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1. INTRODUCTION

Geotechnical databases are compilations of mainly numerical results of
tests carried out in the field or laboratory on small volumes or quantities
of ground materials. These values are regarded as 'samples' from the
relatively infinite volumes of actual ground present.

Most of the databases compiled to date by the Engineering Geology
Group have been as components of the applied geology mapping projects,
in which they are used to provide broad geotechnical assessments of the
principal geological formations encountered. It is a prerequisite of these
databases that each numerical item of data is allocated to an engineering
geological 'unit' that can be taken to possess some degree of coherence in
its origin, occurrence, properties etc. and which can be meaningfully
distinguished from other such units. The source for such databases, of
necessity, has been limited to the existing available site investigation
reports. To a much lesser extent, relatively small databases have been
used in in-house research projects, where the data acquisition can usually
be planned and closely controlled. This report is concerned primarily
with the former type of database, although many· of the aspects discussed
will be relevant to the latter.

On completion of a database all the available data values for the
various geotechnical properties are abstracted for each engineering
geological 'unit'.· It is the analysis of these individual 'batches' of data
which forms the subject of this report. The approach taken here
attempts to follow that strongly advocated in a recent major work on data
analysis (Hoaglin et al. 1983):

"Look at the data and think what you are doing."

To this could well be added:

"Consider where the data
realistically be expected and
effectively. "

came from, what conclusions
how these can be presented
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2. NATURE OF THE SOURCE DATA

2.1 Data Accuracy

Each data 'batch' to be analysed consists of all the individual recorded
data values of a given geotechnical parameter for a given engineering
geological unit. The number of values, if any, in a batch may range
from one to several thousands, but will typically be in the tens and less
often the hundreds. Each value is taken to be that of the given
parameter at a specified point in space.

The great range and variability of the values within many batches can
be attributed to the combined effect of several factors:

a) Inherent soil variability. The in-situ composition and state of soils is
the net result of a great number of processes, including the supply
of source material, the environment of deposition, consolidation,
lithifaction, stress regimes, weathering processes and many others,
which will all, to a greater or lesser extent, vary in time and space.
As a consequence, soils will vary in composition, structure and
fabric, and thereby in geotechnical properties, on all scales from
microscopic to regional, even within a given unit.

Many writers,
background, treat
as purely random.

and particularly those with an engineering
this variability simplistically in a statistical sense,

\
\
\

b) Soil sampling and handling. The procedures for sampling, packaging
and transporting soil samples from the in-situ location to the
laboratory will inevitably induce changes in the soil. Whilst some of
the changes could be purely random in nature, others clearly will not
be. For example, stress relief will be greater for those samples from
greater depths. As most soils have a high degree of saturation,
changes in moisture content will tend to be those of reduction. In
some soil types sample size may contribute to variability.

c) Soil testing. Testing procedures, both in the field and laboratory,
are subject to many human influences which can introduce both
systematic and random errors. For many simple tests, repeatability is
usually only moderate. Where the testing is destructive, it becomes
even more difficult to establish accuracy or detect errors.

d) Data transfer. The numeric data derived from a test will have to be
transcribed several times before it is in place in the data bank. At
each stage errors may be introquced.

e) Unit definition and data allocation. For data banking and analysis,
the test results must be allocated to an engineering geological unit.
This is unlikely to be achieved without some degree of error. To

2
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mmmuse this, data should only be entered when there is reasonable
confidence with regard to its allocation to a unit.

Whilst the variability which one wishes to analyse is solely that
described in (a) above (the 'true' or inherent soil variability), one cannot
escape the probability that it will be contaminated by the other factors
discussed above. It is difficult to imagine many other types of data for
which the statisticians term 'dirty' could be more appropriate.

2.2 Data Validation

In its broadest sense
geotechnical context.
valid, i. e . the 'real '
The possible sources
and too complex.

the concept of 'data validation' is a misnomer in a
No procedure can confirm· any data value as totally

value of the parameter at the given field location.
of error, as discussed above, are simply too many

\

In the narrower sense that is conventional in computing, the
expression is taken to mean that the data is keyed in a second time and
preferably by a different person. The two data sets are then compared
automatically and any discrepancies are rejected. In the present context
this procedure is of limited value. It can only address one of the many
sources of error.

The statistical approach which is advocated in this report recognises
the potentially contaminated nature of the source data. As discussed
later, errors are essentially accommodated, although gross errors can be
highlighted and rejected by examination of the data distribution (see
section 6. 3 . 1) .

2.3 Spatial Distribution of Data

The source of geotechnical data for the applied geology project databases
to date has been limited to the existing, and available, site investigation
reports from the areas concerned. Predominantly these fall into two
categories. Firstly, investigations for some of the more significapt
structures within those parts of the project areas that have already been
developed. Secondly, investigations of a few narrow corridors for
possible major road construction. Almost by definition those areas that
will be of most interest for future development are virtually devoid of any
data.

Therefore the spatial distribution of the data is generally in the form
of elysters_, _con~entrated illlind arouml _J!rJ!a:n _~_!'mj~e.s ~__and _o_c.casi<mal
lines or· ribbons. The only available means of achieving a more even
distribution is to delete the great majority of this concentrated data, and
thereby virtually the whole database.

3
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3 STATISTICAL APPROACH AND OBJECTIVES

3.1 Classical Statistics

Before addressing the subject of geotechnical data, it may be helpful to
illustrate the use of classical statistics in a simpler context. Suppose
that during topographic surveYing an angle is to be measured by
theodolite. The instrument is set up, as are two clear, precise targets.
Each in turn is intersected on the crosswires and the bearing recorded,
to the maximum precision available from the instrument. The difference
between these is the required angle. The process is repeated to give
perhaps 4, 8, 16 or even more values, on different faces and portions of
the calibrated scale. The recorded angles should all be very similar but
will not be identical. The slight differences are attributable to the finite
accuracy of the instrument's construction and calibration and the ability
and concentration of the operator. None of the individual values can be
presumed to be correct. A true value does however exist, as the
instrument and targets occupy three precise and actual points in space.
The observing procedure is designed to eliminate systematic errors, .whilst
gross errors (mistakes) will be self evident. The remaining errors are
taken to be random in origin and, according to classical statistics, should
fall approximately on a 'normal' distribution. The mean of the recorded
values is the best estimate (most probable value) of the true angle.
However, of equal importance is the determination of the standard
deviation (spread) of the values, as from this is calculated the standard
error of the mean, i. e . the accuracy of the estimate. The statistical
premise is that if an infinite number of observations were made, the
standard error of the mean would reduce to zero and the mean would
equal the true value.

This classical approach is applicable to data sets in a great many
fields. However, it does depend on a number of assumptions, which can
easily be forgotten. One is that all the values are 'good' and of equal
validity. Another is that the variations between the values are truly
random and can be described by the Gaussian frequency distribution.
A third is that a single 'true' value exists to be predicted.

Classical statistics can certainly address more complex problems ,
where some of these assumptions may be modified, although usually at the
expense of increasing mathematical complexity. Statistical probability, in
which the parameters of a whole 'population' are predicted, to a specified
degree of confidence, from a set of samples, invariably depends on
factors such as the consistent quality of these samples and an even and
unbiased distribution of the samples within the population.

4
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3.2 Objectives

The objectives which can be set in the statistical analysis of data batches
from geotechnical databases must take account of the source and nature of
the data. The overall objective, of course, is to predict the properties
of each engineering geological unit, or population in statistical terms, to a
quantifiable degree of confidence. An analysis of the actual data values·
available should be the means of achieving this, and not an end in itself.
Inherent in the data are several aspects which inhibit this broad
objective:

a) Data distribution. Spatial distribution of the data values, as
discussed in section 2.2, is most often far from ideal. To predict a
parameter for a whole engineering geological unit would require a
statistically valid distribution of the sample locations, which is rarely
available. Therefore, each analysis or data summary which is
produced for a unit must be assessed for its applicability throughout
the unit. As this can only be subjective, and non-mathematical, it is
concluded that attempts to analyse the existing data in great detail,
or to a high precision, are quite pointless.

b) Validity of engineering geological units. The allocation of individual
data values to these units is fundamental to the database and its
analysis. Some of these units may indeed be well-defined, distinctive
and spatially consistent geological formations. Others may be, of
necessity, almost dustbins of variable materials (e. g. fill and some
glacial deposits), some of which should ideally be classified as units
in themselves. It cannot be assumed that an engineering geological
unit necessarily possesses sufficient consistency to constitute a
'population' in the statistical sense. Hence the statistical approach
should avoid any prior assumption that the data values will fall within
a mathematically definable distribution, such as the Gaussian.

c) Data accuracy. As the data is likely to be highly variable in
accuracy, and may possibly contain gross errors, the statistical
method, as far as possible, should accommodate these defects.

Figure 1, from Hampel et al. (1986), epitomises the different
approaches of 'robust'. statistics, as will be advocated in this report, and
conventional or classical statistics. With the reservations noted in (a)
above, it is clear that even a 'robust' fit must be used with caution.
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4 LITERATURE REVIEW

An extensive literature search has produced about 100 references which
relate to the statistical analysis of geotechnical property data. Of these
the great majority are concerned with probabilistic analyses for
geotechnical prediction. Statistical probability invariably requires that
the frequency distribution(s) of the input data be expressed as some
mathematical function. In almost all cases, as in most classical statistics,
the distributions are taken to be Gaussian, either explicitly or implicitly.
The validity of this underlYing assumption is only rarely considered.

A few authors do discuss geotechnical frequency distributions, the
most notable being Biernatowski (1985), Corotis et al. (1975), Ejezie and
Harrop-Williams (1984), Fredlund and Dahlman (1971), Lumb (19~6, 1969),
McGuffey et al. (1980), Rethati (1983, 1988) and Schultze (1971). The
most often quoted of these is Lumb (1966), who concluded from a study
of four 'typical' soil formations that the Gaussian or a closely related
(e.g. log-normal) distribution could adequately describe natural soils.
However, the same author, Lumb (1970), subsequently states that this
premise is false and that the family of beta distributions, being more
versatile, will usually provide better fits. This conclusion is also reached
by some of the other authors quoted. A point often made is that a
statistical analysis can only be carried out on statistically homogeneous
materials, the test for which is implied to be the ability to fit an
acceptable mathematical distribution. Hence the argument can be
somewhat circular. The amount of data on which these papers are based
is usually small and, one might suspect, rather selective.

Only one instance has been found of a well documented geotechnical
database, that for the State of Indiana (USA). This is described in five
papers, Goldberg et al. (1978, 1980), Lo and Lovell (1982), Lovell and Lo
(1983) and Lo and McCabe (1984), with an emphasis on discussing the
data banking and simple statistical analysis of actual geotechnical data.
The basis used for data classification is essentially physiographic and
pedologic rather than lithostratigraphic. The major point of interest is
that in the first two papers of this series the data are summarised by
conventional statistical parameters, whereas 'nonparametric' methods are
substituted in the second two papers. The authors of these four papers
are all geotechnical engineers. However, in the final paper the second
author, McCabe, is a professor of statistics. The statistical conclusion to
this paper is that:

"nonparametric robust statistical methods are preferred to
conventional statistical methods for soil data analysis".

During the 1970's Steve Henley was a member of the I. G. S. Computer
Unit. His subsequent book (Henley 1981), although concerned mainly
with the spatial variation of geological data, discusses, in a very readable
and non-mathematical manner, the difficulties in applYing conventional
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statistical methods:

" . .. all of the geological modelling and resource estimation studies I
participated in had data that were non-ideal in one respect or another
(or just plain 'dirty'): the standard ways of handling the data with
simpler parametric methods gave reasonable results, but always there
were nagging doubts and some lack of confidence because of the
corners that had to be cut in generating a model" (p. vii).

" . .. many nonparametric methods are of direct application to a wide
range of problems in geology and the other natural sciences. Some
have already been used, but few such methods have been readily
accepted as the standard, preferred method, even though it has
become increasingly obvious that the traditional methods,
straitjacketed by normal distribution theory, and many similar
assumptions, are not altogether appropriate to sciences in which
simple linear interactions are exceedingly rare occurrences" (p. 64 ­
65).

There appears to have been some confusion and overlap a few -years
ago in applying the terms 'nonparametric' and 'robust', which may have
arisen because some common statistics, such as the median, are used in
both. From the standard texts on nonparametric statistical methods
(Conover [1980]), Gibbons [1985] and Hollander and Wolfe [1973]), it can
be seen that most of the available methods are various types of tests.
Whilst the underlying assumptions are very few and weak, they are
nevertheless still very strict. Only specific aspects of a data set are
considered, not its structure as a whole. As with conventional parametric
statistics, no allowance is specifically made for variation in the quality of
the raw data.

Robust statistics, together with the closely related exploratory data
analysis, emerged during the 1970's and appears to be a very active area
of current research. Its origins have been credited to J. W. Tukey and
particularly his paper of 1962 on the future of data analysis, from which
Henley takes the following quotation as the theme for his book:

"Far better an approximate answer to the right question which is
often vague, than an exact answer to the wrong question, which can
always be made precise".

An excellent Introduction to the subject is given by Hoaglin, Mosteller
and Tukey (1983) who stress the concepts involved rather than the
higher mathematics. More specialised methods of exploratory analysis are
examined in their companion volume (Hoaglin et al. 1985).

Some of the simpler techniques of exploratory analysis, complete with
the necessary Basic and Fortran programmes, are given by Velleman and
Hoaglin (1981). Hampel et al. (1986) provide a rigorous and highly
mathematical treatment of robust statistics.
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5 DISTRIBUTION STATISTICS

5.1 Geotechnical Data Variability

Each batch consists of all the values recorded within the database for a
given parameter from an engineering geological unit. For any batch, the
values will be variable to a greater or lesser extent. Although some of
this variability can doubtless be attributed to errors arising from the soil
sampling, laboratory testing and other unwanted factors (section 2.1), it
must be presumed that the larger proportion of it represents true in-situ
variability. In contrast to the simple example of a theodolite angle
(section 3.1), there is no single 'true' value underlYing the observed
variability. Geotechnical parameters are. inevitably variable at different
points in space, even if measured with complete accuracy. Although it
should be obvious, it is worth remembering that the output sought, and
not just the input data, is a numerical distribution.

5.2 Methods of Distribution Statistics

The numerical distribution of a parameter, based on a large number of
samples, is often represented as a frequency distribution curve (Figure
2). The horizontal axis gives the measurement scale for the given
parameter and the vertical axis gives the frequency of occurrence. Very
typically the curve is bell-shaped, with the greatest concentration of data
in the central area and decreasing amounts laterally to each tail. Such
curves may be SYmmetrical or skewed to one side, peaked or flat, regular
or irregular in general form.

There are two conventional means of describing or summarising a
frequency distribution in numerical terms: parametrically and
nonparametrically.

5.2.1 Parametric Statistics

The parametric approach is to measure several essentially separate
attributes or parameters of the whole distribution. Firstly the centre or
'location' of the distribution is determined by the arithmetic mean.
Secondly the spread or dispersion, by the standard deviation. Much less
frequently measured are the skewness and the kurtosis, the latter being
essentially a measure of data in the tails, not the peak. In each case all
the data values contribute to the given parameter, according to the
square of their distance from the mean for the standard deviation, to the
cube for the skewness and the fourth power for the kurtosis. The
Cl:llculationsare _made in accordance -with .the .method_ .of .momentsand.
therefore the parameters, from the mean to the kurtosis are sometimes
referred to as the first, second, third and fourth moments of the
distribution.
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A great part of conventional or classical statistics is concerned with
the situation where data variation can be regarded as purely random.
Here there is a vast amount of empirical evidence to show that the
distribution of the variations will generally follow the Gaussian
distribution, which therefore is more commonly, if unfortunately, referred
to as the 'normal' distribution. In fact, there is no fundemental
mathematical basis for this distribution, nor is it borne out by very large
data sets, which commonly have larger tails than predicted. However, it
is a very useful working tool in many fields.

All Gaussian distributions have the same identical shape or
proportions, the only variables being the distribution centre (mean) and
spread (standard deviation). Given these two, the complete distribution
curve is always defined precisely. Figure 3 illustrates four Gaussian
distributions having the same mean but differing standard deviations.

Therefore, it is always tempting either to assume that the actual data
have been derived from a Gaussian distribution or to carry out a simple
test to show, given the size of the data set, that it could have been so
derived. If one is prepared to make this assumption, or believe the test,
then the benefits can be very great. To a quantifiable level of
confidence the frequency distribution of the whole population, and not
just the samples, can be predicted.

For a Gaussian distribution, the skewness and kurtosis, by definition,
have values of 0 and 3 respectively. These figures are rarely, if ever,
achieved for real data distributions. Certain levels of discrepancy are
allowable on the premise that data sets of any finite size will never follow
a Gaussian distribution exactly.

Where the data distribution can be taken to be Gaussian, the two
parameters, the mean and standard deviation, will completely define the
distribution and therefore provide the best summary. Where this
assumption cannot be made, it would be very difficult, and probably
impossible, to reconstruct the frequency distribution from its parameters.

If the data distribution cannot be assumed to be Gaussian, there are
a wide variety of other mathematical distributions which could be
substituted. The benefit in doing so is that the means of predicting the
population distribution is retained. The penalty is that the defining
parameters become more obscure and difficult to visualise. They also
become more numerous and the distributions more difficult to compare.

5.2.2 Nonparametric Statistics

The_ ~ter~~!ive ~pJJ.r-.Qa~h is to Pispense _with the concept of _pat'8.mete~s

(hence the term 'nonparametric') and to use order or rank statistics (the
two terms are essentially synonymous). Here the data values must first
be rearranged into ascending numerical order. The order statistics are
then simply the numerical data values at given levels in this ascending
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order. These levels may be referred to in several ways, but in each
case as proportions of the complete order sequence, e. g.

i) 0.1 order statistic, i. e . the data value one-tenth up the data
sequence

ii) 20th percentile, i.e. the value 20% up the sequence
ill) deciles, quartiles, etc.

The lower quartile could alternatively be described as the 0.25 order
statistic or the 25th percentile. Likewise the upper quartile as the 0.75
order statistic or 75th percentile. The 0.5 order statistic is more
commonly known as the Median or 50th percentile.

Problems obviously arise where there are two or more identical data
values (ties)" In such instances there are conventional rules to apply,
as also where a required percentile, for example, f~s between two data
values.

Therefore, the function of an order statistic is simply to determine a
defined point in the distribution sequence. The greater the number of
statistics used, the more precisely can the data distribution be mapped
out.

The advantage of nonparametric or order statistics is that they remain .
equally valid whatever the nature of the underlYing data distribution.
There are, for instance, always an equal number of data values above
and below the median. The information provided by these statistics is
always clear, unambiguous, but necessarily simple. In contrast each
parametric statistic summarises a given aspect of the entire distribution in
one value. The two simplest of these statistics will completely define a
distribution, but only where stringent assumptions can be met.

5.3 Robust Statistics

Whilst both parametric and nonparametric statistics have their advantages,
they also both depend on all the data values being 'good' and equally
reliable.

Robust statistics· essentially discards the totally rigid approaches of
both parametric and nonparametric statistics. It provides a flexible
approach or attitude to the data, rather than any specific set of
mathematical rules. Amongst its aims, two are particularly relevant in the
present context.

F).r_sqy, it attempts t() allowJgr tlle :(~~t J.lw.t JlloSt ~ if _not .all ~ _I'eal
data sets do contain a proportion of poor or bad data values. This is
particularly true of many modern computerised databases, where the sheer
volume of data would make any rigorous validation procedure uneconomic.
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Secondly, it recognises that virtually all data sets do have some
underlYing structure. It can be regarded as interme<;liate between
parametric and nonparametric statistics. In its simpler aspects it is
closer to the latter, but with increasing sophistication it approaches the
former.

It is often allied with exploratory data analysis, usually on the
premise that the data should be examined before the most appropriate
statistics can be selected.

11
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6 EXPLORATORY DATA ANALYSIS

The objective in an exploratory analysis of the data, in this case a
distribution, is to reveal both the general and detailed structure of the
data. To achieve this effectively a graphical approach is almost essential.
For a distribution the graphical presentation should reveal such features
as the shape, spread and symmetry of the data and the presence of gaps
or concentrations in the data.

One of the simplest, and perhaps the best-known, representations of
a data distribution is the histogram. In reality good histograms can be
difficult to produce. Their success increases with the size of the data
set, but even with large sets they can be very susceptible to the choice
of class intervals. Where the interval is too coarse the result is
uninformative (e. g. Figure 4, where some 240 data values are allocated to
just 3 classes). By reducing the interval the shape of the distribution
can be more fully displayed (Figure 5). However, if the interval is too
fine, the histogram is likely to have a 'noisy' appearance (Figure 6). In
the extreme, where the interval is finer than the data precision, regular
gaps will be artificially introduced in an essentially continuous
distribution (Figure 7). Where data are recorded only to a low level of
precision, care is needed to avoid an unequal loading of the class
intervals (Figure 8).

As the size of the data set is reduced, the histogram will become
unstable and sensitive to class limits as well as intervals. With discrete
distributions, histograms can be particularly misleading where many, or
even all, of the values fall exactly on the class limits.

Despite these difficulties histograms can offer one of the best means
of portraYing a frequency distribution. However, they do need to be
formulated individually, and are arguably best kept to illustrate the
occasional distribution which cannot easily be summarised in another form.

For an initial exploration of the data an alternative method of
presentation, called the stem-and-Ieaf display, has been devised (Hoaglin
et al. 1983) which reduces many of these difficulties and provides
features not available in histograms.

6.1 Stem-and-Leaf Displays

The stem-and-Ieaf display is a very simple and easily understood
technique where the most significant digits of the data are themselves
_usedto_sorJ_the _data_into_numerical.o~deI'.and_displayed .in_afoI'm__which
is very similar to a histogram. Before commencing, it is helpful to
establish the number of values present in the data batch, together with
the maximum and minimum values (and thereby the range).

12



The individual data values are each split into two parts, at a
consistent point with respect to the decimal point. This split will usually
be located such that either one or two of the most significant (leading)
digits are separated from the remainder to form the STEM. A separate
line in the display is then allocated to each possible value of the stem
between the minimum and maximum data values. The first trailing digit
(the LEAF) of each data value is then entered on the line corresponding
to its leading digits. When all the data values have been entered, it is
then customary to sort the LEAF values on each STEM into ascending
numerical order.

The simplest form of the stem and leaf display is shown in Figure
9(a). The stems are listed to the left of the bold line, with the leaf
values on the appropriate lines to the right. In this case the stem values
(to the first decimal place) can be reunited with their leaves (e.g. 11/3 =
1.13) to give values in units of 0.01. The size of these units is stated
at the head of the display as a reminder. It is an essential feature of
this technique that the second and further trailing digits are truncated.
Data values are never rounded off.

To the left, the standard display gives 'depths' for each stem.
Starting from both ends of the display, these depths give the cumulative
total of the number of data values for each stem line. For the 'middle'
line, where there would be an overlap of the depths calculated from each
end, the number of leaves on this stem is shown in parentheses. This
feature is not required where the total number of data values is even and
the median falls between two stems.

With a display constructed in the above manner, it would often be the
case that a large number of leaf values fell on a relatively small number
of stems. Alternatively, if the stem/leaf split is made after the next
digit, there would be too many stems, with too few leaf values on each.
The analogy would be histograms with either too few or too many classes.
In these situations two lines can be used for each stem, with leaf values
of 0-4 allocated to the first lines and values of 5-9 to the second lines.
The convention with such a presentation is to denote each first line with
an asterisk and each second line with a dot or small circle. An example
is shown in Figure 9(b).

Where neither of these display formats gives the desired result, a
third format is available, namely to use five lines per stem, as shown in
Figure 9(c). Here the convention is to denote the intermediate lines with
a 't' (for Two's and Three's), an 'f' (for Four's and Five's), or an's'
(for Six's and Seven's).

~thoug.tl t.l.!e _stem-and-leaf j~_chnique ~as __de.Yis_ed for _the manual
processing and display of data, it can be particularly successful with a
good statistical graphics 'software package. An obvious advantage with a
printer output is that a consistent width is used for each digit in a leaf.
When viewed side-on, the effect is essentially that of a histogram, with
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the length (height) of each stem line proportional to the number of leaf
values. The software will invariably incorporate a number of desirable
refinements.

One such refinement is to incorporate a degree of resistance to
markedly anomalous or outlying data values. The whole data set is
initially analysed to see whether any such values exist, and if so these
are separated and listed at the relevant end of the display. Examples of
this are illustrated in Figures 9(a) and 9(b), where 'LD' and 'HI' outliers
identified respectively.

Another useful refinement is the automatic selection of the stems and
the number of lines per stem. In addition to the outlier resistance just
discussed, this algorithm takes account of the total number of data
values. As this number increases, so, also, will the number of stem
lines, and thereby the detail of the display.

Apart from an aesthetic roughness, which is of little relevance at the
exploratory stage, and could be largely overcome with familiarisation, the
stem-and-Ieaf display provides all the usual information which can be
deduced from a histogram, e.g.:

a) the symmetry of the data
b) the spread of the data
c) the isolation of a few values from the main body of the data
d) local concentrations within the data
e) gaps in the data

Two particular advantages of the stem-and-Ieaf display are. usually
cited. Any patterns or peculiarities in the digits in any line can be
seen, e. g. if 'O's predominated it might infer that part of the raw data
had been rounded off more than the rest. As the display is composed of
actual data values it becomes m.uch easier to trace particular values of
interest back to the individual raw data.

For use with the geotechnical databases there are further advantages
over histograms:

a) There are no problems or doubts with values at or close to class
limits. It is quite clear into which class or line any value will fall.

b) The automatic selection of the stems and leaves ensures that an at
least tolerable display or "histogram" will be produced. The
technique is resistant to the major pitfalls which can arise in
producing conventional histograms.
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6.2 Histograms

The major difficulties in producing histograms, e. g. the class intervals,
class limits and the influence of discrete data, have been mentioned
earlier. To formulate a good display, it is essential to have:

a) the total number of data values
b) an outline of the distribution in the tails.

The latter is required in order to select the upper and lower limits
for the histogram. These can be set slightly outside the extreme data
values. However, if these are isolated outliers, one might wish to
exclude them from the display. A more reliable method is to determine
realistic limits from an examination of a preliminary stem and leaf display.

The number of classes or intervals in the histOgram should be
determined from the total number of data values. Several simple rules
have been proposed for this, which are given, with their results, in
Table 1 (after Hoaglin et al. 1983), where 'n' denotes the total number of
data values.

- ----- - ---~-------------.

TABLE l-'"~ Number of lines for a stem-and-Ieaf display
or number of intervals for a histogram.
as suggested by three m1es.

Rule (Integer Part of)

n 10 log 10 n 2.jn I + logzn

10 10.0 6.3 4.3
20 13.0 8.9 5.3
30 14.7 10.9 5.9
40 16.0 12.6 6.3
50 16.9 14.1 6.6
75 18.7 17.3 7.2

100 20.0 20.0 7.6
150 21.7 24.4 8.2
200 23.0 28.2 8.6
300 24.7 34.6 9.2

16 12.0 8.0 5
32 15.1 IU 6
64 18. r 16.0 7

128- 21.1 22.6 8
256 24.1 32.0 9
512 27.1 45.3 10

--,.--------- -_. -- -- - -----

It is suggested that the lower of the results given by the 10 lo~O nand
2/n rules would probably be superior to the exclusive use of either.

With approximate figures for the histogram limits and the number of
classes, it is then necessary (or at least highly desirable) to refine these
so that the class interval is equal to a discrete rounded number of data
units. The class limits will then fall at discrete rounded values.
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Care is required where the data is coarsely discrete, as, for example,
where Atterberg limits have been rounded to whole percentages. The
class interval must then be made equal to, or an integral multiple of, the
discrete data precision.

A further difficulty can arise with some graphical software, where the
labelling is applied at the class intervals. With plastic limits (rounded to
whole percentages) a class might have limits of, and be labelled as, 18 to
20. This interval might in fact record the number of values which are
greater than 18 and less than or equal to 20, i.e. values of 19 and 20.
The labelled display will in this case have a bias or shift of 0.5 units.
To overcome this problem the limits could be set at 18.5 and 20.5, so that
it becomes quite clear into which interval the values of 20 will fall.
Ideally the labelling would be applied at rounded values, e. g. 20, and not
at the class limits.

6.3 Probability Plots

Whilst histograms and stem-and-Ieaf plots can demonstrate the general
structure of a data distribution and reveal at least some of the anomalies
within it, these displays suffer from one major drawback as means of data
exploration. In the great majority of practical cases their visual impact is
little more than a statement of the obvious. The data are predominantly
concentrated near the centre of the distribution, with decreasing
proportions of the data to either side, i. e. towards the tails. This
general 'bell' shape, albeit somewhat distorted and coarsely stepped, is
the dominant feature apparent to the viewer. Subtler aspects of the
distribution will tend to be masked rather than revealed.

This bell shape is the major trend underlYing many actual data
distributions. By removing it, or at least the greater part of it, other
aspects of a distribution will become more readily apparent. This can
usually be achieved by presenting the data as a 'normal' probability plot.
The x-axis is scaled to the data units, whilst the y-axis has the
cumulative percentages of the data plotted on the Gaussian probability
scale. The result is that a Gaussian or 'normal' frequency distribution
will be portrayed not as a bell-shape but as a straight line. Such a
distribution can be totally summarised in two parameters, the mean and
the standard deviation. On the probability plot the mean is the centre
point of the line, i.e. the data value corresponding to 50% on the y-axis.
The standard deviation is proportional to the slope of the line. Thus if
various batches of the same geotechnical property had different
distributions, which were all Gaussian, they would plot as straight but
distinct lines.

Occasionally batches of geotechnical data do plot virtually as straight
lines, as, for example, in Figure 10. However, most commonly the
probability plots will depart in one or more respects from such a straight
line. For instance, a somewhat irregular or 'noisy' plot may be
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encountered, particularly where the data batch is of limited size
(Figure 11). Nevertheless, a plot can almost invariably he expected to
exhibit some simple continuous and consistent pattern or structure,
provided the data batch has a coherent distribution.

Probability plots can be very valuable for exploratory analysis, in
several respects:

6.3.1 Validation

As a result of the normal (Gaussian) probability scale used on the y-axis,
these plots will inevitably show the data points as most concentrated at
the centre and increasingly more separated towards the tails. With this
greater separation the tails will usually appear more irregular.
Nevertheless they should follow a pattern consistent with the main bulk of
the plot.

In Figure 12 the lowest data value is clearly seen to be inconsistent
with the remainder and therefore can be identified as an outlier which
does not belong with this data batch. Several values may show a
coherent pattern, but at variance with the majority of the data, as in
Figure 13. Whilst a single outlier may be erroneous for several reasons,
a grouping will probably be easier to explain. Usually the data. values
will have been mis-coded with respect to either the geological formation or
the geotechnical property. Where time permits it may be worthwhile
comparing the plots for several parameters. If the same sample appears
as an outlier in more than one plot, it is probable that the data values
are good but that the geological formation has been incorrectly identified.
Conversely where a given sample is seen as an outlier on only one plot,
that individual data value is likely to be suspect.

A reasonably consistent probability plot cannot guarantee, of course,
that all the data values are in fact derived from one coherent
distribution. Where two distributions have similar data values, and
particularly where they are of similar size, they may be virtually
impossible to distinguish within a single combined plot. A sharp change
of gradient in a plot would probably indicate such a situation.

Where one or more values have been deleted from a batch as gross
outliers, it is usually wise to replot the remainder, to ensure that they
remain consistent and do not contain any lesser outliers.

6.3.2 Skewness and Transformation

After the removal of any evident outliers, the probability plot should
e~!ri:~it som!! consistent shap~ _or st~ctu~, J~JQeits_om~w:hat jrregular _at
the tail ends. Where this shape is essentially a straight line, the data
follow a Gaussian distribution. More usually the plot will be curved, and
to a first-approximation follow one of the four patterns in Figure 14. In
(a) the data is lighter tailed (deficient in tail values) than a Gaussian
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distribution, whilst t!lat in (b) is heavier tailed. The shape in (c) is left
skewed, in that the higher data values have a steeper slope and hence
less spread, whereas the opposite is true for the lower data values. In
contrast the shape of (d) is right skewed.

Differences of kurtosis [(a) and (b) above] are of no particular
importance here, unless there is a requirement to identify the underlying
frequency distribution. The sinuous plots that it produces could only be
straightened by rescaleing the y-axis to a non-Gaussian distribution.

Skewness, however, is more significant, as it is dependant on the
scaling of the x-axis, i. e. the data scale. Differing skewness will result
from changes in this scaling. Plots in which the measurement units of
the recorded data values are scaled arithmetically are obvi-ously
convenient, both for plotting and subsequent reading. However quite
often it may be argued that this convenience is outweighed by statistical
and/or geotechnical considerations.

Some of the geotechnical parameters are not fundamental and
independent, but derived from, or otherwise dependent upon, others. In
some cases the parameters are simply the conventional, but not the only,
manner in which to measure a property of the material. As an .example,
specific gravity, void ratio, degree of saturation, moisture content, dry
and bulk densities are all interdependent. Liquid and plastic limits,
liquidity and plasticity indices and moisture content comprise another such
group. Some parameters could be expressed with equal logic by their
inverses (strength/weakness, stiffness / compressibility, etc. ) . For the
same batch of samples, the distribution of their properties may appear
quite different, depending on the parameters selected and their graphical
scaling. Their order may remain constant but their apparent
concentration or spread can change dramatically.

An approximately Gaussian distribution is to be· expected when both
the data variability is random and the measurement scale is effectively
unlimited. The specific gravity, at least of most rock-forming minerals,
is a good example of the latter. It would be most unusual to find specific
gravities which fell outside the range 2.5 - 2.8. In a distribution of this
parameter the standard deviation would be very small in relation to the
mean.

For SPT's the measurement scale is severely limited. Whilst there is
no physical upper bound, 'N' values of zero or less are impossible (any
recorded values of zero would have been rounded down from some
fractional, although unmeasured, value). Standard deviations for this
parameter are usually very large in relation to the mean. As a measure
of _D.~n~tratiQn it wo_uld .beequally Jagi.cal to record the inverse> Le.
penetration/blows rather than blows/penetration. Materials which gave
high and broadly spread values in one parameter would give low and
concentrated values in the other.
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It is the proportional change between data values that is usually
significant, not the change in absolute measurement units. Thus cohesion
values varying between 1 and 10 kPa denote a far greater variability than
values varying between 501 and 510 kPa. As one of the primary
objectives in analysing and then summarising the geotechnical data
distributions is to examine the variability within and between batches, it
is important that constant variability should be recognizable as such.
This will generally be achieved when the data axis is scaled
logarithmically.

In this respect the probability plot is very useful. It enables the
skewness of a distribution to be assessed for the bulk of the data,
whereas the standard calculation of skewness is based on all the data with
particular emphasis on the more extreme values. If a plot displays
skewness, then the gradient of the plot, i. e. the spread, will vary along
its length. Figure 15 shows a batch of SPT results to be right-skewed,
with the data scaled arithmetically. This batch, in fact, is the same as
that shown in Figure 10, where the data axis is scaled logarithmically.

Skewness should be assessed not just for individual plots, but for all
the plots of the same parameter from the different formations. The data
scaling which then gives the least overall skewness should generally be
adopted. As arithmetic scaling has the advantage of famjliarity, it should
be retained where logarithmic or other scaling is not clearly superior.
Other scalings which could be considered include power transformations,
such as the square and square root.

6.3.3 Discrete Data Precision

In the previous examples the probability plot lines have been essentially
continuous. Figure 16 illustrates a case where the plot line is coarsely
stepped. This situation will arise where the precision of the recorded
data values is not much less than the spread of the values. Those
parameters which are calculated as moisture contents (e. g. Atterberg
limits) very often suffer from this problem as they are recorded to the
nearest whole percentage. Such stepping is purely a function of the data
recording. Were the moisture contents, for instance, to be recorded to a
precision of 0.1%, the coarseness of the steps would be reduced by a
factor of 10 and in most cases would then be hardly .noticeable.

This stepping degrades the appearance of probability plots, and may
occasionally make the assessment of skewness or potential outliers more
difficult. However, its most serious effect is that data values read
against percentages on the y-axis will be insufficiently accurate. For
example, the same data value might be plotted for all percentages from 4%
to _12%. If the _5th. and 10th _per.centiles CL e. the _data~ 'Values _at .5?5 ..and
10%) are now required, they would appear to be identical, which in
reality they are not. The result is that any further statistical operations
which are dependent on such percentiles will suffer in their accuracy.
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The only remedy that appears to be available is to construct
probability plots based on frequency distribution 'bins'. For example if
17 plastic limits were recorded as having values of 12% moisture, these
would now be taken as 17 values falling between 11.5% and 12.5% (which
had been rounded to 12% when recorded). Thus every data value is
allocated to a bin, the limits of which are 0.5 data units above and below
the recorded value. The required frequency distribution can readily be
produced by statistical software packages, as a listing of cumulative
frequencies for each of the bin boundaries. From this listing the
probability plot would have to be drawn manually on standard probability
paper. The required percentiles would then have to be read off and
entered into the database. This process could be time-consuming, but
would greatly enhance the value of any statistics based on· low precision
data.

Some probability plots have an irregular or 'noisy' appearance, even
when the precision of the recorded values is adequate. This can be
particularly true where the size of the data batch is small. It is arguable
that such plots should be manually smoothed and the required percentiles
then entered into the database, as above.

6.3.4 Small Data Batches

Many of the data batches encountered in the geotechnical databases
consist of only a few data values. Quite often only a single value is
available. Probability plots can provide a suitable context in which to
consider the minimum size of a data batch for which any statistical
analysis or summary is worthwhile.

Each data value is regarded as a sample from the overall population of
values which could be derived for the specified parameter of the
geological formation in question. Given a large number of such samples,
their values will form a distribution which should approximate on a
probability plot to a straight or gently curved line. With a lesser number
of samples, this line can be expected to have a locally more irregular or
'noisy' appearance, but its general form should still be apparent. For
statistics to have any validity, there must be sufficient data values to
broadly establish such a line.

One data value achieves nothing. A straight line can always be
drawn exactly through two points, and a simple curve through three
points. To define a distribution curve of non-standard kurtosis [e.g.
Figure 14(a)] requires a minimum of four points. Five values is arguably
the absolute minimum number to provide even one 'redundant' point to
give a check on the shape of the line. Five is the· smallest number used
by Hoaglin et al. (1983) in their consideration of very small data batches.

Although five values might give a rough indication of the centre of a
distribution, the apparent spread (the slope on the probability plot) must
be treated with caution. The outer values will inevitably plot at only 10%
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and 90%. At best only the spread of the central part of a distribution is
even indicated. A data set of around 10 data values is probably the
smallest to have any statistical worth. With 30-40 values the essence of a
distribution should be clearly discernable.

There can be no firm rules for the size of the smallest batch that
should be used. A subjective assessment of the regularity of the
probability plot is a useful guide. An obvious problem with very small
data batches is that their geographical distribution is likely to be very
limited. Often they will have been derived from just one or two site
investigation reports or even individual boreholes. As such they may be
particularly poor indicators for a whole engineering geology unit.
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7 NUMERICAL SUMMARY STATISTICS

The graphic displays that have been described earlier, and particularly
the probability plot, provide detailed representations of individual
frequency distributions. These distributions must then be summarised so
that they may be compared and their most significant aspects recorded.
Summaries may be presented in numerical or graphical form, of which the
latter is usually to be preferred. Numerical summaries are more readily
available, as for instance from statistical software packages. Their
attributes and particularly their limitations are discussed in this section.

The common summary statistics can be divided into three groups:

1) Sample size (number of data values)
Minimum
Maximum
Range
Mode

2) Mean (arithmetic)
Geometric mean
Variance
Standard deviation
Skewness
Kurtosis

3) Median
Lower quartile
Upper quartile
Interquartile range

The first group do not summarise the data so much as give its limits.
The minimum and maximum (and the resulting range) simply record the
most extreme values which have been included (quite possibly
erroneously) in the data set. These have very little use other 'than in
setting limits for graphical displays. The mode records, at least in
theory, the peak on the frequency distribution curve. In practice it can
give an unreliable and misleading impression of the distribution and has
poor repeatability between batches from the same data source.

The second group are the conventional or classical summary statistics.
The mean and the variance (or its square root, the standard deviation)
are by far the most widely quoted and used of summary statistics. Where
the distribution is normal, Le. Gaussian, they are excellent. In such
cas~~ l1:l~y :nQt onJY summarize the distribution, they completely define it
and are therefore· referred to -·liS paramet;rs of-the -distribution. - The
distribution can be reconstructed in its entirety from just these two
numbers. They are appropriate in many fields of statistics, especially
when there is a 'true' value of some quantity and statistics are applied to
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repeated physical measurements. Examples of this would be a series of
weighings of a single sample. In other instances, of which the
geotechnical data being considered here are an excellent example, they
can be inappropriate and misleading; there are no single 'true' values
underlYing each distribution; the distributions themselves may be far from
Gaussian; and the data set may include values which are grossly
erroneous or belong elsewhere.

The method of moments, by which these statistics are conventionally
calculated, is increasingly significant for the higher orders of the
moments involved, from the second (variance), to the third (skewness)
and fourth (kurtosis). Each data value is included in the calculation,
with equal weight, as the second (square), third (cube) or fourth power,
respectively, of its distance from the centre (mean) of the distribution.
To a successively greater extent these higher order statistics reflect the
behaviour of the tails rather than the main body of the distribution.
They can be totally distorted by a few extreme values.

The third group of summary statistics, unlike the second, are not
derived from comprehensive calculations on the whole data batch.
Although their broad objective is similar, their values are determined
simply by taking specific points on a distribution. They are referred to
as nonparametric statistics. The distribution can never be reconstructed
from these, only specific points on it. But although the information they
give may be much less complete than for their classical equivalents, they
can offer very significant advantages.

The first and most important statistic that is sought for a distribution
is the location of its 'centre', of which the mean and median are two
possible measures. These are discussed in the next section, together
with the advantages in seeking 'robust' measures which are in a sense
intermediate between the two. In a fairly simple way this will illustrate
how the robust approach attempts to reach the optimum between
parametric and nonparametric statistics when applied to 'real' rather than
ideal data. The second statistic that is usually required, a measure of
the distribution spread, is examined in the following section.

7.1 Statistics for the Distribution Centre

Of the many possible statistics for the centre of a distribution, the most
commonly u.sed are the mean and the median. The (arithmetic) mean is
simply the average of the values in the data batch, Le. the sum of the
data values divided by the number of values. It has the property of
being the centre of gravity of the distribution and hence is its first
moment. The median is the central data value in a distribution, in that
the numbers -of greater and -lesser data-v8Jues-Win' be equal. - - .
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7.1.1 Resistance

A major drawback of the mean is its lack of resistance to gross errors.
Resistance is quantified as the minimum 'breakdown value', which is the
maximum proportion of the data values which can be taken from the least
favourable locations in the data set and reassigned with extreme values,
without rendering the statistic unstable.

For example, suppose there are 99 data values in a data set, with a
median of 40 and extreme values of 15 and 60, and all the 49 values below
the median are then reassigned erroneous values of ioo. The original
data value of 60 will now become the median, with 49 greater values, all
+00. The median has admittedly moved, but only to the end of the
original distribution, where it still has a 'sensible' value. If this exercise
is repeated, but with the mean in place of the median, then the
reassignment of any single data value to +00 will cause the mean to follow
to +00 also. The resistance of the mean is zero, whilst that of the median
is slightly less than 50%.

The resistance of the median derives from its 'safe' position with an
equal number of data values above and below (leaving aside the problem
of ties). It has very little regard for the actual data values, however
extreme any of these may be, apart from the one or two central values
which determine it.

7.1.2 Local Shift Sensitivity

The major weakness of the median is its very high sensitivity to local
shifts in values at the centre of the distribution. As it is determined by
only one or two data values, it strongly reflects any rounding or
grouping of values, particularly where these are systematic. Again, an
extreme example will most readily illustrate the problem.

Take a series of data sets, with distributions from strongly right
skewed through to left skewed. Each data set has 100 data values falling
in the range 6-24. The raw values are rounded to the nearest 10, with
the result that the data set now consists of values of either 10 or 20.
Suppose that at one skewed extreme there are 95 values each of 10 and 5
values of 20. At the other extreme the opposite proportions apply. As
one progresses through the distributions, with gradually less 10 values
and more 20's, the mean would increase slowly from 10.5 to 19.5. In
contrast the median will start with a value of 10 and maintain this value
until there are 49 10's and 51 20's in the distribution. With an equal
number of 10's and 20's, the median will change to 15. Once the 20's
predominate, the median will change to and maintain a value of 20. Where
t~ere a}'e l!n <!-ddrath~J'. than ey~n~l.l.um1:.>_er of data values: the change -in
median from 10 to 20 would be instantaneous. With such data the median
gives a very poor measure of the centre of the distributions.
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Using the original, unrounded, data the median would perform much
better, but still in discrete steps.

7.1.3 Intermediate Central Statistics

Local sensitivity can be reduced if, instead of just the central one or two
data values, the central 3 or 5 values (or 4 or 6 where the data set is
even) are abstracted and the mean of these are taken. Such a measure
is termed a broadened median. The greater the number of central values
that are included, the lower will the local sensitivity of the broadened
median become.

If the mean is used, all the data values are included, including any
gross errors with their markedly disturbing effects. Instead of examining
the extreme values, and possibly applying any rejection rules, a fixed
proportion of data values, say 5%, could be eliminated from each end of
the data distribution, and the mean of the central 90% taken. This would
almost certainly remove any gross errors, except in a very small data
set.

The mean and the median are, in fact, the two ends of· a series of
central measures termed the a-trimmed means, where Cl indicates the
proportion of data trimmed from each end. The example quoted above is
of a 5% trimmed mean - T(5%). The mean itself is of course 0% trimmed,
whilst the median is a trimmed mean with a trimming of slightly below 50%
(the exact percentage depends on the size of the data set).

Trimmed means overcome the major drawbacks of both the median and
the pure mean. However, in certain 'ideal' situations, they will not prove
as efficient as these measures (particularly the mean). The optimum
percentage of trimming will vary, depending on the range of distribution
types and the degree of contamination encountered. For a general wide
applicability, Hoaglin et al. (1983) advocate the use of a 25% trimmed
mean. This can be viewed as the even compromise between the mean and
median, as it is the mean of the mid 50% of the data, and hence is
generally termed the midmean. Hoaglin et al. (1983) recommend use of
the midmean for data sets of 8 or more data values. For 7 values they
would take the mean of the 3 central values. The median should be used
for smaller data sets.

7.1.4 Robust Cen~ Statistics

As measures of the centre of a distribution, the mean and median have
strongly contrasting properties, which follow from the quite different
manner in which they are derived from the data. Figure 17(a) illustrates
the '.weight'.wh!9_h each attributes __to data ~aJ.]les at_ y:a~ng._distances _~x'

away from the respective statistics. For the mean, this weight is
constant, irrespective of the distance of the value from the centre,
however extreme. In contrast, the median attributes virtually all the
total weight to the central one or two data values. The remaining small,
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and decreasing, weight given to values away from the centre reflects the
contribution which they make in actually determining, or rather limiting
the possible range of, the centre values. For real data the desirable
approach would lie between these two extremes.

For data values very remote from the body of the data, one can
conclude that they are physically impossible or totally implausible in the
circumstances. These can be rejected, or given zero weight. As one
retreats from the extreme, a point is reached, albeit fuzzy, where one
can say "this value could just be possible, but I still feel certain that it
is a gross error". This outer limit is still given zero, or at least
negligible, weight. Moving inwards, the probability that a data value is
good will gradually increase and be attributed an increasing weight.

At the centre of a distribution, the data values would be full or
maximum weight. Possible arguments in support of this might be:

a) If we don't believe these values , what faith do we have in any of
the data?

b) The maximum probability that a data value is good must be at the
centre of the data set.

be slightly
a number of

centre of the
of the centre

some of these values could
accepted. However, even if
were added at or near the
effect on the determination

The possibility that
erroneous, or poor, is
purely fictitious values
distribution, their net
would be negligible.

c)

d) There are likely to be very few gross errors which fall near the
centre, as their true values would have to be in the extremes of
the distribution, where the probability of occurrence is by
definition very low.

Moving away from the centre, through the bulk of the data, the
confidence level remains high and the weight is maintained at or near
maximum. As the tail area is entered, the probability of erroneous data
values gradually increases.

Thus the weight given to data values should ideally vary in relation
to their position in the distribution. Such a variation is illustrated in
Figure 17(b). Here the weight is essentially the same as that accorded to
the mean in the central area. Beyond a certain point (the rejection
point) the weight is zero and data values, whilst remaining in the data
set, are effectively ignored. On the intervening slope one attempts to
relate weight to the plausr~ility of the d~~ta valu~s.

Many possibilities exist for the shape and size of such curves. A
major part of the recent research in robust statistics has been directed,
not only to devising the mathematical functions which produce these
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curves, but to evaluating which of the possibilities are the most useful
and efficient. The concept of efficiency is essentially concerned with the
accuracy or reliability of the calculated parameter or statistic for a given
size of data set. It is used as a relative measure between the possible

. options rather than in an absolute sense. This rather complex topic is
discussed fully by Hoaglin et al. (1983) and Hampel et al. (1986). As an
example, the mean is the most efficient estimator for locating the centre
of a pure Gaussian distribution and in this case is accorded 100%
efficiency. However, if this Gaussian distribution is now contaminated
with gross errors, or if the distribution is non-Gaussian and much
heavier-tailed, the efficiency of the mean may drop drastically to 1%. For
the same situations the median would have a much more consistent
efficiency of perhaps 40-60% throughout. Some of the more sophisticated
functions alluded to above would in the same cases maintain efficiencies of
80-90% or greater, whilst still having resistance close to 50%, as for the
median.

Whilst these highly robust (efficient) statistics for a distribution
centre may be desirable, their computation can be lengthy and require
iteration. If relatively subtle differences between very similar
distributions are being sought, then the effort in obtaining these
statistics may be necessary. Where a central statistic is simply required
as a component in summarizing a distribution a less rigorous approach
may be quite adequate.

7.2 Statistics for the Distribution Spread

Having located the centre of the distribution the next statistic usually
sought is some measure of its spread or dispersion. The many problems
and considerations in deciding on statistics for the centre also apply to
those for spread. In the case of the centre, there is at least the concept
of a central value, the problem being to locate it. However for the
spread there is no single value, even as a concept. A frequency
distribution curve will obviously have different widths or spreads at
different levels.

The conventional standard deviation is only adequate where the
distribution is Gaussian. In this case the proportional shape of the curve
is already defined and from a single statistic the width of the distribution
at any level can be calculated. Without a defined shape the spread of the
distribution at one level cannot be determined from that at another.

The usual nonparametric measure is the interquartile range (lQR) ,
that is the range, or spread, between the lower and upper quartiles.
T~s it .!s the ~~~~d ()f the centI'l!! b!ili of the _distrib.ution -<with .onp.
quarter lYing beyond each end). As with the median, this statistic has a
high resistance, in this case 25%. An alternative, which gives an almost
identical numerical value, is the Median Absolute Deviation from the
median (MAD), which has a resistance of almost 50%.

27



There are a few robustly efficient measures of spread, but these are
not frequently used. In fact there is little to be gained by using highly
sophisticated measures of spread. Without a defined distribution shape,
it is probably more useful to find a succinct way of presenting the
spreads at a selection of different levels. The extended boxplot, to be
discussed later, attempts to do this.

For a single figure statistic, the interquartile range (IQR) or MAD is
in common use. An alternative could be a 'pseudo standard deviation',
calculated as half the spread between the 16th and 84th percentiles. With
a Gaussian distribution this would be virtually identical to the
conventional standard deviation. With this same assumption the statistic
can also be calculated as 0.6745 x IQR.

7.3 Higher Order Statistics

Hoaglin et al. (1983, 1985) and Hampel et al. (1986) discuss possible
resistant and even robust measures for skewness and kurtosis. However
these soon become very complex and would be of little benefit in the
present context. If these aspects of a distribution are required,
adequate information should be found in the probability plots and, to a
lesser extent, the extended box plots.
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8 BOX PLOTS

The box plot is a simple compact graphical method of summarIsmg a
frequency distribution, based on the resistant median and quartiles. The
alternative term 'box and whisker' plot is also in use.

In Figure 18, a box plot is shown for a batch of liquid limit values.
The ends of the box are drawn at the lower and upper quartiles (25 and
75 percentiles) with an internal division at the median value. The side
bars or whiskers are drawn from the ends of the box to the lowest and
highest data values that are not outliers. The outliers are represented
by individual crosses beyond the whisker ends. The outline frequency
distributions of several batches of data may be compared by drawing
parallel box plots to a common data scale.

With a box plot it is possible to grasp the major aspects of a
distribution at a glance. The centre of the distribution is shown by the
median crossbar within the box. For an indication of spread, the
interquartile range is shown by the length of the box. The whiskers
illustrate the tail lengths of the distribution. The relative position of the
median crossbar within the box and the relative lengths of the whiskers
indicate the skewness of the distribution.

The simple box plot portrays the skeleton of the distribution of the
actual data. A common modification is the notched box plot, which
indicates the extent to which the total population distribution can be
inferred from the actual data distribution. The width of the notch (to be
read against the same data scale) is usually calculated such that there is
a minimum 95% probability that the population median will lie within the
limits of the notch.

To a first approximation the confidence with which the parameters of
an actual distribution can be used to infer those of the total population
increases as the square root of the number of data values. Thus if the
height of the boxes is drawn in proportion to the square root of the size
of each data set, the relative significance of each can be compared.

As a summary of a geotechnical property distribution the box plot has
two particular limitations. There is a simple convention to determine
whether a value will fall within a tail whisker or be classed as an outlier.
The lower and upper cutoffs are 1.5 x IQR below the lower and above the
upper quartiles respectively. However this approach is rather too
simplistic where the distribution is appreciably skewed or has a
particularly non-Gaussian kurtosis. In these cases reasonable tail values
'!!!1 _~~ _~lasse~as _2l!tlier~ ~.!1.!i vi~e ve~sa. It _w.o.uld he_pr.eferable to
determine the two cutoffs separately, with regard to the distribution in
each tail area. This would also help in determining a realistic 'effective
range' within which the great bulk of the distribution falls.
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The second limitation is again concerned with the tail areas. By far
the greatest distinction between the many distributions encountered is to
be found in the tail areas. The mid part of a distribution is usually very
well defined by just the median and quartiles (in fact, Winsor's principle
[Hoaglin et al. 1983, p.363] states that "all distributions are normal in
the middle"). The conventional box plot gives no information between the
quartiles and the ends of the tail whiskers.

It is proposed that a refinement of the notched box plot should be
used for geotechnical data distributions. This could be referred to as an
'extended notched box plot' or 'chequered notched box plot'.

As the first stage in constructing the plot, a set of simple percentiles
are calculated, such as those at 1, 2, 5, 10, 25, 50, 75, 90, 95, 98 and
99 percentages. The 25, 50 and 75 percentiles are used to construct the
central box with median crossbar, as for the usual plot. The remaining
percentages are used to define a series of subsidiary boxes to either side
of the central box (Figure 19).

The heights of the various boxes are again scaled in proportion to the
square root of the number of samples 'contained' in each. Thus for a
data set of 500 values, these heights would be calculated as follows:

Box· limits Total % No values Height
25-75 50 250 15.8

10-25 , 75-90 30 150 12.2
5-10 , 90-95 10 50 7.1
2- 5 95-98 6 30 5.5
1- 2 98-99 2 10 3.2

In order to distinguish between, and readily recognise, the successive
boxes, they are shaded alternately. Thus the outer limits of the shaded
boxes will fall at the 1, 5, 25, 75, 95 and 99th percentiles.

Typically, most actual data batches will be of insufficient size to
calculate the outer percentiles and will have only perhaps one or· two data
values contained within the outermost boxes. Therefore, to ensure that
the plot is reasonably meaningful, it is necessary to limit the number Of
subsidiary boxes with regard to the size of the data set. It is proposed
that the outermost box, at each end, should contain a minimum of 3
values and that at least 2 further values should fall beyond this box.
Using this rule, the plot format would be as follows:

Data values
10 - 19
20 - 59

-- -- -~-

60 - 99
100 -299

300+

30

Outer box limits
25, 75%
10,j!0
5, 95
2, 98
1, 99



Within the second boxes from the centre a short bar is drawn at the
16th and 84th percentiles. These bars serve two purposes. Firstly, the
distance of each from the median would be equal for a Gaussian
distribution and almost identical to the standard deviation. Secondly, if
an outline frequency distribution is reconstructed from the box plot,
these values fall within what would otherwise be considerable gaps.

The only data values not considered so far would be those
represented by the whisker lines and any outliers. Whilst a rule, albeit
rather complex, probably could be devised for determining suitable outlier
cutoff limits in sympathy with the frequency distribution, it would be
preferable to use the probability plots to determine these limits and/or
eliminate the outliers.

The software required to calculate and display these modified boxplots
should not be unduly complex. Such plots would offer the following
advantages:

a) Compact graphical displays are used to compare the distributions of
several data sets (Figure 20).

b) The distribution centre and several measures of its spread are
shown.

c) The height of each display and the number of subsidiary boxes
indicate the significance which should be given to each data set.

d) The width of the notch gives conservative 95% confidence limits for
the population centre. This is the narrowest confidence interval
for any percentile, as the distribution is densest at the centre.
For box limits (percentiles) further from the centre, the confidence
intervals would rapidly widen, at least for near-Gaussian data.

e) Being based on percentiles, the box plot is resistant to any major
disturbance by gross outliers and is not dependant on any
underlying frequency distribution. It emphasises the structure of
the bulk of the data.

f) The outermost boxes indicate the rough limits to which any
statements concerning the distribution tails are justified by the data
as at all meaningful or worthwhile (the outermost limit shown should
always be treated with considerable caution). Thus it may be of
practical use to say that 90% of the actual data have values above
'x', or 98% below 'y', whereas the conventional range (between the
most extreme values) is virtually worthless.
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9 SUMMARY AND CONCLUSIONS

a) It is almost inevitable that the data compiled in a geotechnical
database will be 'dirty' in a statistical sense. There are many
potential sources of error in the numerical values, the spatial
distribution of the data is usually poor, and the allocation to
geological units cannot be achieved with consistent reliability.

b) For data of this nature it is much more appropriate to take a
'robust' rather than classical approach to statistics. By placing
emphasis on the structure exhibited by the bulk of the data, a
higher level of confidence can be placed in the reliability of the
resultant statistics.

c) Graphical rather than purely numerical displays are much to be
preferred, both for analysis of the data and its summarisation.

d) Histograms should generally be avoided as great care may be
required in their formulation. The stem-and-leaf display is more
reliable where a bar display is required in data analysis.

e) The most valuable tool for data analysis is the probability plot. It
will reveal the structure and coherence of a data batch and provide
a basis for identifying possibly erroneous data values.

f) The probability plot is the best means for assessing the skewness
of a distribution. Unless there are good reasons for not doing so,
the data axis should be rescaled if the skewness can thereby be
significantly reduced. Often this will entail the use of a logarithmic
rather than an arithmetic scale. Skewness is undesirable in that
the apparent spread or dispersion should generally be independent
of the data level.

g) The probability plot will indicate the degree to which the
distribution is degraded by the finite precision of the data values.
Where the plot is significantly stepped rather than continuous, it
would be preferable to replot it manually from the cumulative
frequency of 'bin' values.

h) The classical parametric statistics, such as the mean and standard
deviation, should be avoided as a means of summarIsmg a
distribution. They place undue weight on the tail values and can
be seriously misleading where the distribution is non-Gaussian.
The range is a particularly poor statistic, as it takes account of
Q!!ly _the mQ.st _extre!J1e values and willg~nerally increase ~th the
size of the data batch.
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i) For a numerical summary it is preferable to use a selection of
percentiles, including the median and quartiles. These are highly
resistant to erroneous values in the data batch.

j) A fuller and more informative summary of a distribution is provided
by the extended box plot. This graphical. display will emphasise
the essential structure within a distribution and the significant
differences between distributions. It also indicates the degree of
confidence that may be placed in the summary. To fully utilise the
'robust' approach, the required percentiles for a box plot should be
abstracted from a manually smoothed probability plot.
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(a) .Stem-and-leaf display for COVMM.DryDens: unit 0.01
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Figure 9. Stem-and-leaf displays, with 1, 2 and 5 lines per stem ..~
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Cu. Undrained cohesion (KPa) N· SPT Blows/O.3m
3 10 30 100 300 1000--.

Alluvium-Sand with fines

Alluvium-Sand and gravels

River Terrace Gravels

Glacial Sand and Gravels

Moderately weathered

Erbistock Formation
Mudstones

Highly to
completely weathered
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Flgure 20- Example of Extended Box Plots for summarlslng
and comparlng geotechnlcal data
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