Sedimentary deposits of the 2011 Tōhoku-oki and A.D. 869 Jōgan tsunami events on
the Sendai coastal plain, Japan

Jessica E. Pilarczyk,†, Benjamin P. Horton, Robert C. Witter, Christopher H. Vane,
Catherine Chagué-Goff, James Goff

1. Sea Level Research, Department of Earth and Environmental Science, University of
Pennsylvania, 240 S. 33rd Street, Philadelphia, PA 19104-6316, USA
Tel: +1 215 573-5145
Email: jpilar@sas.upenn.edu (J. E. Pilarczyk), bphorton@sas.upenn.edu (B. P. Horton)

2. Australia-Pacific Tsunami Research Centre, School of Biological, Earth and
Environmental Sciences, University of New South Wales, Sydney 2052, Australia
Tel: +612 9385 8431
Email: jpilar@sas.upenn.edu (J. E. Pilarczyk), c.chague-goff@unsw.edu.au (C. Chague-Goff),
j.goff@unsw.edu.au (J. Goff)

3. United States Geological Survey/Alaska Science Center, Anchorage, AK 99508, USA
Tel: +1 907 786-7404
Email: rwitter@usgs.gov (R. C. Witter)

Tel: +44 (0) 115 936 3017
Email: chv@bgs.ac.uk (C. H. Vane)

5. Australian Nuclear Science and Technology Organisation, Locked Bag 2001,
Kirrawee DC, NSW 2232, Australia
Email: ccg@ansto.gov.au (C. Chague-Goff)
*Corresponding Author

Jessica E. Pilarczyk

Sea Level Research, Department of Earth and Environmental Science, University of Pennsylvania, 240 S. 33rd Street, Philadelphia, PA 19104-6316, USA

1280 Main Street West, Hamilton, Ontario, Canada, L8S 4K1

Tel: +1 215 573-5145

Email: jpilar@sas.upenn.edu (J. E. Pilarczyk)
Abstract

The 2011 Tōhoku-oki megathrust earthquake (Mw 9.0) generated a tsunami that reached the Sendai coastal plain with wave heights of ~10 to 12 m above sea level. In May 2011 we examined the tsunami deposit exposed in 14 shallow trenches along a ~4.5 km transect perpendicular to the coast on the northern perimeter of the Sendai airport (38.145°N, 140.933°E). We document the stratigraphical, sedimentological, foraminiferal and geochemical characteristics of the Tōhoku-oki tsunami deposit and compare these to sediments deposited by the Jōgan tsunami of A.D. 869.

In rice fields inundated by the Tōhoku-oki tsunami, a poorly-sorted, dark brown agricultural soil is buried by a poorly-sorted, brown, medium-grained sand-sheet. In trenches located more than 1.2 km inland, the sand is capped by a 2 cm thick mud. The tsunami deposit is thickest (30 cm) near the coastal dune and its sheet-like geometry thins to less than 5 cm thick ~4.5 km inland. The tsunami deposit was discriminated from the underlying soil by the sudden appearance of recent and fossil foraminifera and a pronounced increase in grain size that fined upwards and landwards. The recent foraminifera preserved in the sandy facies of the deposit are low in number and showed evidence of prolonged subaerial exposure (e.g. pitting, corrosion, fragmentation). The recent foraminifera likely originated from coastal dune and beach sediments that were breached by the tsunami. In contrast, there were high abundances of robust, sediment infilled fossil foraminifera in the tsunami deposit that have probably been eroded from coastal Triassic-Jurassic sandstone headlands north of Sendai. Trends associated with test size (e.g. decreasing concentration of large test sizes with distance inland) are in agreement with grain size data. Geochemistry revealed a decrease in total organic carbon and an increase in δ¹³C in the tsunami sand compared to the underlying soil, supporting a marine origin for the upper unit.

The Jōgan and Tōhoku-oki deposits show many similarities. The Jōgan deposit consists of medium sand that sharply overlies a finer grained sandy soil; however, the absence of a mud cap and internal sedimentary structures indicates post-depositional change. The tsunami deposit contains similar fossil foraminifera, but with the presence of recent planktic species, which were not found in overlying or underlying sedimentary
units.

70
1. Introduction:

Records of past tsunamis developed from the sedimentary evidence they leave behind, improve our understanding of the frequency of tsunamis by expanding the age range of events available for study (Morton et al., 2007). Proper hazard assessment depends on an awareness of tsunamis and their impacts on coastal geomorphology, ecology and rapidly expanding coastal populations. Stratigraphical sequences of tsunami deposits are often used to estimate recurrence intervals and provide insight into their source (e.g. earthquakes, landslides, volcanic eruptions; Bernard and Robinson, 2009). Reconstructions have shown repeated tsunamis during the Holocene in the Pacific northwest (Kelsey et al., 2005), North Sea (Bondevik et al., 2005), New Zealand (Goff et al., 2001) and Kamchatka (Pinegina et al., 2003), and in the regions of the 1960 Chile (Cisternas et al., 2005) and 2004 Indian Ocean (Jankaew et al., 2008) earthquakes.

Identification of tsunami deposits is often based on recognition of anomalous sand-sheets in low-energy environments such as coastal ponds, lakes, and marshes, which can be supported by microfossil evidence. For example, the A.D. 1700 Cascadia tsunami can be identified with confidence from a sand unit that tapers landward (often for several kilometres), contains a mixed microfossil assemblage and coincides with stratigraphical evidence for abrupt coseismic subsidence (e.g. Hawkes et al., 2011). Foraminiferal taxonomy has been commonly used as an indicator of tsunami deposits (e.g. Mamo et al., 2009) and most taphonomic studies of foraminifera focus on time-averaging or lateral transport of tests with only semi-quantitative observations on test condition (e.g. Hawkes et al., 2007; Kortekaas and Dawson, 2007; Uchida et al., 2010). Recent research has shown that test condition provides further information regarding energy regimes and transport history (e.g. Hawkes et al., 2007; Kortekaas and Dawson, 2007; Uchida et al., 2010; Pilarczyk and Reinhardt, 2011, 2012; Pilarczyk et al., 2011).

The proxy toolkit to examine paleo-tsunamis has expanded following the modern surveys on the 2004 Indian Ocean and 2009 South Pacific tsunamis (Chagué-Goff et al., 2011). New possible techniques such as geochemistry can provide evidence for marine inundation and high-energy flows (Szczuciński et al., 2005; Chagué-Goff, 2010; Chagué-Goff et al., 2011). In this study we document the utility of geochemistry, together with
the more established foraminifera (taxa and taphonomy) and sedimentology (grain size), as indicators of the 11 March 2011 Tōhoku-oki tsunami deposit. We compare this deposit with an older event of similar magnitude, the A.D. 869 Jōgan tsunami (Fig. 1).

1.1 2011 Tōhoku-oki tsunami

On 11th March 2011 a great megathrust earthquake (Mw 9.0) along the Japan Trench generated a tsunami that reached the Sendai Plain on the northeastern coast of Honshu, Japan (Fig. 1a) at 14:46 (Japan Standard Time) with run-up heights of 10 – 40 m (Sugawara et al., 2011a). The earthquake ruptured over a distance of ~400 km with upwards of 5 m vertical and 24 - 60 m lateral displacement of the seafloor (Ito et al., 2011; Sato et al., 2011). The low-lying configuration of the coastal plain made Sendai particularly susceptible to tsunami inundation that reached 4.5 km inland in some areas (Sugawara et al., 2011a). Sustained flooding several months after the event was documented at several locations along the Sendai Plain (Sugawara et al., 2011a). We conducted a field survey north of the Sendai airport (Fig. 1a) and found evidence of inundation heights of 10 to 12 m above Tokyo Peil (TP; mean sea level in Tokyo Bay) behind artificially emplaced dunes (Fig. 2). Approximately 2 km from the shoreline, inundation heights were noted to be 3 – 4 m above TP, and ~20 cm at a distance of 4 km from the shoreline. The hardest hit area was at a distance of 0 – 2.5 km from the shoreline where houses and roads were severely damaged and rice fields flooded with saltwater. Goto et al. (2011) reported 17 – 21 cm of co-seismic subsidence approximately 10 km south of the Sendai airport and earthquake-induced liquefaction in the adjacent rice fields.

1.2 A.D. 869 Jōgan tsunami

Predecessors of the Tōhoku-oki tsunami (A.D. 1611 Keichō, A.D. 1793 Kansei, A.D. 1896 Meiji Sanriku, A.D. 1933 Shōa Sanriku, A.D. 1978) are numerous (Miyagi-oki; Minoura and Nakaya, 1991; Minoura et al., 2001; Sawai et al., 2008a,b). However, only the Jōgan tsunami in A.D. 869 approaches the 2011 tsunami in terms of its magnitude, area of coastline impacted (Sendai and Sōma regions) and extent of
inundation (greater than 2 km inland). On 13 July A.D. 869 an offshore earthquake approximately 200 km from the Sendai coastal plain resulted in a large-scale tsunami with widespread flooding (Fig. 1a). Estimates of the magnitude of the earthquake that generated the Jōgan tsunami, as well as flow depths and inundation distances have been investigated to improve tsunami hazard assessments (e.g. Zhao et al., 1990; Satake et al., 2008; Sugawara et al., 2011b).

The Jōgan deposit is a landward-thinning, laterally extensive sand unit of variable thickness (~2 – 20 cm) that extends over the Sendai and Sōma regions (Sawai et al., 2008a; Sugawara and Imamura, 2010). The deposit consists of well-sorted medium sand intercalated with terrestrial organic-rich mud (Minoura et al., 2001). Overlying the Jōgan deposit is a thin soil unit that is capped by the grayish-white felsic Towada-a tephra emplaced by a volcanic eruption to the northeast of Sendai in A.D. 870-934 (Yamada and Shoji, 1981; Minoura et al., 2001). Abundant marine and brackish water diatoms have been documented within the deposit (Minoura et al., 2001), but foraminifera have not been studied. The tsunami deposit extends 2.8 km inland, however, since the Sendai Plain coastline has prograded 1 km over the last ~1000 years, the inland extent of the Jōgan deposit is now ~4 km inland (Sawai et al., 2008b; Sugawara et al., 2011b).

2. Regional setting:

The Sendai Plain is a low-lying (less than 5 m TP), wave-dominated, microtidal (mean tidal range of ~1 m) coastal plain, which extends approximately 50 km on the Pacific coast of north-eastern Japan (Fig. 1a). The area is bounded by hills to the north, west and south, and a steep continental shelf gradient (Tamura and Masuda, 2004, 2005). Mid-Pleistocene marine and non-marine sediments dominate the coastal plain with Jurassic – Holocene marine and non-marine sedimentary rock outcropping to the north (Geological Survey of Japan, 2009). The Sendai Plain supports rice cultivation, with many fields interspersed with low-density housing (Fig. 1b). Main sediment sources to the area include three rivers (Abukuma, Natori and Nanakita rivers) that account for the continued seaward progradation of the coastline since the mid-Holocene (Saito, 1991; Tamura and Masuda, 2005).
Our study area (near Sendai airport) has four environments: coastal; coastal forest; paved landscape; and rice fields. The coastal zone transitions from nearshore marine (-0.8 m TP) to beach (1.7 m TP) to artificial dune (2.3 m TP; Fig. 1b; Fig. 2; Fig. 3a) within a distance of ~0.5 km from the shoreline. The artificial dune is composed of allochthonous sediment that was brought in to armor the coastline (Fig. 2a). We do not know the origin of the dune sediment, but noted its difference in color and composition to adjacent beach and nearshore marine sediment. The coastal forest (Fig. 1b, 2b), sitting at a distance of ~0.2 km from the coastline and an elevation of ~2.3 m TP), consists of mature pine trees that were planted 300 years ago as a means of protecting rice fields from salt spray (Sugawara and Imamura, 2010). Directly landward of the coastal forest is a paved landscape that contains several reinforced canals (0.1 – 1.2 km from coastline, ~1 m TP), and rice fields (1.2 – 4.5 km from coastline, -0.4 – 1.2 km TP).

3. Methods:

3.1 Sample collection, stratigraphy and geomorphology of the Tōhoku-oki tsunami deposit

In May 2011 we examined 14 trenches (Fig. 1b; Fig. 3a) containing the Tōhoku-oki tsunami deposit and its underlying soil along a transect from the coastal forest (trenches 5 - 9; 0.3 - 0.4 km inland), paved landscape (trenches 12 - 24; 0.4 - 1.2 km inland) and rice fields (trenches 31 - 86; 1.2 - 4.5 km inland). The trenches were sampled (2 – 10 cm resolution) and described in terms of deposit thickness and sedimentological composition. We examined each of the 14 trenches for lateral changes (average of all samples obtained in the tsunami deposit) associated with increasing distance inland and selected six sections for detailed analysis of vertical changes of the tsunami deposit with depth (e.g. trenches 5, 12, 31, 36, 48, 86). We used a node at the shoreline to calculate the distance of each surface sample and trench location relative to the marine source. In addition we collected surface samples (upper 1 cm) spanning the entire coastal zone (sites 1 - 4; -0.1 - 0.3 km inland) for comparison with tsunami sediments.
3.2 Grain size analysis

We conducted grain size analysis using a Beckman Coulter laser diffraction particle size analyzer on all surface and trench samples. Prior to analysis, organics were removed and samples were stirred as a moist paste to homogenize the sediment and disaggregated with sodium hexametaphosphate following the methods of Donato et al. (2009). Grain size values for all surface samples and 14 trench sections were converted to the Wentworth-Phi Scale, interpolated and gridded using a Triangular Irregular Network (TIN) algorithm according to Sambridge et al. (1995), and plotted as Particle Size Distributions (PSDs) in Geosoft Oasis TM. We used a Camsizer to calculate particle size sphericity ranging from 0 (highly angular) to 1 (perfectly spherical). Grain size descriptions follow Folk (1974).

3.3 Foraminiferal analysis

We conducted foraminiferal analysis on all surface and trench samples following the methods of Horton and Edwards (2006) where approximately 5 cm3 samples were sieved (>63 µm) and examined in a liquid medium. Taxonomy followed Loeblich and Tappan (1987) and Hayward et al. (2004), and where possible, we counted up to 300 recent specimens. Since we found no agglutinated species, samples were then dried at 25°C, sieved and recorded as having small (<250 µm) or large (>250 µm) test sizes. We categorized individual specimens as recent (white; late Holocene) or fossil (robust, sediment in-filled and calcified; Triassic-Jurassic); after Pilarczyk et al., 2011; Plate 1). Fossil foraminifera are easily identified since they generally maintain their test structure even after wave agitation disaggregates them from their parent rock. However, residence time in the nearshore environment results in significant abrasion and obscuring of diagnostic test features (e.g. aperture, perforations, umbo, etc.) required for proper species identification. Total number of individuals (fossil and recent individuals combined), total recent, total fossil and percent large specimens were enumerated.
3.4 Geochemical analysis

For measurement of $\delta^{13}C$ and total organic carbon (TOC) in trenches, we selected two trenches (5 and 31), which include the soil, overlying sand and mud cap. Sediment samples were treated with 5% HCl for 18 hours, washed with deionised water, dried in an oven at 40°C overnight and milled to a fine powder using a pestle and mortar. Plant samples were treated with 5% HCl for 2 - 3 hours, washed with deionised water, dried in an oven at 40°C overnight and milled to a fine powder using a freezer mill. $^{13}C/^{12}C$ analyses were performed on sediment samples by combustion in a Costech Elemental Analyser coupled on-line to an Optima dual-inlet mass spectrometer. $\delta^{13}C$ values were calculated to the VPDB scale using a within-run laboratory standard (cellulose, Sigma Chemical prod. no. C-6413) calibrated against NBS-19 and NBS-22. Organic carbon values (TOC wt/wt) were analysed on the same instrument. Replicate analysis indicated a precision of <0.1‰ (1 SD) for $\delta^{13}C$ and 0.1% TOC (wt/wt) measurements. All sediments reported for geochemistry were sampled over a 1 cm increment and are plotted as an average depth. With the exception of the pine roots which have a %N of 0.6 and C/N of 85.3, the %N values were below the limit of detection (LOD) of ~0.1%, therefore C/N values were unavailable to distinguish local from imported organic matter.

3.5 Analysis of the A.D. 869 Jōgan tsunami deposit

We also logged and sampled a trench containing evidence of the A.D. 869 Jōgan tsunami in a rice field ~10 km north of the Tōhoku-oki transect (Fig. 1a). The Jōgan deposit has previously been documented (Minoura et al., 2001; Sawai et al., 2008a; Goto et al., 2011). We logged the section in the field and conducted foraminiferal and grain size analysis as outlined in sections 3.2 and 3.3.

4. Results:

The tsunami deposited a sand-sheet that was laterally extensive and reached distances in excess of 4.5 km from the coast (Fig. 3). Erosion was severe where the tsunami breached an artificially emplaced and reinforced dune system and flattened trees.
in the coastal forest. Field descriptions of the tsunami deposit document a landward thinning and texturally fining sandy deposit. In some trenches, the sand-sheet was laminated with alternating sand and heavy mineral laminae (e.g. trench 31; Fig. 2c). Small mollusk fragments were present in very minor amounts (<1%) in nearshore and beach samples but not in the tsunami deposit.

4.1 Surface sediments

Grain size results distinguished between intertidal (nearshore; beach; sites 1, 2, 3) and dune (site 4) surface samples (Fig. 3). We found coastal sediments (sites 1 to 4) to have similar grain sizes (mean = 0.8 ± 0.3), but varying degrees of sorting (StD = 2.5 ± 0.8) and sphericity (0.6 ± 0.3). Nearshore sediment (mean = 0.9 ± 0.6), with the lowest sphericity values (0.4 ± 0.1, with 1.0 being a perfect sphere), was most angular in composition, followed by beach (mean = 0.6 ; sphericity = 0.8) and artificial dune sediment (mean = 0.9 ; sphericity = 0.9), which were significantly more rounded in grain composition.

Surface sediment samples also showed distinctly different foraminiferal characteristics that relate to increasing distance away from the marine source. Nearshore marine samples (sites 1 and 2) had the lowest concentration of recent individuals per cm3 (9 ± 1), the highest concentration of fossils (124 ± 18) and the greatest abundance of large fossil specimens (59% ± 3). The artificial dune (site 4) was characterized by the lowest concentration of fossils (19 individuals per cm3), but the highest concentration of recent foraminifera (77 individuals per cm3), which were comparatively small in size (only 45% of fossils were >250 µm). Beach sediment (site 3) marked a transition zone and had intermediate concentrations (fossil concentration = 90 individuals per cm3; recent concentration = 2 individuals per cm3; % large fossils = 50%).

4.2 Lateral changes within the Tōhoku-oki tsunami deposit

The tsunami deposit showed trends with increasing distance inland (Fig. 3e-i). In general, sediments become finer grained (1.0 ± 0.5 at 0.3 km; 1.6 ± 0.1 at 3.0 km; 2.1 ± 0.0 at 4.5 km), less sorted (2.3 ± 0.7 at 0.3 km; 2.2 ± 0.1 at 3.0 km; 1.6 ±
0.2 at 4.5 km) and more angular (0.7 ± 0.1 at 0.3 km; 0.3 ± 0.1 at 3.0 km; 0.4 ± 0.0 at 3.7 km) with increasing distance inland. The deposit thickness also thinned from 25 cm at a distance of 1 km from the shoreline to <5 cm at 4.5 km.

The tsunami deposit contained a combination of recent (e.g. calcareous, late Holocene) and fossil (sediment in-filled, Triassic-Jurassic) foraminifera. Recent foraminifera were taphonomically altered showing signs of significant fragmentation, edge rounding (abrasion) and dissolution. Fractured edges also showed evidence of edge rounding indicating fragmentation occurred before tsunami deposition. Taphonomic alteration prevented proper species identification except Ammonia parkinsoniana, which was present in most samples, although in very low abundances (<20 individuals per 1 cm³). Miliolid were also found in low abundances. Analyses of the trench sections versus distance inland showed analogous relations to the surface samples regarding the abundances of fossil and recent foraminifera. Recent individuals, although low in abundance, peaked at trenches 5 (25 ± 8 individuals per cm³) and 12 (29 ± 11 individuals per cm³) and decreased by ~50% by trench 48 (12 ± 7 individuals per cm³). At the landward limit extent of our transect, 4.5 km, (trench 86) no recent foraminifera were found (Fig. 3c).

Fossil foraminifera were more robust, darker in color, highly abraded and much more abundant than recent specimens within the tsunami deposit in all trenches (Fig. 5). Abundances of fossil foraminifera within the tsunami deposit peak at trenches 9 and 12 (102 ± 76 individuals per cm³, 104 ± 10 individuals per cm³ respectively) immediately inland of the coastal forest (0.4 – 0.5 km inland), and decrease to less than 3 individuals per cm³ by trench 86 (Fig. 3b). Similarly, large fossil individuals (>250 µm) dominate trenches between trench 12 (67%) and trench 31 (64%), rapidly decrease in abundance at trench 48 (24%) and are almost non-existent by trench 86 (<1%; Fig. 3d).

4.3 Vertical changes within the Tōhoku-oki tsunami deposit

The six trench sections (5, 12, 31, 36, 48, 86) are characterized by three distinct units (Fig. 4, 5, 6). Trenches had basal rice field soil with a pronounced orange-brown color, consisting of poorly-sorted to very poorly-sorted medium sand (mean = 1.4 ±
0.2; mode = 1.2 ± 0.0; StD = 2.0 ± 0.3). This was sharply overlain with a medium
grained sand-sheet (mean = 1.1 ± 0.4; mode = 1.3 ± 0.4; StD = 2.2 ± 0.7) that
transitioned into a mud cap (mean = 2.4 ± 0.7; mode = 2.0 ± 0.3; StD = 2.5 ± 0.1).
The mud cap was only found at sites greater than 1.2 km from the coastline. The sand-
sheet and mud cap together comprise the tsunami deposit. The tsunami deposit generally
fined upwards (e.g. trench 12: 0.5 at bottom of deposit, 0.8 at middle, 1.2 at top;
trench 31: 0.6 at bottom, 1.1 at middle, 1.6 at top, 1.7 at mud cap) and became
less sorted (e.g. trench 12: 1.3 at bottom, 1.5 at middle, 2.7 at top; trench 31: 1.2
at bottom, 1.9 at middle, 2.9 at top, 2.6 at mud cap), and in some cases (e.g. trench
31) contains finer dark laminae. Particle sphericity did not show any consistent vertical
trends within the tsunami sands or between the tsunami sands and the mud cap; at trench
31 the mud cap is more angular (0.5) than the tsunami sand (0.7 ± 0.2); whereas at trench
48 the mud cap (0.6) is more rounded compared to the underlying sand (0.3 ± 0.0; Fig. 5).

Foraminifera (fossil and recent) are absent within the soil, except at trenches 5
and 31 where very low abundances (11 ± 0 recent and 65 ± 0 fossil individuals per cm³ at
trench 5; 3 ± 2 recent and 53 ± 25 fossil individuals per cm³ at trench 31) are found near
the contact with the overlying sand suggesting some bioturbation (Fig. 5). Foraminifera
are present in the tsunami sand (19 ± 13 recent and 82 ± 29 fossil individuals per cm³)
and mud cap (8 ± 18 recent and 10 ± 15 fossil individuals per cm³), with little or no
variations in abundance with depth, except at trenches containing a mud cap where
abundances of fossil specimens are significantly higher in the sand than in the mud cap.
However, the proportion of large recent and fossil foraminifera were highest at the
bottom of the tsunami deposit and showed a slight upwardly fining sequence in most
trenches. For example, recent and fossil foraminifera at the base of the tsunami deposit at
trench 12 were 63% and 71% large (>250 µm) respectively and decreased to 45% and
56% at the top of the unit. Test size grading was most pronounced in trenches containing
mud caps (e.g. trench 31: 70% large sized fossils at the bottom of the tsunami unit, 50%
at the top of the sand and 30% in the mud cap; 70% large sized recent foraminifera at the
bottom, 49% at the top of the tsunami sand and 40% in the mud cap).

Geochemistry of two trench sections (5, 31) distinguished between the tsunami
deposit and the underlying soil (Fig. 5). In trench 5, δ¹³C ranged from -27.0 to -24.8‰ in
the tsunami sand and from -29.5 to -30.8‰ in the soil. TOC values were notably low in
the tsunami deposit (~0.1%) compared to the underlying soil (0.5 – 5.9%). Similar to
grain size results, three distinct units are distinguished in the geochemical profile of
trench 31. From 17.5 to 11.5 cm the soil has δ¹³C values of -27.8‰ to -27.1‰ and TOC
values ranging from 1.5 to 5.7%. The TOC decreases 0.1% and the δ¹³C values increase
to 26.3‰ in the tsunami sand. The tsunami mud cap shows slightly elevated TOC values
(0.3%) and much higher δ¹³C (-15.1‰).

4.4 A.D. 869 Jōgan tsunami deposit

The Jōgan trench consisted of four stratigraphic units (basal soil, Jōgan tsunami
deposit, Towada-a tephra, and overlying soil; Fig. 4d), of which the bottom three were
sampled and analyzed. The soil is composed of a very poorly-sorted (StD = 2.8 ± 0.1)
sandy soil (mean = 2.1 ± 0.3). The overlying Jōgan tsunami deposit is a 10 cm thick
very poorly-sorted (StD = 3.0 ± 0.1), medium sand (mean = 1.6 ± 0.0). The tsunami
deposit is capped by the fine grained Towada-a tephra (mean = 2.6 ; StD = 2.7). The
contacts between these three units were gradational. The Jōgan tsunami deposit showed
similar trends as the Tōhoku-oki with respect to thickness and sedimentological
characteristics: slight fining in grain size (1.5 at 52 cm to 1.6 at 47 cm), better sorting
(3.1 at 52 cm to 3.0 at 47 cm), and greater particle sphericity (0.6 at 52 cm to 0.7 at
47 cm; Fig. 4) from the bottom of the deposit to the top. The Jōgan tsunami deposit
showed a pronounced influx of highly spherical sediment (sphericity = 0.7 ± 0.0)
compared to the surrounding Towada-a (0.3) and soil (0.3 ± 0.1; Fig. 3h; Fig. 5). In the
modern environment, highly spherical sediments seem to be originating from the beach
(0.9) and dunes (0.9). Unlike the Tōhoku-oki tsunami deposit, the Jōgan did not contain a
mud cap or evidence of internal sedimentary structures (e.g. laminae).

Foraminifera were present (190 ± 2 recent and 162 ± 5 fossil individuals per cm³)
in the tsunami deposit indicating a marine origin. Low abundances of foraminifera were
found in the upper samples of the basal soil (fossil = 42; recent = 65 individuals per cm³)
and the lower part of the Towada-a tephra (fossil = 3; recent = 16 individuals per cm³)
suggesting bioturbation. This is similar to basal soils underlying the Tōhoku-oki deposit
where no recent or fossil foraminifera were found below the bioturbated contact (Fig. 5). The Towada-a tephra contained no fossil foraminifera and less than 40 recent individuals per cm³. The recent foraminiferal assemblage of the Jōgan tsunami deposit consisted of *Ammonia parkinsonia*, various taphonomically altered miliolids and unaltered planktics; in contrast to the Tōhoku-oki deposit where no planktics were found. Compared to the Tōhoku-oki deposit, *Ammonia parkinsoniana* individuals were more altered, showing signs of increased abrasion and dissolution. Large test sizes dominate the tsunami deposit and do not appear to show evidence of grading.

5. Discussion:

5.1 Stratigraphy and grain size analyses of the 2011 Tōhoku-oki tsunami

Tsunami deposits of Hokkaido Japan (Sawai, 2002), New Zealand (Goff et al., 2001), Papua New Guinea (Morton et al., 2007), Cascadia (Hawkes et al., 2011), Oman (Donato et al., 2009; Pilarczyk and Reinhardt, 2012) and elsewhere have been described on the basis of their lateral, sheet-like geometry, with the deposit thickness tapering inland (Morton et al., 2007; Goff et al., 2011). At Sendai, the tsunami deposit was laterally extensive over a 4.6 km transect and tapered inland from 30 cm to less than 5 cm and contained finer dark laminae interbedded with sand at some trenches (trench 31). The Tōhoku-oki sand-sheet is similar in mean grain size (1.1 ± 0.4) and degree of sorting (2.2 ± 0.7) to surface nearshore (mean = 0.9 ± 0.6; StD = 2.2 ± 0.3), beach (mean = 0.6; StD = 1.9) and dune (mean = 0.9; StD = 3.6) surface samples supporting the suggestion of Goto et al. (2011) who ascribe a nearshore to dune origin for the tsunami sand. The finer underlying rice field soil (mean = 1.4 ± 0.2) sharply transitioned to a coarser sand-sheet (mean = 1.1 ± 0.4) that fined upwards to a mud cap (mean = 2.4 ± 0.7). This fining upwards sequence within tsunami deposits is in agreement with several other studies (e.g. Hawkes et al., 2007; Morton et al., 2007; Goodman-Tchernov et al., 2009) and represents entrainment of sediment from multiple locations (nearshore, dune, etc.) followed by rapid deposition. The mud layer that caps the sand-sheet at trenches located at least 1.5 km from the shoreline represents further waning energy and is likely derived from antecedent rice field soil, canal mud or deeper
offshore mud. It is possible the tsunami scoured deeper offshore entraining finer grain sizes that were deposited in areas of sustained flooding. This interpretation is further supported by TOC, $\delta^{13}C$ and foraminiferal results which favor a marine origin for the mud cap.

5.2 Recent and fossil foraminifera as a tsunami indicator

The presence of abundant foraminifera is a characteristic of tsunami deposits (e.g. Hawkes et al., 2007; Kortekaas and Dawson, 2007; Mamo et al., 2009; Pilarczyk and Reinhardt, 2011; Pilarczyk and Reinhardt, 2012), but at Sendai their abundance within the sand-sheet and mud cap was very low. Hawkes et al. (2007) found up to 1,400 individuals per cm3 in the 2004 Indian Ocean tsunami deposits in Malaysia and Thailand, whereas we only found up to 48 recent individual per cm3. The lack of recent foraminifera within nearshore sediments is also anomalous when compared to studies from other Japanese coastlines (e.g. Toba, Mie Prefecture, Hokkaido) that report abundant and diverse assemblages (Okashashi et al., 2002; Nanayama and Shigeno (2004; 2006). Szczucinski et al. (this volume) also report a surprising distinct paucity of nannoliths (biogenic carbonate) in nearshore areas as well as the Tōhoku-oki tsunami deposit, suggesting water chemistry as a possible reason for the lack of carbonate material. Furthermore, the foraminifera within the tsunami deposit were highly taphonomically altered. Taxonomic identification was impossible except *Ammonia parkinsoniana*. *A. parkinsoniana* has previously been documented as inhabiting littoral (5 - 10 m deep) to sub-littoral (<300 m deep) areas in Hokkaido, Sanriku and Boso Penninsula, Japan (Takata et al., 2006; Uchida et al., 2010) and elsewhere (e.g.; Debenay et al., 1998;). *A. parkinsoniana* is found unaltered in nearshore marine sediment.

The taphonomic character of recent foraminifera has been successfully used as an overwash indicator in several studies, because it provides additional information concerning energy regimes and transport history (e.g. Uchida et al., 2010). Within the Tōhoku-oki tsunami deposit, recent foraminifera showed evidence of subaerial exposure through a high degree of abrasion (edge rounding), corrosion and fragmentation (Berkeley et al., 2009; Pilarczyk et al., 2011). Contrary to other taphonomic studies of
tsunami sediments (e.g. Kortekaas and Dawson, 2007), fragmentation at Sendai was not a function of the tsunami. Rather, edge rounding of fractured surfaces indicates repeated subaerial exposure and significant residence time in the intertidal zone (beach and artificial dune). Abundances of recent foraminifera peak in modern dune samples and likely do not represent modern conditions at Sendai since artificial dune sediment was transported in from an unknown source.

In the absence of high numbers of recent foraminifera, fossil specimens were a reliable indicator. Fossil individuals are found in all trenches, including the landward limit of the transect (4.6 km), and show a marked decrease in concentration and size with increasing distance inland. It appears that fossil specimens are marine indicators, probably eroding from coastal Triassic-Jurassic sandstone headlands that are found north of our study area. Supporting this inference are the large (>250 µm) individuals, which are found in very high abundances exclusively in nearshore sediment. Both fossil and recent foraminifera showed trends with distance, where abundances declined with increasing distance inland. The abundance of large size individuals (e.g. >250µm) ranged from 60 – 70% between the coastline and 1.5 km inland where they markedly began to decrease to 30 – 35% at 2.5 km and finally to a negligible amount (e.g. <1%) at 4.5 km inland. The abrupt decrease in abundance of large size individuals at 1.5 km inland coincides with the beginning of the mud cap (e.g. trench 31 at 1.6 km and trench 48 at 2.4 km) and likely represents waning energy and sustained pooling of marine water.

5.3 Geochemical trends

Stable carbon isotopes ($\delta^{13}C$) and total organic carbon (TOC) have been used extensively to infer the provenance of organic matter hosted in terrestrial, coastal wetland and marine sediments (e.g. Tyson, 1995; Lamb et al., 2007; Vane et al., 2010; Kemp et al., 2011). Although $\delta^{13}C$ and TOC have the potential to distinguish tsunami sediment from underlying soils primarily because imported marine sands should have low TOC content and higher $\delta^{13}C$ values than the local terrestrial soils, they have yet to apply.

In trench 5, the rice field soil has low $\delta^{13}C$ values (-30.8‰) and TOC of up to 6%. Pine roots that are found in the soil have similar $\delta^{13}C$ (-30.4‰), which are consistent with
values reported from other forest soils (e.g. Goni and Thomas, 2000; Vane et al., 2003; Goni and Eglinton, 1996). This suggests a woody terrestrial plant material source for the rice field soil. In contrast the overlying tsunami sand has δ^{13}C values ranging from -27.0 to -24.8‰ and very low TOC of about 0.1% (Fig. 5). The δ^{13}C of marine and open coastal sediments typically range between about -18 to -23‰ and estuarine sediments range from -26 to -23‰ (Hedges and Mann, 1979; Jaffé et al., 2001; Wilson et al., 2005; Cifuentes, 1991; Mishima et al., 1999). Furthermore, surface sediments from the marine influenced section of Osaka Bay, Japan report δ^{13}C of -20 to -21‰ (Mishima et al., 1999). In this current study the δ^{13}C values of the sand unit are slightly more depleted in ^{13}C (negative) than that expected for sediment hosting purely marine-derived organic matter, but remain 4‰ higher than the underlying soil. The TOC values of Trench 31 show a similar sharp contrast between the underlying soil and overlying tsunami deposit. However the greatest δ^{13}C change is associated with the transition to the mud cap (δ^{13}C = 26.3‰ to -15.1‰). The positive values may result from sediment containing organic matter from plants utilising the C_{4} photosynthetic pathway (range -17 to -9‰; Deines, 1980). Alternatively, the organic matter is sourced from either marine algae (-16 to -24‰), marine plankton (-13 to -31‰), marine particulate organic carbon (-18 to -24 ‰), marine bacteria (-12 to -26‰), sea grasses (marine C_{4} plant) (-14 to -19‰), or possibly cyanobacteria (Deines, 1980; Tyson, 1995).

5.4 Comparison of the Tōhoku-oki and Jōgan tsunami deposits

Historical records mention several tsunamis that have impacted northeast Japan (Minoura and Nakaya, 1991; Minoura et al., 2001) however, the A.D. 869 Jōgan tsunami has been shown to be most similar to the Tōhoku-oki event in terms of the extent of inundation (Sawai et al., 2008a; Goto et al., 2011). Both tsunamis deposited a laterally extensive, landward thinning sand-sheet that extended to distances greater than 2 km from the coast (Minoura et al., 2001).

Grain size distributions were effective in discriminating the sand-sheets (medium sand) deposited by both the Tōhoku-oki and Jōgan tsunamis from the finer soils. The Jōgan sand-sheet (mean = 1.6 ± 0.0) could be distinguished from the underlying basal
soil (mean = 2.1 ± 0.3) and overlying Towada-a tephra (mean = 2.6) even though contacts were gradational, indicating more bioturbation. Both tsunami deposits consisted of very poorly-sorted (Tōhoku-oki: 2.0 ± 0.3; Jōgan: 3.0 ± 0.1) medium sand (Tōhoku-oki: 1.4 ± 0.2; Jōgan: 1.6 ± 0.0) that fined upwards (Tōhoku-oki trench 12: 0.5 to 1.2 ; Jōgan: 1.5 to 1.6). Notable differences between the deposits include the absence of a mud cap and laminae in the Jōgan deposit. This may be evidence of post-depositional change whereby, bioturbation obscures internal structures. Szczucinski (2011) examined post-depositional changes within sediments deposited by the 2004 Indian Ocean tsunami and found significant post-depositional change only five years after the event.

The recent and fossil foraminifera also showed broad similarities and noticeable differences. Foraminifera were more abundant within the Tōhoku-oki and Jōgan tsunami deposits although bioturbation resulted in their occurrence in the underlying soil, and in the case of Jōgan, also the overlying units. The contamination of foraminifera in these units was greater in the Jōgan sequence, reflecting the gradational versus abrupt lithological contacts. In the Jōgan tsunami deposit concentrations of fossil and recent individuals were similar (recent = 190 ± 2 individuals per cm³; fossil = 162 ± 5 individuals per cm³), which is in contrast to the Tōhoku-oki deposit where fossil foraminifera are more abundant. The recent assemblage of foraminifera in the Jōgan sequence was dominated by *Ammonia parkinsoniana* and miliolids, but there was a noticeable presence of planktic individuals.

6. Conclusion:

The 2011 Tōhoku-oki and A.D. 869 Jōgan tsunamis are comparable in magnitude, area of coastline impacted and landward extent and show similar trends with respect to grain size distributions, foraminiferal abundances and geochemistry (δ¹³C, TOC). Both deposits can be discriminated from underlying soil by an abrupt increase in mean grain size (medium sand) and a sudden appearance of recent and fossil foraminifera. Geochemical analysis of the Tōhoku-oki deposit (δ¹³C, TOC) revealed a sharp contact between rice field soil and the overlying tsunami unit and corroborates grain size and
foraminiferal results that indicate a marine source for the sand-sheet. The lack of
identifiable recent foraminifera along the Sendai transect questions the utility of
traditional foraminiferal analysis; however, the added use of taphonomy (test condition,
fossil specimens) helped to constrain sediment provenance and hydrodynamic regime.
Tracking foraminiferal taphonomic characters laterally and vertically in trenches will be
important for documenting bed geometry and distinguishing tsunami and storm deposits
at Sendai, as well as other locations. A comparison of the Tōhoku-oki and Jōgan tsunami
deposits suggests significant post-depositional change of the latter deposit, where a mud
cap and internal sedimentary structures were absent.

Acknowledgements:

Members of the UNESCO-IOC (Intergovernmental Oceanographic Commission)
team to Japan provided samples and guidance. Among them we especially thank
Kazuhisa Goto and Bruce Jaffe for their involvement in executing this field survey. We
also thank Daisuke Sugawara, Yuichi Nishimura and Shigehiro Fujino for their assistance
while on site in Japan, Kazuhisa Goto for providing survey data and Doug Jerolmack for
the use of hiscamsizer. C. Vane publishes with the permission of the Executive Director,
British Geological Survey (NERC). The work was supported in part by UNESCO-IOC,
The U.S. Geological Survey and a National Science Foundation award (EAR-0842728).

References:

Berkeley, A., Perry, C. T., Smithers, S. G., 2009. Taphonomic signatures and patterns of
test degradation on tropical, intertidal benthic foraminifera. Marine Micropaleontology
73, 148-163.

Szczuciński, W., Kokocinski, M., Rzeszewski, M., Chagué-Goff, C., Cachao, M., Goto, K., Sugawara, D., this volume. Diatom assemblages and sediment grain size of 2011 Tohoku tsunami deposits near Sendai, Japan: implications for sediment sources, transport and sedimentation mode. Sedimentary Geology, this volume.

potential coastal palaeoenvironmental indicators in the Mersey Estuary, UK. Quaternary Science Reviews 24, 2015-2029.

Zhao, D., Horiuchi, S., Hasegawa, S., 1990. 3-D seismic velocity structure of the crust and the uppermost mantle in the northeastern Japan arc. Tectonophysics 181, 135-149.

Figure captions:

Fig. 1: a) Map of Sendai, Japan showing broad-scale tectonics. The inferred fault zone rupture segmentation (purple ellipse) and the epicenter (black square) of the Tōhoku-oki earthquake are indicated (after Koper et al., 2011) along with the estimated source region of the A.D. 869 Jōgan tsunami (after Minoura et al., 2001). Location of trench transect (inset) and Jōgan trench (white circle) are indicated. b) Detailed map of study area showing site locations of Tōhoku-oki trenches and surface samples (site 1 – 4).

Fig. 2: a) Remnants of the artificial dune after the Tōhoku-oki tsunami. The tsunami breached the dune in several locations and flattened pine trees and coastal shrubs, exposing an underlying stabilizing net. b) Tsunami-flattened coastal forest planted ~300 years ago to shelter rice fields from wind and salt spray. Large pine trees were flattened in a shore-normal direction, and in some cases uprooted, as a result of the tsunami. c) Tōhoku-oki deposit at Trench 31 (see Fig. 1b) indicating a ~10 cm thick sand unit with a mud cap overlying basal rice field soil.

Fig. 3: Surface samples (red) compared to changes in the Tōhoku-oki deposit (blue) with increasing distance inland. a) Elevation along a transect from the nearshore Pacific ocean through the coastal forest, paved landscape and rice fields using the Tokyo Peil datum (TP; mean sea level in Tokyo Bay; see Fig. 1a,b). b-d) Total concentration and relative abundances of foraminiferal taphonomic data. e-h) Average mean (e), mode
(f), standard deviation (sorting; g), and degree of angularity (sphericity; h) data for Tohoku-oki trenches. i) Tsunami deposit thickness. j) Average particle size distribution (PSD) plot.

Fig. 4: a) Core Average particle size distribution (PSD) plots for Tohoku-oki trench sections along a transect. Facies designations are based on field observations and black dots represent sampling intervals. b) Generalized stratigraphic section of the Tohoku-oki tsunami deposit based on all trench sections. c) Core PSD plot for the Jogan trench section (Fig. 1a). d) Generalized stratigraphic section of the Jogan tsunami deposit including the overlying Towada-a tephra deposited by volcanic activity to the north of Sendai in A. D. 870 – 934. e) Location of trench sites. For elevation (meters above TP) and distance from the coastline see Fig. 5a.

Fig. 5: a) Grain size and foraminiferal taphonomic data for trenches 5, 12, 31, 48 and Jogan. Geochemistry data (δ13C, TOC) for trenches 5 and 12 is indicated. Black dots indicate sampling intervals. b) Trench site locations. For elevation (m MSL) and distance from the coastline see Fig. 5a.

Fig. 6: Average particle size distribution (PSD) statistical data for facies. Surface samples representing possible sources of tsunami sand are compared with Tohoku-oki trench sections.

Plate 1: All scale bars are equal to 100 µm. 1 – 2. Light microscope images of sediment in-filled fossil specimens. 3 – 4. SEM images of fossil specimens indicating highly corroded and abraded tests. 5. Recent *Ammonia parkinsoniana* ventral view. 6. Recent *Ammonia parkinsoniana* dorsal view. 7 – 10. Taphonomically altered (corroded, abraded, edge rounded) recent miliolids.