass filter technique (see Massman and Lee, 

2002; Sakai et al., 2004). The cospectral transfer function (Hwq) was calculated as the 

ratio of the measured normalized cospectrum of water vapor flux to the normalized 

cospectrum of heat flux (Hwq =[Co( wq´ )/ wq ] [Co( wTś  )/ wTs )]
-1

). The 

characteristic time constant response (τs) was obtained following Mammarella et al. 

(2009) supposing the water vapor was measured by a first-order response sensor 

([1+(2π τs f)
2
]

-1
, where f is the natural frequency). Because the time lag was applied 

before the calculation of covariances, the sensor separation and phase-shift were 

already corrected (see Ibrom et al., 2007). 

 

The water vapor fluxes obtained from the open-path system were corrected for 

density fluctuations (Webb et al., 1980) and the self-heating effect (Burba et al., 

2008). 

 
The heat storage (S) in the air was approximated by the background variation of air 

temperature and humidity (see the profiles in maize by Santos et al., 2011), and the 

biomass heat storage was calculated assuming that the aboveground biomass was in 

equilibrium with the air (see Meyers and Hollinger 2004). At intervals of 
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approximately 20 days all the aboveground biomass (stalks, green and dead leaves) 

 
was sampled in ten random plots of 1 m along the planting lines, representing areas of 

 

2.4 m
2
. Sub-samples containing 10% of the fresh weight were oven-dried at 60 

o
C 

until a constant weight was reached. The leaf area indices of green (Lg) and dead (Ld, 

senesced) leaves were calculated from the sampled dry biomass and the specific leaf 

area of green (10.2 m
2 

kg
-1

) and dead (9.6 m
2 

kg
-1

) leaves. 

 

 
 

4-Gap filling 
 
 
 
 

Missing half hourly fluxes amounted to 20% during the first year of measurements 

and 18% in the second year, within the range reported for other sites ( Falge et al., 

2001; Cabral et al., 2010). The longest gap of 15 consecutive days was due to power 

failure after a lightning storm – a very common occurrence in this region. Due to the 

growth of the plants, for small gaps we used the mean diurnal variation (Falge et al., 

2001) over a five day non-overlapping window. When the sensible heat fluxes (H) 

were available the missing LE were estimated from the energy balance as the residual 

(see energy balance closure results), if not LE was obtained from the relationships 

between LE and Rn, fitted over variable time windows as a function of the data gaps. 

The soil water content (SWC) was simulated during the periods when it was not 

available by the model Hydrus1D (Šimůnek et al., 2008), forced with the measured 

rainfall and evaporation data. 

 

 
 

5-Bulk canopy and aerodynamic conductances 



9 
 

The bulk canopy conductance (gc) was obtained from the inverse Penman-Monteith 

equation (Monteith, 1965) (see Cabral et al. 2003; Sakai et al. 2004), with the 

aerodynamic conductance for momentum transfer (ga) being based on the wind speed 

and the sonic-anemometer friction velocity (u
*
), following Gash et al. (1999). The 

calculations were performed for daylight hours between 08-17 h on dry days, i.e. 
 
without rainfall in the preceding 48 hours. Under these conditions it can be assumed 

(based on the observed nearly exponential decay of soil evaporation) that evaporation 

came predominantly from the vegetation (see Grace et al. 1998; Ryu et al. 2008). 

 

 
 

6-Wet canopy evaporation 
 
 
 
 

The evaporation of intercepted rainfall was obtained as the residual (LE = Rn – H – G 

– S) in the energy balance equation (see Gash et al. 1999; van der Tol et al. 2003). 

We tested the performance of the sonic anemometer during rainfall based on the 
 

linear relationship between u 
* 
versus the standard deviation of vertical wind speed 

 

(Cabral et al., 2010; van der Tol et al., 2003). The residual LE was summed during 

rainfall events with more than 0.5 mm hr
-1 

and after, for as long as the vapor pressure 

deficit was lower than 0.7 kPa, under the assumption that, as the transpiration 

decreases during wet canopy conditions (see Tolk et al. 1996; Bosveld and Bouten 

2003; Kume et al. 2008), the measured fluxes represented water from intercepted 

rainfall. 
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Results 
 
 
 
 

1 – Fetch, flux corrections and energy balance closure 
 
 
 
 

The peak distance from the measuring point to the maximum contributing source area 

(Hsieh et al., 2000) estimated for a canopy height (hc) of 0.5 m varied from 12 m 

(unstable conditions) to 120 m (stable conditions) and when hc was 4 m, from 8 to 40 

m respectively. The fetch around the tower consisted of sugar-cane plantation in all 

directions within a diameter of approximately 500 m. During unstable conditions the 

cumulative source contribution achieved was >90%. 

The ensemble normalized cospectra of water vapor fluxes (LE) are presented in Figure 

1a, calculated over three periods when the sugar cane was fully developed and 

therefore with the maximum attenuation of high frequency eddies. The estimated 

characteristic time constant of the first-order response sensor (τs) was: 0.5 s when the 

closed-path tubing was new, observed just before the harvest in 2005; 0.85 s one year 

later (2006); and 1.5 s two years later (2007). In the worst cases which represented the 

maximum attenuation in heat fluxes obtained by the application of the estimated τs the 

resultant water vapor flux losses were between 15% and 19%. However the 

comparison between the LE fluxes measured with the closed-path without corrections 

(LI6262) versus the open-path system (LI7500) during 30 days in April-May of 2007, 

and shown in Figure 1b indicated that on average the closed-path LE fluxes were 

underestimated by 5%. 
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The slope of the energy balance closure relationship (H + LE = Rn – G – S) forced 

through the origin without LE flux corrections was 0.83 (R
2
=0.902; p=0.01), but after 

the data were spectrally corrected (Figure 2) the closure achieved was 0.97 (R
2
=0.88, 

n=29624) and not significantly different from unity (p=0.01). 
 

<<Place Figure 1 about here>> 
 

<<Place Figure 2 about here>> 

 
2 - The climate, soil water content and canopy development 

 
 
 
 

Daily averages of air temperature, humidity and saturation deficit are presented in 

Figure 3a. The air temperatures, which ranged from 12 to 27 ºC, did not limit the 

sugar-cane development (Campbell et al., 1998; Keating et al., 1999). Vapor 

pressures as high as 2.6 kPa were recorded in summer, while in winter values as low 

as 0.7 kPa were attained, the corresponding saturation deficits varied from 0.12 to 2.4 

kPa. The lower winter temperatures were a consequence of passing cold fronts and 

were followed by periods with rising temperatures, lower vapor pressures and higher 

saturation deficits. 

The daily totals of rainfall (Figure 3b) were characteristic of the region: summer 

rainfall days with some exhibiting more than 50 mm day
-1 

and a dry winter, disrupted 

by passing cold fronts as already noted above. The ranges of daily soil water content 

(SWC) in the three layers depicted in Figure 3b were 89-217 mm (0-0.9 m), 169-379 

mm (0-1.8 m) and 282-610 mm (0-3.0 m), respectively and were recorded in the 

winter and summer of the second cycle. 

The reflection coefficients (albedo) for PAR and Global fluxes were calculated as the 

ratios between daily totals of reflected and incident flux densities (see Fritschen, 

1967) and are presented in Figure 3c. The comparison with the mean daily albedo 
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obtained as the average of the measurements between 11 and 13 hr gave somewhat 

smaller results for PAR (slope=0.95; R
2
=0.98) and global (slope=0.93; R

2
=0.74) 

radiation fluxes. 

The estimated one-sided green (Lg) and senesced (Ld) leaf area indices, as well the 

canopy height, are shown in Figure 3d. The PAR albedo (ρ
PAR

) exhibited a steady 

decrease from 0.12, just after the previous harvest to 0.05 when the Lg achieved was 
 

3.2 m
2 

m
-2

. Besides the saturation in ρ  
PAR 

the Lg still increased and this was detected 

 

by the global radiation albedo (ρ
G
). Nonetheless, Lg and ρ

PAR 
data exhibited the 

 

significant relationship: ρ
PAR 

= 0.0775Lg 
-0.2255 (r

2
=0.88 p=0.01). 

 

There was a delay in L
g 

of nearly two months between cycles, because the minimum 

albedo (~0.05) in the first cycle was observed in October of 2005, while in the second 

cycle it was recorded in January of 2007; however the L
g 

values achieved were nearly 

the same 3.8 and 3.6, respectively. 

The decrease observed during the final phase of the cycles (approximately the last 50 

days) was the consequence of herbicide (glyphosate) aerial spraying; this is a 

common pre-harvest practice whose objective is to enhance the sucrose accumulation 

 
in sugar-cane stalks (see Dalley & Richard Jr, 2010). 

 
 
 
 

<<Place Figure 3 about here>> 
 
 
 
 

3-Available energy and turbulent fluxes 
 
 
 
 

The time series of daily totals (water equivalent, mm day
-1

) of evapotranspiration (E) 

and available energy (Av= Rn – G – S) are shown in Figure 4. Low E values (0.1 mm 

day
-1

) were observed in the initial phase of the re-growth; the maximum attained was 
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5.3 mm day
-1 

when the plantation was fully developed. The overall averages and 

standard deviations of E in each cycle were 2.1±1.1 and 1.8±1.4 mm day
-1

, 

respectively. The water equivalent of the sensible heat fluxes (H) is indirectly 

displayed in Figure 4 as the difference between Av and E, and whose range was from - 
 

0.1 to 5.4 mm day
-1 

with the overall averages being 1.6±0.6 and 2.1±0.9 mm day
-1

, 

respectively. Bowen ratios (β=H/LE) as high as 5 were found at the beginning of the 

cycles, particularly in the second cycle, but a β of around 0.4 was representative of the 

fully developed plantation. 
 

<<Place Figure 4 about here>> 

The monthly totals (water equivalent, mm month
-1

) of fluxes are depicted in Figure 5. 

The evapotranspiration (E) followed the available energy (Av) and both were reduced 

in the summer by the cloudy conditions and rainfall. These conditions were more 

intense in the second cycle (2007). 
 

<<Place Figure 5 about here>> 

 
The total rainfall recorded in the first cycle (1194 mm) was below the long-term 

average minus one standard deviation (1517±274 mm) as well 12% lower than the 

total observed in the second cycle (1353 mm) which was considered normal, i.e. 

within one standard deviation of the long term average. However the cumulative 

rainfall during the initial 120 days of the first cycle (203 mm) was six times the 

recorded total in the second cycle. The long term averages and standard deviations 

relative to April-July and May-August totals, which represent the first 120 days of 

each cycle, were 190±96 mm and 142±85 mm, respectively. Thus, while the initial 

120-day period of the first cycle received the average rainfall, the second cycle 

received rainfall (32 mm) well below the average. 
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The cumulative E measured by the eddy-covariance system (Table 1) during the first 

(392 days) and second (373 days) cycles was 829 mm and 685 mm, respectively. 

These figures represent the second and third year re-growth of a sugar-cane 

plantation. The total E in the first cycle accounted for 69% of rainfall, while it was 

51% in the second cycle despite the total rainfall (1353 mm) being 13% greater. The 

evaporative fraction (E/Av) varied between 0.17 and 0.72 and the overall averages and 

standard deviations in each cycle were 0.57±0.07 and 0.45±0.19, respectively. 

Because the wet canopy evaporation (Figure 5) was obtained as the residual in the 

energy balance equation, we tested the performance of the sonic anemometer during 

rainfall for 573 rainy 30-minute periods; the fitted slope of the linear relationship 
 

between u 
* 
versus the standard deviation of vertical wind speed was 1.20 (R

2
=0.83), 

 

close to the "universal" value and assuring the sonic anemometer was not affected by 

the rainfall. The number of days in each cycle with rainfall was 112 (28%) and 141 

days (38%), and the amount of rainfall recorded overnight represented 58% (697 mm) 

and 64% (641 mm) of the total rainfall in each cycle, respectively. In terms of the 

parameters of Gash's analytical rainfall interception model (Gash et al., 1995), the 

overall average rainfall ( R ) and wet canopy evaporation rate ( E w ) were 3.6 mm hr
-1

 

and 0.15 mm hr
-1

, respectively. The observed maximum monthly total interception 

 
(Figure 5) was 33 mm in January of 2007 and the cumulative interception losses in 

each cycle were 88 and 90 mm, respectively, accounting for approximately 7% of the 

total rainfall (see Table 1). 
 

<<Place Table 1 about here>> 

 
4 – Sugar-cane yields 



15 
 

Since planting in 2003, the observed sugar-cane yields (stalks fresh-weight, Table 2) 

reached the regional averages during the first three harvests (UNICA, 2011), despite 

the inter-annual variation in the total rainfall. However the second-cycle yield 

(61.5±4.0 t ha
-1

) was 26% lower than the first cycle as well lower than the average for 

the third ratoon (76 t ha
-1

). 

 
The amount of rainfall received during the initial 120 days of growth (Table 2) give 

 
us an indication why the expected yields were achieved with the exception of the third 

ratoon. The cumulative E recorded during the initial 120 days of the first cycle was 

157 mm (Figure 5), therefore as long as the cumulative rainfall approximately 

attained this amount (157 mm) or the soil water content at the beginning of the cycle 

was nearly the field capacity (~140 mm m
-1

) the probability of achieving the average 

yield increases. 

The water use efficiency (WUE) calculated as Yield/E was 101 kg ha
-1 

mm
-1 

in the 
 

first cycle and 90 kg ha
-1 

mm
-1 

in the second, implying a reduction of 11% in WUE. 

The total rainfall received over the hypothetical fourth ratoon (Table 2) was normal 

(1710 mm), as was the amount of rainfall recorded for the initial 120 days of re- 

growth (204 mm). 
 

<<Place Table 2 about here>> 

 
5 - Bulk canopy and aerodynamic conductances 

 

<<Place Figure 6 about here>> 

 
We have calculated the hourly averages of aerodynamic conductance (ga) and bulk 

canopy conductance (gc) over days within distinct Lg intervals, the results are shown 

in Figure 6(a,b). The mean ga (Figure 6a) increased from 20 to approximately 80 mm 

s
-1 

in part in response to the change in canopy structure (Figure 3d), but also due to 

the decrease in the distance between the canopy top and the sonic anemometer (9 m). 
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a 

The hourly averages of gc ranged from 1 to 60 mm s
-1 

(Figure 6b) and followed the 

increase in Lg (see Figure 3d). In order to verify whether there was a relationship 

between gc and saturation deficit (D), the estimated hourly gc values obtained under 

high irradiance conditions (PAR>1000 μmol m
-2 

s
-1

) were normalized by the daily 

green leaf area index (Lg) from Figure 3d; these results are displayed in Figure 7. The 

ratio, gc/Lg, represents the canopy conductance on a leaf area basis and the averages 

calculated over D intervals exhibited a strong potential relationship (gc/Lg = 16.0D
-
 

0.8904
, R

2
=0.8345). 

 
The mean hourly aerodynamic conductance (g ) calculated over friction velocity (u ) 

* 

 

intervals also exhibited a good relationship with u 
* 
as shown in Figure 8. The linear 

 

fittings were obtained on days covering two intervals of Lg, which represented the 
 

initial and fully developed phases of the sugar-cane plantation. u 
* 
was also well 

 

correlated with the wind speed (u), the fit was given by u 
* 
= 0.097u + 0.088, R

2 
= 

 

0.9876. 
 

<<Place Figure 7 about here>> 
 

<<Place Figure 8 about here>> 
 
 

 
The dependence of evapotranspiration on gc (see autocorrelation issue, Suyker and 

 
Verma, 2008) was assessed by plotting the ratios of daily measured E against the 

 
FAO reference crop evapotranspiration (Eo) using Eq. 6 of Allen et al. (1998) with the 

measured available energy (Figure 9). The ratios exhibited a sharp decrease for gc< 15 

mm s
-1 

(Lg ~2) and achieved values around unity for the fully developed canopy. 
 
 
 
 

<<Place Figure 9 about here>> 



17 
 

 
 
 
 
 
 

 

Discussion 
 
 
 
 

1-Flux Corrections 

 
The spectral corrections were comparable to the corrections reported by Sakai et al. 

(2004) above grassland and Mammarella et al. (2009) during the summertime in a 

forest, from 10%–15%, increasing with the u
* 

(Aubinet et al., 2001) and the relative 

humidity (see Ibrom et al., 2007; Mammarella et al., 2009); at the sugar-cane site 

although the relative humidity was higher during the summer the LE fluxes were also 

higher, which decreases the relative magnitude of the corrections. 

 

 
 

2-Surface characteristics 
 
 
 
 

The early senescence and reduced Lg (Figure 3d) observed in the second cycle are 

typical responses to water stress in sugar cane (Inman-Bamber and Smith, 2005). As 

reported by Roberts et al. (1990), this response can be reversed by a compensatory 

growth after re-watering. However the effects during the establishment of the crop 

possibly have more pronounced consequences for production (Robertson et al., 1999), 

perhaps because at that time the deep roots were yet to be reestablished (see Smith et 

al. 2005; Battie Laclau and Laclau 2009). Based on the soil-water drying period in the 

winter of 2006 (Figure 3b) we found that the root system extracted water from a layer 

of 2.1 m depth just before the harvest, and from 1.2 m afterward. 
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3-Conductance 
 
 
 
 

The daily patterns of sugar-cane canopy conductance for a given Lg varied little; 

similar results were found by Roberts et al. (1990) and Inman-Bamber and 

McGlinchey (2003) who used a fixed value of 25 mm s
-1 

when estimated the sugar- 

cane reference evaporation. The relationship between gc and the saturation deficit (D, 

Figure 7) showed that for D greater than 1.5 kPa the canopy conductance was lower 

than 12.5 mm s
-1 

which is characteristic in C4 plants (Polley et al., 1992). The 

evapotranspiration was significantly reduced (Figure 9) when gc was lower than 15 

mm s
-1 

(Lg ~2), this has already been observed in C4 crops (Steduto and Hsiao, 1998; 

Suyker and Verma, 2008). Based on the ratio (E/Eo) which represents a measure of 

the crop coefficient (Allen et al., 1998), the maximum attained sugar-cane 

evapotranspiration approached the reference evapotranspiration; this result contrasts 

with that from Inman-Bamber and McGlinchey (2003)  who found a coefficient of 

1.25 was representative of the fully developed crop (see Denmead et al., 2009). 
 
 
 
 

4-Wet canopy evaporation 
 

 

The average wet canopy evaporation ( E w  = 0.15 mm hr
-1

) observed above the sugar- 

cane plantation was the same as the optimized value obtained by Finch and Riche 

(2010) in a Miscanthus plot and within the range (0.1 to 0.2 mm hr
-1

) of estimates 

based on the Penman-Monteith equation (van Dijk and Bruijnzeel, 2001). However 

we measured the sugar-cane interception loss at 7%, which was much lower than the 

25% found by Finch and Riche (2010) and the 18% reported by van Dijk and 

Bruijnzeel (2001) for a maize, cassava and rice mixed-crop growing in humid tropical 

conditions; although these authors also measured an interception loss of 8% in 
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another plot of mixed maize and cassava, closer to our results. These high interception 

losses may be a consequence of the measurements being taken in small plots with 

more exposure to the wind, in contrast to the extensive area of sugar cane used here. 

The energy balance equation terms are prone to uncertainty, an issue which must 

addressed in order to give confidence in the residual LE estimates. During daylight 

rainy conditions the typical values of fluxes were approximately: Rn ~ 200 W m
-2

; S ~ 
 

4 W m
-2

; G ~ 20 W m
-2 

and H ~ 60 W m
-2

. The other estimated errors are in: Rn of 5% 

(Kohsiek et al., 2007); S and G of 10 W m
-2 

(Oncley et al., 2007) and H of 10% 

(Mauder et al., 2007). Assuming that the errors are independent the maximum 

residual LE error would be approximately 18 W m
-2 

or 16% of LE (116 W m
-2

). 

However the rainfall interception measurements also have large uncertainties as 

argued by Muzylo et al. (2009); for an accuracy of 2.5% in gross rainfall and 

throughfall, and with the interception loss being 7% of gross rainfall, the expected 

error in the measured interception is approximately 22%. 

The estimated 7% interception loss implies that approximately 93% of the rainfall 

reaches the soil either directly as throughfall or indirectly as stemflow. The soil 

evaporation measured by Denmead et al. (1997) in a sugar-cane plantation without 

mulching accounted for approximately 40% of total evaporation while the green leaf 

area index (Lg) was <2.5; although the total leaf area is greater because the senesced 

leaves also remain attached to the stalks in the sugar-cane (see Fig. 3d) and therefore 

contribute to the canopy closure (Singles et al., 2008). Thus practices like the system 

of trash-blanketing (Denmead et al., 2010; Farine et al., 2011), as opposed to the 

burnt-cane system representative of the conditions in Brazil, can effectively reduce 

this non-productive water loss (see Pereira et al., 2006). 
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Even though the sugar-cane originated in the tropics, cultivation is spread over 70 

countries with significant production in subtropical regions where the growth is 

limited by periods of the year exhibiting low temperatures and rainfall (Campbell et 

al., 1998). The data presented here showed that rain-fed, sugar-cane 

evapotranspiration was driven by the available energy when the canopy was fully 

developed and the maximum attained E approached the reference evapotranspiration. 

The total E achieved in the water limited second cycle of the sugar-cane (690 mm) 

was similar to the annual E obtained in an Amazonian pasture (647±144 mm) by 

Sakai et al. (2004) and represented 41% of the annual rainfall (1597 mm), whilst the 

total E measured in the first sugar-cane cycle was 20% greater and exhibited the same 

order of the increase (0.43 mm day
-1

) estimated by Loarie et al. (2011) on conversion 

of other crops or pasture to sugar-cane. 

Based on the stalks moisture content (approx. 70%) the sugar-cane water use 

efficiency on a dry-weight basis (WUEd) was 36.6 and 26.7 kg ha
-1 

mm
-1 

in each 

cycle, respectively. These values are comparable to soybean (average 31 kg ha
-1 

mm
-
 

1
) reported by Suyker and Verma (2009) and maize (29.7 kg ha

-1 
mm

-1
) by Hickman 

et al. (2010) who also obtained considerably lower WUEd for two perennial grasses: 

Miscanthus (19.7 kg ha
-1 

mm
-1

) and Switchgrass (9.7 kg ha
-1 

mm
-1

). However Suyker 

and Verma (2009) also observed higher WUEd in maize (52 kg ha
-1 

mm
-1

). High 

irrigated sugar-cane yields (260-299 t ha
-1

) were obtained in the northeast of Brazil 

characterized by low precipitation and high solar radiation due to low cloudiness 

(Waclawovsky et al., 2010). Although irrigation can be used to increase the yields of 

dryland crops it is likely to be preferentially used in the production of high-value food 

agriculture instead of biofuel feedstocks (Farine et al., 2011). 
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These results should be representative of evapotranspiration under the conditions 

found in the areas where sugar-cane expansion is planned in Brazil, and the crop is 

not traditionally grown, as in the central region and parts of the northeast (Marin et 

al., 2011), with some of them having low rainfall (Manzatto et al., 2009). 

As pointed out by Hickman et al. (2010) and already observed by Loarie et al. (2011) 

large-scale plantings of bioenergy crops could potentially increase E, thereby 

decreasing surface temperatures, increasing humidity, precipitation and cloud cover. 

These indirect land use changes effects (Zenone et al., 2011) could be enhanced, 

because the sugar-cane is one of the crops whose productivity is not expected to 

decline due to the climate change predictions (Buckeridge et al., 2011) as the increase 

in temperature, and the CO2 fertilization effect which would delay the onset of 

drought due to the reduction in the stomatal conductance (Oliver et al., 2009). 

 
However our results showed that the sugar-cane agricultural system is less adapted to 

adverse growing conditions (see Schwalm et al., 2010) because the lack of soil water 

resulting from the low rainfall at the initial phase of the sugar-cane re-growth limited 

the evapotranspiration. 
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Tables 
 
 
 
 
 

 

Table 1 – Summary of total fluxes (water equivalent, mm) recorded in each sugar-cane 

cycle, whose length (days) is shown between parentheses. 

 
Cycle Rainfall 

(mm) 
Evapotranspiration 
(mm) 

Available Energy 
(mm) 

Rainfall interception 
(mm) 

1 (393 days) 1194 829 1429 88 

2 (374 days) 1353 685 1339 90 
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Table 2 – Sugar-cane yields (stalks fresh weight) measured by the mill (USR) and the 

regional averages (UNICA, 2011). The hatched columns exhibit the cycles measured in 

this work. 

 
 Cane Plant 1

st 
Ratoon 2

nd 
Ratoon 

Cycle 1 

3
rd 

Ratoon 

Cycle 2 

4
th 

Ratoon 

Stalks Fresh 
Weight 

 
2003-2004 

 
2004-2005 

 
2005-2006 

 
2006-2007 

 

Yield at Mill 

(t ha
-1

)* 

101.8 ± 4.91 95.9 ± 4.7 83.4 ± 5.5 61.5 ± 4.0  

Regional 
average 

104.8 94.2 83.1 76.5 71.3 

Total 
Rainfall 

(mm) 

 
1950 

 
1475 

 
1194 

 
1353 

 
1710 

Initial 120 
days rainfall 

(mm) 

 
177 

 
257 

 
203 

 
32 

 
204 

*Mean and standard deviation of five plots around the flux tower 
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a 

Figure Legends 
 
 

Figure 1 – (a) Ensemble normalized cospectra of heat ( wT  ) and water vapor ( w' q' ) 

fluxes representing three periods when the closed-path tubing was: new; one year and 

two years old. The thick line represents the inertial sub-range decay proportional to the 

natural frequency (f
-4/3

); (b) relationship between the water vapor fluxes measured by 

the closed-path system (LI6262) without corrections versus the open-path (LI7500) 

during April-May of 2007, and the fitted line through the origin (y=1.05x, R
2
=0.97). 

 
Figure 2 – Relationship between the sum of heat and water vapor (H+LE) fluxes (30 

min) spectrally corrected versus the available energy (Av= Rn – G – S). The slope of the 

linear fit forced through the origin was H+LE=0.97 Av, R
2
=0.90, n=29812. 

 
Figure 3 – Time series of (a) daily averages of air temperature (black dotted line), vapor 

pressure (black thin line) and saturation deficits (grey line); (b) daily totals of rainfall 

(grey bars); soil water content (0-0.9 m, thin black line; 0-1.8 m, thck black line; 0-3.0 

m, dotted line); (c) daily albedo of PAR (triangles), global radiation (circles); (d) Leaf 

Area Index of green leaves (Lg, black line); dead leaves (Ld, grey line) and canopy 

height (Hc, dotted line). 
 

Figure 4 – Time series of daily totals (water equivalent, mm day
-1

) of available energy 

(Av, dark area) and evapotranspiration (E, grey area). 

 
Figure 5 – Monthly totals (water equivalent, mm month

-1
) of available energy (Av, 

circles), Evapotranspiration (grey squares), Rainfall (triangles) and Interception (grey 

diamonds). 

 
Figure 6 – Hourly averages of (a) aerodynamic (b) and bulk canopy conductance 

calculated over distinct time periods as given by the mean green leaf area index (Lg): 

Lg=0.2 (black circles); Lg= 0.7 (empty squares); Lg =1.1 (empty circles); Lg =2.3 
(black diamonds); Lg =3.8 (grey squares); Lg =5.8 (black triangles). For clarity, the 

figures contain the standard errors only for upper and lower values of conductance. 

 
Figure 7 – Canopy conductance (gc/Lg) divided by the leaf area index (Lg) during high 

insolation conditions (PAR>1000 μmol m
-2 

s
-1

) versus saturation deficits (D, kPa). The 

black circles represent the averages over saturation deficits intervals and the bars are the 

standard errors. 
 

Figure 8 – Mean aerodynamic conductances (g , mm s
-1

) versus friction velocity (u ) 
* 

calculated when Lg<0.5 (circles) and Lg>4 (triangles). 

 
Figure 9 – Ratios of daily totals of evapotranspiration (E) by the reference 

evapotranspiration (Eo) versus canopy conductance (gc), for cycle 1 (circles) and cycle 2 

(diamonds). The average points (filled circles) were calculated over gc intervals for both 

cycles and the bars are the standard deviations. 
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