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Føroya Kolvetni (Faroe Petroleum) was awarded Licence 012, covering part of the Wyville 

Thomson Ridge, in the second Faroese Licensing Round and this paper summarises some 

initial results from their work programme. Interest in the prospectivity of the Wyville 

Thomson Ridge was stimulated in the 1990s by a proposal that it forms a compressional 

anticline with a thin carapace of Paleogene lavas, overlying an inverted sedimentary basin. 

Gravity interpretation confirms that the ridge can be modelled as an inverted basin, although 

uncertainties inherent in the method limit the accuracy of the thickness estimates. Seismic 

reflection data shot in 2005 provide improved resolution of the pre-lava succession, with 

some reflector packages resembling seismic facies from the prospective Paleocene succession 

in the Faroe-Shetland Basin. The Rannvá exploration lead consists of an extremely large 

four-way dip closure beneath thin lavas at the crest of the Wyville Thomson Ridge. Source 

rock presence and maturity, hydrocarbon migration, and reservoir development in the Licence 

012 area are discussed on the basis of regional observations. 
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This prospectivity assessment of licensed acreage in the Faroese sector of the north-east 

Atlantic margin focuses upon the Wyville Thomson Ridge, a linear bathymetric high mantled 

by volcanic rocks, which forms a physical barrier between the Rockall Trough and the Faroe-

Shetland Channel (Morton et al. 1988b; Stoker et al. 1988; Earle et al.1989) (Fig.1). In the 

vicinity of the median line, a buried transfer zone probably underlies the whole structure 

(Rumph et al. 1993; Stoker et al. 1993; Tate et al. 1999; Waddams and Cordingley 1999). 

Further to the east, the same transfer zone may control the boundary between the Stack 

Skerry and West Shetland basins (Duindam and Van Hoorn 1987), or form a part of a broader 

complex of geophysically defined lineaments, which act together to control the polarity of 

basins on the Hebridean Platform (Kimbell et al. 2005). In either case, it is likely that 

reactivation of a pre-existing basement structure underlying the Wyville Thomson Ridge 

accommodated the displacement of the main axis of Cretaceous extension between the Faroe-

Shetland and Rockall basins. The Rona Ridge marks the boundary of the Faroe-Shetland 

Basin in the north, while the West Lewis Ridge and the Rockall Basin, which form the 

equivalent structures in the south, are offset westwards across the Wyville Thomson Ridge. 

An early interpretation of the Wyville Thomson Ridge as a 12 km thick pile of basalt 

overlying Cretaceous oceanic crust was based on gravity modelling together with flexural 

considerations (Roberts et al. 1983). Subsequently, Boldreel and Andersen (1993; 1994; 

1995; 1998) made the alternative proposal, partly based on seismic data, that the bathymetric 

high originated as an inverted sedimentary basin, capped by volcanic rocks. Others have used 

gravity and magnetic data in conjunction to support an inverted basin model (Tate et al. 1999; 

Waddams and Cordingley 1999). However, the actual thickness of the concealed sedimentary 

succession in these interpretations remains poorly constrained. Waddams and Cordingley 

(1999) show a pre-Cretaceous sedimentary succession more than 8 km thick, with the top of 

the metamorphic basement lying at a depth of more than 10 km beneath the centre of the 

ridge. In contrast, the model of Tate et al. (1999) for a similar profile shows basement no 

deeper than 4 - 6.5 km, rising northwards towards the Munkagrunnur Ridge. 

 

The presence of widespread energy-absorbent volcanic sequences largely accounts for the 

poor response of the seismic reflection method to the deeper structure of the Faroes 

continental shelf (White et al. 2003), but recently acquired wide-angle seismic data have 

helped to establish that some pre-volcanic sediments are preserved locally (Richardson et al. 

1999; Raum et al. 2005; Spitzer et al. 2005).   

 

Well data 

 

The well database used in the regional prospectivity assessment consisted mainly of selected 

hydrocarbon exploration wells from the UK sector, including 154/3-1, 163/6-1A, 164/7-1, 

164/25-1Z and 164/25-2. These were supplemented with geological data obtained from 

relevant shallow boreholes drilled in the West of Shetland area by the British Geological 

Survey.   

 

The UK well 164/7-1 (Fig. 1), which was drilled in the NE Rockall Basin in 1997 by Conoco, 

tested a large, apparently domal closure that was interpreted by the operators as an anticlinal 

feature with potential reservoirs and source rocks in the Mesozoic section (Archer et al. 

2005). However, after penetrating 1166 m of Paleogene volcanic rocks, the well was 

terminated within a predominantly argillaceous, basinal Cretaceous sequence, without 

establishing the presence of potential reservoirs or source rocks in the pre-volcanic interval. 

In the well, Maastrichtian and Campanian rocks are absent and the Paleogene lavas are 
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proven to rest unconformably on a deeply eroded Cretaceous section possibly of Coniacian to 

Albian age. In the absence of reservoirs and hydrocarbon shows, the well was not tested. 

Subsequent analysis revealed that the formation of the structural dome was associated with 

the intrusion of more than 40 basic igneous sills within the Cretaceous section. Interpretation 

of 3D seismic data across the structure showed that the sills are disposed concentrically 

around a central uplifted area and have radial outward dips. Potential field data suggest that 

this whole structure is probably of igneous origin and may be compared with the classic 

laccolithic intrusions of the Henry Mountains, USA (Jackson and Pollard 1990). The 

presence in this area of a large volume, deep-seated igneous body associated with sill 

intrusion is partly confirmed by the locally enhanced levels of thermal maturity within the 

Cretaceous succession, as indicated by extremely high values of vitrinite reflectance. 

Radiometric age dates obtained by the 
40

Ar/
39

Ar method from the sills have given early 

Paleocene ages of 63-64 ± 0.5 Ma. These observations combine to suggest that basic sill 

intrusion in this area was accompanied by local uplift and erosion of the Cretaceous 

succession, preceding the growth of the lava shield (Archer et al. 2005). 

 

The nearby well 163/6-1A, which was drilled in the Rockall Trough as a stratigraphic test, 

also proved a thick succession of Paleocene basic extrusive rocks, before terminating in a 

volcanic interval of dacitic composition (Morton et al. 1988a) (Fig. 1).  The interpretation of 

seismic and potential field data indicates that these rocks form part of the Darwin volcanic 

centre (Abrahams and Ritchie 1991). The presence of a Mesozoic section around Darwin 

remains unproven, but discontinuous high amplitude reflectors observed on seismic data are 

interpreted as an indication of pervasive sill intrusion at depth (Tate et al. 1999).  

 

Most of the exploration effort in the adjoining part of the UK sector has focused upon the 

eastern flank of the NE Rockall Basin, where several wells have tested potential structures. 

Well 165/25-2 on the crest of the West Lewis Ridge, and nearby well 154/3-1, both 

penetrated Paleocene volcanic successions before terminating in metamorphic basement. In 

164/25-2, a partly arenaceous clastic interval of Thanetian age separates a thinly bedded 

upper series of volcanic rocks from a lower volcanic succession that rests directly upon 

Lewisian basement. In 154/3-1, thin sediments of Campanian age, underlain by thick undated 

conglomerates, separate an undivided Paleocene volcanic succession from Lewisian 

basement at terminal depth. With their lack of source rocks and poor development of 

potential reservoirs, these wells have downgraded hydrocarbon prospectivity in the area of 

the West Lewis Ridge. 

 

Immediately to the east of the West Lewis Ridge, well 164/25-1Z drilled an anticlinal closure 

formed by the structural inversion of the West Lewis Basin during the Cenozoic. In this well, 

the volcanic interval is thin and occurs near the top of a thickly developed Paleocene clastic 

succession, which includes abundant sandstones. The succession is predominantly of 

Thanetian age, but a thinly bedded basal interval of Danian sandstones is also present. The 

Danian rocks overlie Cretaceous mudstones, which rest unconformably on the varied 

succession of Triassic sediments in which the well terminated. Basic igneous sills, up to 185 

m thick, intrude much of the Cretaceous and some of the Paleocene interval in the well. 

Although the 164/25-1Z well shows that Jurassic rocks are absent locally, shallow boreholes 

drilled by the British Geological Survey have established the presence of potential 

hydrocarbon source rocks of Jurassic age elsewhere in the West Lewis Basin (Isaksen et al. 

2000).  
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Seismic interpretation 

 

The initial appraisal of the proposed licence area was supported by a detailed interpretation of 

the seismic profile YMR97-206 (Shot points 101-2500) (Fig. 2). Beginning in the UK sector, 

this line trends SW-NE across the Wyville Thomson Ridge to provide a complete geological 

section through the licence blocks 6007/17, 21 and 22 (Fig. 3). Seismic interpretation was 

aided by reference to regional profiles from adjoining blocks (Boldreel and Andersen 1993; 

1994; 1998; Tate et al. 1999; Waddams and Cordingley 1999; Sorensen 2003; Archer et al.  

2005; Keser Neish and Ziska 2005; Johnson et al. 2005).  In addition, published structural 

contour maps of the top Paleogene lava surface (Tate et al. 1999; Keser Neish and Ziska 

2005) were used to relate the interpreted seismic profile to the regional structure. Eight 

picked horizons (sea bed; near base Pliocene; top Paleogene; near top Eocene; near top 

Lower Eocene (Ypresian); top Paleogene lavas; base Paleogene lavas and intra-Paleocene) 

were provisionally correlated with the regional event stratigraphy of Johnson et al. (2005). 

Identification and dating of events below the top of the lavas remains speculative.  

 

Following the award of the blocks, Føroya Kolvetni purchased additional selected profiles 

from a non-exclusive seismic survey acquired across the ridge by Fugro-Geoteam in 1997 

(Fig. 3). A single regional line (SW84-091) was used to tie this seismic grid to well 164/7-1 

(Fig. 3). A provisional structural contour map showed where the top lava reflector was 

truncated at the sea bed on the flanks of the high. Since the identification of the true base of 

the volcanic succession often remains uncertain on seismic data from the Atlantic margin, it 

is clearly beneficial that the thickness of the lava pile has been reduced by post-volcanic 

erosion above a potential sub-volcanic target at the crest of the Wyville Thomson Ridge. 

Extending the interpretation of the presumed base of the volcanic succession throughout the 

seismic grid defined two separate structural culminations along the ridge axis. The western 

culmination, which lies entirely within the Faroese sector, forms the basis of the Rannvá 

exploration lead.  

 

Re-examination of the original line YMR97-206 (Fig. 2), in the light of the additional profiles 

led to the recognition of a discontinuous low amplitude reflector beneath the inferred base of 

the volcanic succession. This reflector is parallel to the lavas and appears to define the base of 

a mounded seismically transparent interval below the centre of the ridge. Horizon-flattening 

software was used to restore a reconstructed top lava event to its approximate pre-inversion 

position to reveal the original depositional geometry of the deeper, possibly pre-volcanic, 

reflectors. The wedging packages of high amplitude events previously identified on the flanks 

of the structure appeared on this display to onlap an axial mound-like feature. 

 

In 2005, Føroya Kolvetni shot a set of seismic profiles infilling the original grid (Fig. 3) (for 

details of acquisition and processing parameters, see Holden et al. this volume). These lines 

included one profile (FP2005-002) that was planned specifically to transect the top of the 

previously identified Rannvá structural closure. This line established that the base of the lavas 

was even shallower than predicted, while the improved acquisition parameters and processing 

sequence revealed a deeper set of reflectors below the centre of the ridge (Fig. 4). Most of 

these are short high amplitude events probably related to basic intrusions and possibly 

affected by faults striking parallel to the ridge and throwing down towards the ridge axis. In 

the Faroe-Shetland and Rockall basins, reflections related to basic sills occur predominantly 

within the Cretaceous succession. To assess the tectonic implications of these observations, a 

palaeogeographic map of structural elements in the vicinity of the UK-Faroes median line 

was modified to include a Mesozoic basin at the site of the Wyville Thomson Ridge (Fig. 5).  
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Improved imaging of the Wyville Thomson Ridge allows the seismic facies directly below 

the volcanic layer to be compared with Paleogene reflectivity in the Faroe-Shetland Basin. 

Comparison with published seismic profiles (for example, Smallwood and Gill 2002, their 

Fig. 2; Smallwood et al. 2004, their Fig. 13) reveals a particular correspondence between the 

seismic character of the interval that pinches out beneath the flanks of the ridge and that of 

the Upper Flett and Balder formations (Fig. 4). It follows that the mounded seismically 

transparent interval onlapped by these reflectors, which occurs beneath the axis of the ridge, 

may be equivalent to the prograding wedge of Lamba Formation sediments in the UK sector 

(Figs. 2, 4). If this is the case, then the reflector previously recognised at the base of the 

transparent interval probably corresponds to the Kettla Tuff Member, which is already known 

to be a regionally extensive seismic marker (Figs. 2, 4). Elsewhere along the Atlantic margin, 

a thin shale interval underlying the Kettla Tuff acts as a local seal to the thick turbidite 

sequences of the Vaila Formation, which form the main Paleocene reservoir in the UK sector. 

Based on this analogy, a seismic interval corresponding to potential Vaila Formation 

turbidites beneath the Wyville Thomson Ridge is indicated on Figure 4. The absence of 

equivalent sediments from the nearby well 164/7-1 can be attributed to non-deposition or 

erosion at the pre-lava unconformity surface above a structural high (Archer et al. 2005).  

 

Biostratigraphic ages obtained from side-wall cores in well 164/7-1 show that the local 

volcanic succession must have been extruded rapidly, possibly from the Faroe Bank Channel 

Knoll volcanic centre, during the latest Paleocene and earliest Eocene (Archer et al. 2005). 

The lavas, which may be penecontemporaneous with the Balder Formation, buried the 

inferred Paleocene sedimentary succession at the Wyville Thomson Ridge as they thinned 

southwards towards the Rockall Basin. After the formation of the lava shield, local erosion 

during the earliest Eocene was followed by marine transgression across the Faroes Shelf 

(Waagstein and Heilmann-Clausen 1995). Subsequent Middle Eocene deposition in the 

Faroe-Shetland Basin shows thinning towards the rising axes of basin inversion anticlines 

(Smallwood 2004). Seismic evidence of Middle and Upper Eocene chaotic facies from 

adjoining basins suggests that the Wyville Thomson Ridge was also affected by basin 

inversion at this time, with folding and uplifting of lavas at the ridge, while a new depocentre 

developed above the former structural high on its southern flank. The margins of the 

Drekaeyga intrusive centre (Keser Neish and Ziska 2005) were deformed and the Ymir Ridge 

evolved as a series of transpressional anticlines, possibly buttressed against the Darwin-

Geikie Ridge and its associated igneous intrusions (Boldreel and Andersen 1993; 1994; 1998; 

Tate et al. 1999). A similar pattern of footwall deformation has been observed in sandbox 

experiments of inverted half graben (Panien et al. 2005). If the tectonic model developed by 

Imber et al. (2005) for the Vøring Basin can be applied to this part of the Atlantic Margin, it 

is possible that an episode of localised basin inversion was initiated by the effect of sinistral 

transpression on a restraining right-stepping offset of basement blocks across the Wyville 

Thomson transfer zone (Fig. 5).     

 

Uplift of the Wyville Thomson Ridge contributed to a change in oceanic circulation in the 

evolving Atlantic Ocean. The development of a major submarine unconformity surface near 

the end of the late Eocene (= C30 event of Stoker 1999) is commonly taken to mark the onset 

of bottom water circulation in the Atlantic. The late Eocene unconformity was onlapped, as 

the Rockall Basin continued to deepen during the Oligocene. Then a further episode of uplift 

and erosion generated another regionally significant unconformity, marking the top of the 

Paleogene (this was formerly described as the latest Oligocene/early Miocene unconformity 

(LOEMU) or C20 event by Stoker et al (2002) and is equivalent to the TPU event of 
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Smallwood (2004) in the Faroe-Shetland Basin). The interval between these late Eocene and 

top Paleogene unconformities is characterised by a set of small-displacement, compaction-

related normal faults that developed in semi-consolidated sediments of predominantly 

Oligocene age, on the flanks of rising anticlines, including the Wyville Thomson Ridge 

(Johnson et al. 2005). The next regionally significant unconformity is interpreted as the base 

of the Pliocene-Pleistocene succession on the Atlantic margin and probably corresponds to 

the C10 reflector of Stoker et al. (2002, 2005). 

 

Seismic interpretation concluded with the preparation of revised structural contour maps 

incorporating the new seismic data. Maps of top Paleogene lava, base Paleogene lava and 

possible top Paleocene reservoir horizons improved the structural resolution of the Rannvá 

lead and helped to define the depth to a potential target (Fig. 6). 

 

Potential field interpretation 

 

Despite the improved resolution of the recent seismic reflection data, there is still little firm 

evidence for the early geological history and thickness of any precursor basin beneath the 

Wyville Thomson Ridge. Potential field data provide an independent means of assessing the 

deep structure of the area. 

 

The large differences between previous gravity interpretations (Roberts et al. 1983; Tate et al. 

1999; Waddams and Cordingley 1999) illustrate the non-uniqueness inherent in gravity 

modelling where independent constraints are limited. Comparison with magnetic data does 

help to reduce the uncertainty. Borehole sampling (Archer et al. 2005) and the characteristics 

of the observed magnetic anomalies indicate that the lavas are reversely magnetised. On the 

basis of rock property measurements (e.g. Shoenharting and Abrahamsen, 1984; Abrahamsen 

et al., 1984; Sharma, 1994) they are estimated to have a net intensity of magnetisation of 3 - 4 

A/m in a direction approximately opposite to the Earth’s present field. When magnetisations 

of this order are adopted in the alternative models for the Wyville Thomson Ridge, the results 

prove diagnostic. The thick lava pile modelled by Roberts et al. (1983) generates a much 

larger magnetic anomaly than is observed, whereas the thin, folded lava layer in the 

interpretations of Tate et al. (1999), Waddams and Cordingley (1999) and the present study 

produce a response of appropriate amplitude.  

New gravity modelling was undertaken using the results of the seismic interpretation 

described above. The aim was to remove the gravity effect of the seismically resolved 

sedimentary and volcanic rocks and interpret the residual anomalies in terms of underlying 

structure. The modelling focused on seismic lines YMR97-206 and YMR97-208 (Figs. 3, 7). 

Positive features over the Wyville Thomson and Ymir ridges dominate the free-air gravity 

anomaly pattern (Fig. 7), and another positive anomaly is associated with the Faroe Bank 

Channel Knoll volcanic centre (Roberts et al., 1983; Boldreel and Andersen, 1999; Keser 

Neish and Ziska, 2005). The Drekaeyga volcanic centre (Fig. 7), which has been identified on 

seismic and magnetic data between the Wyville Thomson and Ymir ridges does not generate 

a strong free-air gravity feature (Keser Neish, 2004; Keser Neish and Ziska, 2005). Densities 

of 2.00 Mg/m
3
 and 2.55 Mg/m

3
 were assumed for post lava sediments and lavas respectively. 

The relatively low density assumed for the latter reflects the very heterogeneous nature of the 

volcanic sequence, as revealed by well 164/7-1. Although high densities (2.55-2.85 Mg/m
3
) 

do occur in the interiors of individual flows, values decrease to 2.15-2.55 Mg/m
3
 at flow 

margins (Archer et al. 2005). Initial whole-crustal 2D models were constructed assuming that 

crustal thickness varied such that the bathymetric and cover sequence features identified by 

seismic surveys (down to the base of the lavas) were in isostatic equilibrium.  A two-layer 



 7 Smith et al.                                                                  

crust was assumed to underlie the lavas, with densities in its upper and lower parts of 2.75 

Mg/m
3
 and 2.95 Mg/m

3
 respectively, and the mantle density was 3.3 Mg/m

3
.  

The gravity responses predicted by these initial models differed significantly from the 

observed field, and the next stage was to investigate the extent to which the sub-lava 

sedimentary rocks could contribute to these differences. Such rocks have been proved at well 

164/7-1, about 14 km SSW of the southern end of line 208 (Fig. 6), where a 1.3 km section 

comprising Paleogene lavas and tuffs underlain by heavily intruded Cretaceous claystones 

was intersected (Archer et al. 2005). The geoseismic interpretation of Archer et al. (2005, 

their Fig. 19) suggests that the top of the acoustic basement lies less than 1 km below the 

bottom of 164/7-1, but at considerably greater depths away from the dome that was drilled by 

this well. On the basis of the limited available evidence it has been assumed that about 3 km 

of pre-Cretaceous sedimentary rocks underlie the southern end of line 208. This was used as 

reference against which pre-lava sedimentary thicknesses variations elsewhere were 

modelled, as it is not possible to predict absolute thicknesses from the available data in this 

modelling context. The gravity model presented by Archer et al. (2005; their Fig. 16) 

assumed a high density (2.79 Mg/m
3
) for the intruded Cretaceous section. While this might 

be appropriate for the inferred laccolith drilled by 164/7-1, densities are almost certainly 

significantly lower away from this local intrusive feature. In the present modelling, the pre-

lava unit has been divided into upper and lower parts and these assigned average densities 

(2.50 Mg/m
3
 and 2.62 Mg/m

3
 respectively) that are closer to those predicted from 

consideration of the effect of compaction on normal mudrocks. The use of the same density 

for the uppermost part of the pre-lava sequence, regardless of its depth of burial, is 

compatible with an interpretation in which these rocks originally lay at similar depths but 

were subsequently affected by different degrees of structural inversion. The effects of 

inversion were not extended to deeper density structure, and the interface between the 2.50 

Mg/m
3
 and 2.62 Mg/m

3
 components in the pre-lava sedimentary sequence is a modelling 

approximation with no structural or stratigraphic significance. 

Starting at the nominal reference point at the southern end of line 208, the model for this line 

does not require large changes in the thickness of the pre-lava sedimentary rocks on the 

southern side of the Wyville Thomson Ridge (Fig. 8). A reduction in pre-lava sediment 

thickness to the north of the ridge is, however, suggested by the modelling. Offline effects 

from the Faroe Channel Knoll volcanic centre affect this part of the section, and are only 

crudely simulated in the model. Changes in basement density across the Wyville Thomson 

Ridge may also have an influence (assuming that it overlies a reactivated basement structure), 

but have not been incorporated into the current models. 

It was necessary to introduce the Faroe Bank Channel Knoll and Drekaeyga volcanic centres 

into the model for line 206 to produce a satisfactory match between observed and calculated 

gravity fields. There is latitude in the way the gravity response is partitioned between the 

volcanic centres and the sediment thickness variations, but it does appear likely that there is a 

relatively thick pre-lava sedimentary section beneath the Wyville Thomson Ridge on this line 

(Fig. 8).  

Comparison of these models with the (subsequently published) results of a wide-angle 

seismic profile across the Wyville Thomson Ridge in the UK sector (Klingelhöfer et al. 2005) 

reveals significant similarities in the thicknesses and depths obtained by these different 

methods (Fig. 8). In each case, the greatest pre-lava sedimentary thickness occurs beneath the 

axis of the ridge. However, the apparent indication from the three profiles that this sequence 

thickens north-westwards towards the Faroese sector should be treated with caution, given the 

limitations and assumptions of the gravity interpretations. Significant uncertainties remain 
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with regard to control points for the pre-lava sequence and the influence of variations in the 

thickness and properties of the underlying basement. For example, the gravity modelling 

adopted an initial assumption of isostatic equilibrium, but the seismic model for profile D 

does not indicate such equilibrium (implying that the ridge topography is supported by 

lithospheric strength). The consequences of this were tested by flattening the Moho beneath 

the ridge in the gravity models and investigating the influence on modelled upper crustal 

structure. The broad geometries were similar, but an increase in sedimentary thickness 

beneath the ridge of up to 2 km was required. The conclusion is that the gravity modelling 

supports the presence of a thick sedimentary sequence beneath the Wyville Thomson Ridge 

but that the details of its geometry are currently not accurately quantified. 

Rannvá lead 

The major lead in the licence application area is named Rannvá and consists of an anticlinal, 

four-way dip closure formed during the Cenozoic by the compressional inversion of a 

sedimentary basin inferred to underlie the Wyville Thomson Ridge (Fig. 6). The geological 

history of this basin remains largely unknown and, at present, its hydrocarbon potential can 

only be assessed on the basis of regional observations.  

Source rocks  

To the south of the Wyville Thomson Ridge, well 164/7-1 did not penetrate any hydrocarbon 

source rocks (Archer et al. 2005). The Cretaceous succession in which the well terminated 

was shown to be thermally metamorphosed, over-mature and incapable of generating 

hydrocarbons. This metamorphism is not regional in extent, but was caused by the location of 

the well above a major plutonic intrusion and its associated shallower complex of basic sills. 

Potential source rocks are more likely to be developed within deeper Jurassic sequences, but 

sediments of this age remain unproven, not only beneath the Wyville Thomson Ridge, but 

also in the NE Rockall Basin. However, some core material recovered from BGS shallow 

boreholes at the margin of the nearby West Lewis Basin does consist of potential source 

rocks, including oil-prone Middle Jurassic (Bathonian) sediments and Kimmeridge Clay 

Formation mudstones of Lower Cretaceous (Ryazanian) age (Isaksen et al. 2000). These 

rocks reflect the varied nature of the hydrocarbon sources that have contributed to the 

Foinaven and Schiehallion oilfields in the adjoining Faroe-Shetland Basin (Bailey et al. 1987; 

Spencer et al. 1999). They also provide an indication that similar source material may be 

more extensively preserved elsewhere in the separate marginal basins of the Rockall Basin 

area. Previous interpretations of the Rockall Basin, which implied that it was largely of early 

Cretaceous origin and possibly lacked Jurassic source rocks, did much to downgrade the 

prospectivity of the area (Musgrove and Mitchener 1996). Although the early structural and 

stratigraphic evolution of the basin remains poorly understood, the recent Doolish discovery 

by Irish well 12/2-1 casts significant doubt on this pessimistic view of the region and 

increases the likelihood that an effective petroleum system will also be developed in the area 

between the Faroe-Shetland and Rockall basins. Similarly, the presence of Devono-

Carboniferous strata close to the median line in UK well 213/23-1 means that older 

Palaeozoic sources may also be capable of generating hydrocarbons in parts of the Atlantic 

margin, even if Mesozoic source rocks are absent.   

 

Reservoirs 

The 164/25-1Z exploration well in the West Lewis Basin previously established that potential 

Paleocene reservoirs are preserved locally beneath volcanic rocks.  However, the expectation 

that a similar succession may be developed in a comparable basinal setting in the NE Rockall 

Basin was not confirmed by the 164/7-1 well, which proved a kilometre-thick pile of thinly 

bedded lavas and pyroclastic rocks completely devoid of potential reservoirs (Archer et al. 
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2005). This well showed that, even in a predominantly basinal area, Paleocene reservoir 

distribution depends partly on the pattern of pre-volcanic uplift. The lack of a reservoir 

interval in the 164/7-1 well is attributed to development of a local structural high during the 

episode of basic sill intrusion that preceded the growth of the lava shield. Better Paleocene 

reservoirs are likely to be found away from areas of pre-volcanic uplift. Similarities between 

seismic facies from the pre-volcanic interval beneath the Wyville Thomson Ridge and late 

Paleocene-early Eocene reflectivity patterns in the Faroe-Shetland Basin increase the 

possibility that late Paleocene turbidite reservoirs might be preserved in a contemporaneous 

basin currently concealed by the lava shield. These potential reservoirs could be distal 

equivalents of the pre-Kettla Tuff Vaila Sandstones of the Foinaven-Schiehallion area 

(Lamers and Carmichael 1999), or earlier Paleocene sandstones like those of the Marjun 

discovery in the Faroese sector (Smallwood et al. 2002). Such sandstones need not be derived 

from the eastern margin of the basin; an origin on the Faroes Shelf, or more local provenance 

from the block underlying the Faroe Bank Channel Knoll volcanic centre, cannot be ruled 

out. Regional considerations suggest that older potential reservoirs may exist at Turonian and 

Cenomanian level, but reservoir sandstones of this age were not present in the nearby 164/7-1 

well. Currently, the deeper stratigraphy of the basin underlying the Wyville Thomson Ridge 

remains unknown, but basins of similar scale on adjoining parts of the margin commonly 

originated as sandstone-dominated Permo-Triassic half graben.   

 

Seals  

In the Faroe-Shetland Basin, Vaila Formation mudstones underlying the Kettla Tuff provide a 

widespread seal for reservoirs consisting of overlapping basin floor turbidites. The sealing 

horizon in the Wyville Thomson Ridge area may consist of fine-grained volcaniclastic 

sediments at the base of a kilometre-thick pile of interbedded basic lavas and tuffs. Intra-

formational seals may also be present in the pre-volcanic succession.  

 

Trap 

An analysis of the exploration history of the West of Shetland area has shown that most failed 

wells were explained by the invalidity of the trap (Loizou 2005). The unexpected failure of 

drilling targets defined by amplitude analysis has helped to restore interest in simpler 

structural plays in this area.  The Rannvá lead is based on a robust four-way dip closure (Fig. 

6).  This anticlinal trap formed by basin inversion and is closed along strike by variation in 

the preserved thickness of the partially eroded volcanic shield that caps the structure. 

Thinning of the volcanic carapace at the culmination of the trap increases the risk of 

breaching, and means that the deleterious effects of flushing and biodegradation present 

additional risks. 

 

Migration 

The complex structural history of the Wyville Thomson Ridge area, combined with the 

uncertainty about the present depth of burial and maturity of potential source rocks makes it 

difficult to reconstruct regional hydrocarbon migration paths. However the juxtaposition of a 

structural high and an inverted basin means that the remigration (‘motel’) model of Doré and 

Lundin (1996) could be applied to this area. This model suggests that early-formed 

hydrocarbons can be stored temporarily in traps formed by horsts or tilted blocks, before 

remigrating into a different structure as new traps are created by basin inversion.  By this 

means, previously mobilised oil may still be available to fill late developing structures by 

remigration, even as the original source rocks themselves become over-mature. Recent 

reappraisals of the thermal history of the basin have suggested that such models may no 

longer be required to maintain prospectivity of the area, with source rock maturity being 
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inhibited instead by the development of overpressure in basinal successions. This process 

might sufficiently postpone oil generation to allow late forming structures to be filled, 

without the need for remigration (Carr and Scotchman 2003). 

 

Conclusions 

 

Føroya Kolvetni have carried out an initial assessment of the hydrocarbon prospectivity of 

Licence 012 acreage in the Faroese sector of the Atlantic margin. Their Rannvá exploration 

lead consists of a major sub-volcanic anticlinal closure beneath the crest of the Wyville 

Thomson Ridge.  Comparison of Paleocene seismic facies with those of the productive Faroe-

Shetland Basin suggests that a correlative of the Kettla Tuff Member may be present beneath 

the ridge axis, and turbidite sandstone reservoirs are possibly developed immediately below 

this level. The presence of source rocks and the deeper structure of the area remain uncertain, 

but evidence obtained from regional geological analogues, sandbox experiments into basin 

inversion, and modelling of potential field data, is consistent with the development of an 

inverted Mesozoic half graben at depth. 
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Figures 

 

1: Structural setting of the Wyville Thomson Ridge (modified from Johnson et al. 2005), with 

the area of Faroese Licence 012 in yellow. The dashed line marks the location of part of a 

regional wide-angle seismic profile (Line D from Klingelhöfer et al. 2005) (see Fig. 8). 

 

2: a: Interpretation of part of seismic line YMR97-206 across the Wyville Thomson Ridge: 

The dashed reflector was used to in the process of horizon flattening and represents the 

conjectural restored top of the Paleogene volcanic succession before erosion (for location, 

see Figure 3). 

 b: A play concept diagram for the Wyville Thomson Ridge based on seismic line YMR97-

206, showing  a speculative schematic reconstruction of an underlying Mesozoic-Paleocene 

basin. 

 

3: Wyville Thomson Ridge area:  Location map of interpreted seismic reflection profiles, 

with the boundary of the Licence 012 area outlined in yellow. 

 

4: a: Wyville Thomson Ridge: Interpreted seismic line FP05-6007-02 (for location, see 

Figure 3).  

    b: Seismic line FP05-6007-02, flattened at top lava level, including the dashed segment of 

reflector, which represents the conjectural restored top of the volcanic succession before 

erosion at the crest of the ridge. Coloured seismic facies below the inferred base of the 

volcanic succession are interpreted by comparison with seismic data from the SW Faroe-

Shetland Basin (Smallwood and Gill 2002; Smallwood et al. 2004). 

 

5: Simplified map showing structural elements of the Atlantic margin in the vicinity of the 

UK-Faroes median line: Tonal variation is used diagrammatically to indicate the 

comparative structural relief of the Cretaceous-Paleocene basins (green) and highs (pink) 

before Eocene-Recent uplift and inversion. The axis of inversion to the north of the Judd 

High is taken from Smallwood and Gill (2004).  

 

6: Rannvá exploration lead summary map: Rannvá lead consists of a pre-volcanic four-way 

dip closure beneath the axis of the Wyville Thomson Ridge. Provisional structural contours 

within the closure, colour shaded at intervals of 100 metres, are based on a seismic reflector 

possibly corresponding to the Kettla Tuff (Smallwood and Gill 2002; Smallwood et al. 2004). 

 

7: Colour shaded-relief image of the free-air gravity anomalies from the YMR97 survey. 

Illumination is from the north. Heavy lines indicate the location of the model profiles. 

 

8: Gravity models for lines YMR97-206 and YMR97-208 incorporating a pre-lava 

sedimentary layer and the influence of volcanic centres. Note that the Faroe Bank Channel 

Knoll volcanic centre lies between the two lines (closer to 206), so its effect is only crudely 

simulated. Volcanic centres have a half-strike length of 10 km; other bodies are 2D. Numbers 

on the models indicate densities in Mg/m
3
. Line D, for comparison, is based on a segment of  

a wide-angle seismic reflection profile that crosses the Wyville Thomson Ridge along strike 

within the UK sector (Klingelhöfer et al. 2005) (for location, see Fig. 1).  
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Figure 2. (K Smith et al.)

YMR97-206

T
W

T
 (

s)

0

1

2

3

NNESSW

a:

b:

km

km

0

0

10

10

Sea bed

Fault

near base Pliocene

top Paleogene

near top Eocene

top Paleogene lavas

?Top Lamba Fm.
equivalent

?Kettla Tuff
equivalent

?Base Paleogene lavas

intrusive
axis

Wyville Thomson Ridge

Wyville Thomson Ridge

Ymir Ridge

sea level

flanks of Faroe Bank
Channel Knoll volcanic centre

?Darwin
-Geikie
Ridge

AB

C

0

1

2

3

4

5

km

?Mesozoic source rocks

?Other Mesozoic sediments

?pre-Mesozoic basement

?basic igneous intrusions

Paleocene

?Paleocene

Cretaceous 

?Mesozoic reservoirs

Oligocene-Recent

Eocene

early Eocene

Paleogene volcanic rocks

A

B

C
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Figure 4. (K Smith et al.)
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Figure 6. (K Smith et al.)

250 km
Y

M
R

97
-2

09

Y
M

R
97

-2
08

F
P

05
-6

00
7-

04

F
P

05
-6

00
7-

03

F
P

05
-6

00
7-

02

Y
M

R
97

-2
07

Y
M

R
97

-2
06

Y
M

R
97

-2
04

YMR97-102

FP05-6007-01

YMR97-103

SW
84-091

YMR97-101

Rannvá
lead

Faroes

UK

Faroe Bank
Channel Knoll

Darwin

163/6-1

164/7-1

9°W

9°W

8°W

8°W

7°W

7°W

60°N60°N

Volcanic/igneous
centre

Extent of eroded lavas
at crest of

Wyville Thomson Ridge

Faults
in pre-volcanic basin 

Limit of
Licence 012



Figure 7. (K Smith et al.)

9°W 8°W 7°W

60°N

101

102

103

20
4

20
6

20
7

20
8 20

9

Faroe Bank
Channel Knoll
volcanic centre

Drekaeyga volcanic centre

Wyville Thomson
Ridge

Ymir Ridge

0 km 50
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