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INTRODUCTION

Bassenthwaite Lake and Derwentwaterare two of the larger Cumbrianlakes, and are both

situatedin the northernregionof the EnglishLakeDistrict.

BassenthwaiteLake has considerableconservationstatus, being designated a Site of Special

ScientificInterestin 1983bytheNatureConservancyCouncilunder the provisionsof the Wildlife

andCountrysideAct of 1981. Suchstatuswas relatedto the vegetationin the lake and alsothe

presenceofthe rarevendacefish (Coregonus albula). The remainingpopulationsof vendacein

CentralEuropehave beenlistedas endangereddueto eutrophication(Lelek, 1987).

BassenthwaiteLakehasnomajordevelopmentsaroundits shores,but it does receivethe sewage

effluent,viaitsmaininflow,fromone of the largesttourist resorts in Cumbria,namelyKeswick:

Unlike other Cumbrianlakes,it has an unusuallyhighcatchmentarea feedinginto a smalllake

volume.Combinedwitha meandepthof only5.3m,thisleadsto a relativelyshort retentiontime

of approximately24 days(Atkinsonet al 1989). Thelake basinhas a deep central regionup to

19in,enclosedby a largeareaof shallowwater;64 % of the lake volumeis less than 5 m deep.

Compared to other lakes in the region, the verticaltemperature range in the deep region is

relativelysmall. In summerthe lake appearsto be weaklystratifiedand there is some evidence

for mixingto the deep water (Atkinsonet al., 1989,Jaworskiet al., 1991, 1992).

Up until1990the lakehadnot beenthe subjectof anylong-termstudy,but more scattereddata


existwhichdatebackto the 1920's.Most studiesformedpart of a broader lakes survey(Pearsall


& Pearsall 1925;Pearsall 1932 and Gorhamet al., 1974). Similarintermittent studies were



carried out at the Freshwater Biological Association between the years 1949 and 1984. A survey

of the major ions in the near surface water in the years 1954-56 and 1974-76 was carried out by

Carrick & Sutcliffe (1982). In a deta led study Mubamba, (1989) looked at the main

phytoplankton composition and related chemistry of the lake at monthly intervals between 1987-

88. A general assessment of the biological features was presented by Atkinson et al., (1989) for

the North West Water. In this, extensive use was made of the data generated in the studies cited

above, in particular those of Mubamba. In a recent report to the NRA, Hilton et al (1993) fed

data from the period January to August 1993 into a dynamic model. In this they discuss the effect

of phosphate removal from the Keswick STW effluent, the effects of flushing and the role of

sediments in the development of algal peaks.

Derwentwater is a more accessible lake which lends itself to tourist activities. Keswick is situated

on its northernperimeter,otherdevelopmentaroundthe shores is limited. The sewageeffluent

entersthe outflowfrom the lake(R. Derwent),and sinceDerwentwaterlieswithinthe dra nage

basin of BassenthwaiteLake, this is also one of the maininflowsto the latter. Both lakes are

remarkablysimilarin their physicalfeaturesandthe presenceof vendace Derwentwaterhas a

central region which is 22 m deepbut its meandepth is only 5.4 m so there is a large area of

shallowwater. It doesdifferconsiderablybyhavinga retentiontime of 73 days, due to its having

a substantiallysmallerdrainagearea.

Derwentwaterhasnot previouslybeenstudiedat length,althoughit was includedin the broader

surveysof Cumbrianlakesreferredto abovefor BassenthwaiteLake Mubamba(1989), for his

work on the vendace,carriedout a comprehensivesurveyfor the water qualityof the lake.



A scientific programme to investigate the water quality of both lakes over a period of at least 5

years was initiated by the Institute of Freshwater Ecology in 1990. This project was part-funded

by the National Rivers Authority, North West Region (NRA). Data have been presented annually

in the form of a report to NRA (Jaworski et al., 1991, 1992, 1993).



,

2. METHODS

Thesamplingprogrammewascarriedout,conditionspermitting,at fortnightlyintervals. Samples

were collectedfrom the deepestpoint of eitherlake.

A weightedPVCtube,5 m lon,gandcapacity1litre,wasused to collectca 5 litres of water from

the 0-5 m verticalcolumn. One litre of this was preservedin situ with Lugol's iodine and later

usedforthe algalenumeration.Theremainderofthefreshsamplewas used for chemicalanalysis,

includingchlorophylla measurement.

A surfacedip,whichexcludedairbubbles,wascollectedin a 100ml glassbottle for alkalinityand

pH determinations By hauling a 50 pm mesh net through the 0-7 m water column, a

concentrationof phytoplanktonwascollected.In the laboratory,this sampleunderwent a further

concentrationon a Whatmanno 541 filterbeforebringpreservedin formalinand archivedfor

possiblefuture reference. Dissolvedoxygenconcentrationsand the temperature of the water

were measured with a YSI model 57, combined oxygen/temperature meter and probe.

Measurementsweretakenthroughoutthe 0-20 metreprofileat regular intervalsof 1 or 2 metres

dependingon the stratification. The point of lightextinctionwas measuredwith a Secchidisc.

In the laboratory, phytoplankton was enumerated on an inverted microscope following

sedimentationof the preservedmaterial(Utermohl1958,Lund et al., 1958) A Lund chamber

was used to count the nanoplanktonin a concentratedsampleat a highermagnification(Lund

1959,Youn2man1971). Proceduresbased on those of Mackereth et al., (1978) and Hilton &
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3. RESULTS: BASSENTHWAITELAKE

	

3.1 Algae and Chlorophyll a

Figure1showsthe peaksandtroughsofchlorophylla whichreflecton the algalgrowth between

August1990andDecember1993. Overthe fewyearssampledthe chlorophylla concentration

has increasedsignificantlyboth in terms of its maximumand annualmeanvalues(Table1).

Table 1

Year Chlorophylla Concentration
mean mean(Aug-Dec) Maximum

1990 9.06 ± 3.64 (n = 10) 9.06± 3.64(n = 10) 13.58
199J 9.73 ± 5.88 (n = 21) 9.70± 4.86 (n = 10) 21.49
1992 15.73± 12.68(n = 23) 19.94± 17.51(n 
 44.81
1993 13.85± 10 04 (n = 24) 13.43± 10.93(n 
 36.52

In 1990the samplingperiodcoveredthe latterhalfof the year only,when the meanchlorophyll

a concentrationwas9.06 mg andvariedfrom 13.58to 2.63 jig 1'. In spiteof a large number

of chlorophycean species, the main alue which contributed to the peaks belonged to the

Bacillariophyceae(diatoms). In the late summer,the lake supporteda large speciescomposition

dominated by an increasing population of Fragilaria crotonensis Kitton to2ether with

Sphaerocystis schroeteri Chodatandthe nanoplanktonspeciesAnkyra judayi (GM Smith)Fott,

Rhodotnonas minuta Skuja,Cryptomonas spp. andMonodus sp. A smallpeak in autumnwas

attributed chiefly to F. crotonensis (1240 cells m1.1)and Aulacoseira anibigua (Grunow)



Simonsen (780 cells ml-'), with numerous other species such as Anabaena flos-aquae Brébisson

and Cryptonionas making minor contributions.

Following minimal winter growth, the onset of spring 1991 led to a maximum chlorophyll a value

of 21.44 jig 14. Thereafter, the concentration fluctuated between 8.80 and 17.29 (mean 12.77)

ug I-' until it collapsed in November. The annual mean concentration was 9.73 ag

Within the lake there was a wide species diversity, particularly throughout the summer when many

chlorophyceae were present However, only a few species made a major contribution to the

chlorophyll peaks. Spring populations were dominated by Aulacoseira subartica (0. Muller)

Haworth and Umglena americana Calkins with maxima of 2793 and 2633 cells ml-' respectively.

Several small nanoplankton species were conspicuous, some more so after the collapse of A.

subartica. Most noteworthy were Chlorella spp. (1)047 cells ml-'), Chiysochromulina parva

Lackey, Koliella longiseta (Vischer) Hindak, Stichococcus minutissimus Skuja and

Cryptomonads, including the smaller Rhodomonas. It should be noted that the majority of

nanoplankton species are 20 um long and as such account for a small input to the alaal biomass

even when present in substantially large quantities. Summer assemblages were remarkable for the

large number of species present which en masse rather than individually influenced the chlorophyll

concentration. An early peak featured a declining population of Umglena americana, a mixture

of re-establishing diatoms and the emergence of Anabaena flos aquae. These were eclipsed by

the numbers for the nanoplankton; Aphanothece clathrata W et GS West 24363 cells ml-',

Chlorella spp. 5750 cells ml-', Chiysochromulina parva 5069 cells ml-', Stichococcus

minutissima 3647 cells ml-' and Rhodonionas minuta 1120 cells ml-'. The diatom assemblaae

rallied to produce a late summer peak, with concentrations of Asterionella forniosa Hassall and
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conditions, the most successfill species Uroglena americana attained a maximum 2285 cells ml-'

and also maintained a strong presence over several weeks. The final component in the spring flora

was Ctyptornonas spp. and Rhodomonas minuta. In early summer assemblages, a strong presence

of Fragilaria crotonensis (4736 cells ml-') was observed. At the same time, there was an

abundance of the several smaller species, Chlorella spp. (16170 cells m14), Monoraphidum

contortum (1736 cells ml-'), Stichococcus minutissima (2642 cells m14), Chlysochromulina

parva (1835 cells m.14)and Rhodomonas minuta (3315 cells m14),which collectively contributed

towards an early peak in the chlorophyll a concentration. From mid- to late-summer, a rich flora

persisted and steady growth was observed. The main participants had changed, Aulacoseira spp.

were established as the dominant species supported to a lesser ex-tent by Asterionella formosa and

Fragilaria crotonensis. Amongst the Chlorophyceae •the colonial Dictyosphaerium

tetrachotomum Printz flourished (1675 cells m14), while cell numbers for those species present

earlier declined but remained plentiful and were supported by a host of other small green aluae.

The blue-green alga Aphanothece clathrata reached a maximum of 17971 cells ml-' in mid-

summer before enter ng into a steady decline. The population of Aulacoseira spp. grew at a

steady rate and had reached 11050 cells m1-1by mid-autumn, which was represented by the very

large chlorophyll a peak in Fig 1a.

A series of peaks in the chlorophyll a concentration during 1993 reflected the upward trend

observed in the previous year. The uppermost values occurred during spring (36.52 mg1-1),early

and late summer 27.60 and 30.20 mg11respectively) and mid-autumn (27.62 mg II); periods more

or less in agreement with previous years. The major spring component was the Aulacoseira spp.

(4180 cells ml-') with the smaller Cyclotella pseudostelhgera Hustedt (3676 cells C.

comensis (1617 cells ml"') and Uroselenia erieneis (1230 cells mtl) in the more supportive roles.



More diatoms were present in the plankton at much lower concentrations. An abundance of any

other type of algae was lacking; only Chlorella spp. (1669 cells ml-'), Rhodomonas minuta

(756 cells ml-'), Koliella longiseta (483 cells ml-') offered a hint of growth. Diatoms were still

well represented, albeit somewhat reduced in number, in the summer .assemblages. Another)

intei'estingfeature was an emergence of 66-Lainspecies'of blue green algae: In the early summer:

populations, the Aulacoseira spp. (1216 cellsml-')once again provided the main diatom content,-

while Cyclotella commensis and the lafge Synedra ulna added weight to the biomass .Three

other algae were fairly numerOus,Chlorella spp. (4916 cells ml-'), Rhodomonas minuta (1532 -

cells •ml-') 'and the small filamentous cyanophyte Pseudanabaena limnetica (Lemmermann)

kOmsarek (7558 cells ml-') (fornierly known as Oscillatoria limnetica Lemmermann): ,By late

summer -Aulacoseirdsubartica (1292 cells ml-!)and A. ambigua (724 cells mr') has recovered

after a mid-season collapse. Chlorella spp. maintained their position throuehout and were

Supported by Monorophidium contortum and Dictyosphaerium tetrachotomurn as the main

chlorophycean Speciei, Rhodornonas minuia was ever present but by now its concentration had

fallen drastically. On the other hand, species of CyanophYceaewere at their most prolific and

Psiudanabaena limnetica had arovin steadilyto a-maximum44,414 cells mr'. Other blue areens

of note were Aphanathece clathrata (7704 éellsml-') and Anabaena flos-aquae (1525 cells ml-'),

while Tychonema bourrellyi (Lund) Anagnostidis et Komarek (formerly known as Oscillatoria

bourrellyiLund) was observedin the lake for the first time (ca 1200 cells ml-'). After a decrease

in numbers, Aulacoseira ambigua and A. subartica recovered to more or less the previous

concentrationsand together with Fragilaria crownensis were major components of the autumn

Peak. The other algae present in apprediable numbers were Aphanothece clathrata (3362 cells

ml-'), Chlorella (941 cells ml-'), Uroglena americana (574 cells ml-') and Rhodonionas minuta

(421 cells mr'). •' •I
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exception of a short-lived increase maintained this state well into the summer. A sharp input of

NI-14-N in September led to a maximum concentration of 89 pg r' then quickly disappeared,

afterwards measurements were very variable.

3.2c • Silicon

Soluble reactive silica. (Si02) concentrations from August 1990 until December 1992 shown

in Figure 4a, had for the most part annual cycles with a similar appearance. From September

1990 the 5i02 concentration climbed to > 2 mg and was more or less stable throughout winter.

This was quickly depleted from the mrximum 2.49 to 0.25 mg in response to the spring growth

of diatoms in 1991. Through to autumn the concentration remained below 1 mg!' and underwent

some fluctuations which led to diatom growth when in excess of 0.5 mg . After the breakdown

of stratification the amounts of 5i02 in the lake gradually rose to > 2 mg r'. The next cycle in

1992 had a similar appearance, high concentrations (2.65 mg 1') were reduced to < 0.5 mg in

spring, values then fluctuated ca 0.5 mg V' into late autumn, during which t me it was interesting

to note a lack of diatom growth. By the end of the year the concentration had advanced to > 2

mg and remained so throughout winter. In response to spring diatom growth, the SiO,

concentration in 1993 was depleted to 0.28 mg 11. In the period that followed up until autumn

the SiO, concentration was more variable than in previous years. Such changes led to

concentrations above 0.5 mg and supported diatom populations; as was earlier reported

diatoms flourished throughout the year. When the SiO, recovered in w nter its concentration was

< 2 mg r'.

0
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3.2d Dissolved Oxygen

Comparison of the dissolved oxygen concentration (DO) at depths 0 m and 20 m is shown in

7-Th

Figure 5a. The greatest dcrferences in the DO occurred during the summer months Early in

August 1990, the water column gave the appearance of being well stratified and the DO at 0 m

and 20 m was 8.55 and 0.075 mg LI respectively A short time later, measurements (not shown)

provided evidence for mixing into the deeper layers, followed by a weakened DO re-stratification.

The process leading to a uniform concentration throughout the water column began in September

and was complete by mid-October, when an increase in the DO became apparent. Small

differences at 0 m and 20 m in the DO were observed from an early stage in 1991 and 1992 but

the most significant change occurred with the stratification in May. Throughout the summer there

was a strong indication that the water column was unstable, with periods of mixing into the

deeper layers interchanged with those of stratification (figure 5a). The maximum vertical DO

difference was 10.28 and 8.52 mg in July 1991 and June 1992 respectively. In 1992 the

overturn was delayed into November. The stability of the DO in the water column was stronger

throughout summer 1993, with only a slight hint of mixing to 18 m during August. A small

difference in the DO throuah the water column was seen during May but this proved to be

unstable. However, by June and onwards, significant differences were observed, the maximuM

vertical DO difference was 9.87 mg l in August. The breakdown of the DO stratification has

been almost completed in September.

3.2c pH and Alkalinity

Four yearly cycles of pH measurements are shown in F gure 6a. The annual trends after 1990

showed much similarity with values consistently < 7 throughout winter and early spring. In the

second half of 1990 changes to the p1-1were small with values between 6.72 and 7.03. In the

14



years following, the pH measurements increased significantly during spring and throughout

summer, showed some variations at values > 7 before they decreased in the autumn, except in

1993 when higher values extended into December. The maximum and minimum measurement

during this period were 8.22 and 6.50 respectively

The changes in alkalinity, expressed as mg CaCO3, are shown in Figure 6. Excluding 1993, the .

alkalinity tended to rise in spring, peak around mid-summer and decrease gradually into autumn

before a more rapid fall in winter. Values dropped from over 11 mg I in August 1990 to ca 6

mg t' throughout the winter and spring 1991. A significant rise led to a peak in June of 12.1 mg

11, followed by relatively stable values into the autumn. The pattern was the same in 1992, a

maximum alkalinity of 12.6 mg 1-1was observed during July. From the beginning of 1993 the

alkalinity rose gradually in a series of peaks to reach a maximum value of 11.9 mg V' in late

October.

3.3 Temperature and Light

Water temperature measurements at 0 m and 20 m show that the maximum vertical difference was

small and consistently ca 6°C after the commencement of stratification. Recorded temperatures

in 1990 were made over a short period of the summer through to winter. Surface temperatures

varied from 19.1°C in August to 3.3°C in December, during this time the maximum vertical

difference was 4.3°C. The breakdown of stratification began in September. The surface water

temperature in 1991 ranged between 1 1°C and 19.6°C, and the maximum vertical difference was

5.3°C. The lake began to stratify in May, showed several mixing events through summer and had

finally overturned in September. The surface water temperature in 1992 varied between .9°C

15



and 18.6°C, and the maximum vertical difference was 5.6°C. The lake stratified in May, showed

signs of mixing in summer and overturned in October. This pattern also applied to temperatures

in 1993, when the variation was 1.9°C to 21.5°C and the maximum vertical difference 5.9°C.

To a lesser extent there was evidence for some summer mixing.

Throughout the sampling period annual values for the light penetration showed much similarity.

The minimum and maximum values were 1.0 m and 4.4 m, while the mean light penetration

(1990-93) was 2.5 ± 0.4 m (m = 77).

16



4. RESULTS: DERWENTWATER

4.1 Algae and chlorophyll a


Derwentwater supported an algal flora which contained a rich diversity of species. The greatest

number were of nanoplankton which belonged to the groups Chrysophyceae and Chlorophyceae.

Few species were sufficiently abundant to make worthwhile contribut ons to the algal biomass.

Chlorophyll a concentration (Figure lb) did not change significantly during the period monitored,

only differences in seasonal peaks were observed. Between 1991 and 1993 (the years with a

complete sampling programme), the mean chlorophyll a concentrations were 4.84, 5.48 and 5.57

pg

The mean concentration of chlorophyll a during 1990 (August-December) was 6.18 pg h, and

highest values were observed prior to October. Algal populations in this period were relatively

small, the only noteworthy algae present were Anabaena flos-aquae (577 cells mh), Dinobryon

divergens Imhof (588 cells mh) and Uroglena americana (700 cells mh) in the phytoplankton

together with Cluysochromulina parva (1727 cells mh), Chlorella spp (1698 cells mh),

Monoraphidium sp (799 cells mh), Uroselenia er ensis (941 cells mh) and to a lesser extend

Rhodomonas minuta (481 cells mh) from the nanoplankton community.

The chlorophyll a peak of 14.11 pg n May 1991 resulted from the growth of Uroglena

amehcana (12,000 cells m11). Minor contributors present at the same time were Anabaena .flos-




aquae, Cluysochromulina parva, Chlorella sp. and Monochrysis sp Much smaller peaks were


observed in summer and autumn, the more dominant algae at these times were Aphanothece
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clathrata (10,000-19,000 cells mn, Dinoblyon divergens, Uroglena americana and

Sphaerocystis schroeteri .

The plankton in Derwentwater during 1992 produced two peaks in spring and early summer

which were substantial for the lake. However, a much higher concentration of chlorophyll a was

observed at the end of summer (13.52 mg II). Uroglena americana featured highly during all

three peaks but its maximum concentration occurred in the spring (8246 cells ml-') when there

was scant support from Chlorella spp and Aphanothece clathrata. In early summer, the blue-

greens Anabaena circinal s Rabenhorst and Aphanothece clathrata played a supporting role to

the Uroglena. The late summer peak was associated with a mixed population of algae, in which

the Uroglena was once again the major species. The other algae which offered valuable additions

to the chlorophyll a concentration were Aphcmothece clathrata, Dicoiosphaenutn tetrachotomum,

Kirchneriella spp.,Monoraphidiwn spp., Paulschulzia pseudovolvox (Schulz im Teiling) Skuja,

Dinobyron spp., Kephyrion spp. and Uroselen a eriensis. The largest algal populations in each

year since 1991 appear to have been progressively later, as demonstrated by an autumn peak in

1993. During this period Uroglena americana (4671 cells ml-') and Aphanothece clathrata (7409

cells m11)were the two most abundant species and they maintained a high profile until the end of

November Smaller contributions to the autumn chlorophyll were offered by Chlorella spp.,

Asterionella formosa and Uroselenia eriensis Earlier growth was limited to several lower pulses,

the first in spring was confined mainly to a large number of sparsely concentrated nanoplankton

species, in particular the Chrysophyceae of which Chlysochronzulina parva was the most common

(1160 cells m1-1).

18



In terms of numbers of species the nanoplankton continued to dominate in the summer

community, however the smaller Chrysophyceae had been replaced by Chlorophyceae, whose

contribution was also collective. On the other hand larger colonial chrysomonads grew well,

Uroglena americana (1251 cells rn1') and D nobtyon sertularia Ehrenberg (970 cells m14) were

a major part of the assemblage together with Cyclotella comensis (1230 cells nild) and

Aphanothece clathrata (6415 cells m11).

As a rough guide to the species diversity in Derwentwater over recent years, the nanoplankton:

phytoplankton ratio in 1993 was 53:21, the greatest diversity being within Chyrsophyceae where

the ratio was 23:3.

4.2 Chemical Analysis

4.2a Phosphorus

The annual cycles of soluble reactive phosphorus (PDX) and total phosphorus from August 1990

to December 1993 are shown in Figure 2b. Up unt 1 the mid-summer of 1993 the PO,P

concentrations were very predictable, that is summer concentrations were below the level of

detection and overwintering concentrations were < 2 mg I' and rarely maintained for any length

of time. Small quantities of PO4P were detected prior to the massive (by Derwentwater standard)

rise to 13.2 uglA in 1993, the concentration fell away quickly but not immediately and there was

a small increase to 3.6 ug 11 in September. There was no clear pattern to the annual cycles in

total phosphorus, concentrations appeared to fluctuate in an irregular manner and did not

necessarily show direct correlation to the chlorophyll a concentration However, it did hint to
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possible phosphorus enrichment; mean annual concentrations in the earlier years ranged between

9.1 and 11.1 pg 11 and were followed in 1993 by a significant rise to 15 7 pg 11•

• 4.2b Nitrogen

Figwe 3b shows the concentrations of nitrate nitrogen (NO3N) and ammonium nitrogen (NH4N)

in the years 1990-1993. The annual NO3N cycle followed a similar pattern during the period in

which it was monitored. From a maximum position in spring the concentration fell sharply to a

minimum in summer, then immediately grew to a near maximum value by the end of the year.

From a mid year starting point of 23 pg 1 in 1990 the concentration of NO3N increased to 221

pg 11. The maximum and minimum concentrations respectively were 389 and 70 pg I in 1991,

331 and 20 gg14 in 1992 then finally 254 and < 14 pg F1in 1993. In the last year mentioned the

cycle showed a slight variation to those described earlier, once the concentration reached a

_
minimum it then proceeded to move up and down with values < 100 pg and only in the last

days of the year rose significantly.

The NI-14N concentration in 1990 varied between 5 pg the limit of detection, and 11 pg

Early detected concentrations in 1991 were depleted by the spring, then made some considerable

gains to > 20 pg and once to 41 pg 11in the summer as the amounts fluctuated widely For


long periods in 1992-93 the concentration was beyond the limit of detection or only slightly

higher. Occasional measurements in both years showed values significantly above 10 pg

4.2c Silicon

Figure 4b shows the soluble reactive silica (Sift) over the monitored period. From similar high


winter amounts, ca 1.68 to .1.83 mg SiO, decreased gradually to a minimum (0.32 to 0.37 mg
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11) during the first week in July and then ascended at a similar rate towards the winter peak,

except in 1993 when the concentration remained more or less stable at ca 0 69 to 0.87 mg I-'

between August and November.

4.2d Dissolved Oxygen

In each year the minimum dissolved oxygen concentration at 20 m reached < 0.5 mg I in the

summer, when it was > 9.5 mgt.' at the surface (Figure 5b). Stratification usually started in May

and ended in October; however, in 1992 the mixing to deeper layers began during July but was

not completed until October. There was an indication of mixing to the deeper layers in June

1991 before the lake had strongly stratified.

4.2e pH and Alkalinity

Winter alkalinity tended to rise from the start of the year into the autunm and then declined_


ValUesover the complete period investigated ranged from 2.6 mg 11 CaCO3 in winter to 6.85 mg

CaCO3 in autumn (Figure 66). pH values were higher in summer, lower in winter and ranged

from 6.26 to 7.41 showing much similarity in each of the years (Figure 6b). Annual means were

very comparable, and the overall mean was 6.78 ± 0.06.

4.3 Temperature and Light

Although the thermal stratification process began earlier, the lake did not become strongly

stratified until May (figure 7b). In 1990 the range in surface temperatures was from 19.9° C in

summer to 3.3°C in winter and the maximum vertical temperature difference recorded was 6.8°C.

Surface temperatures in 1991 ranged from 0.7°C in February to 18.9°C in September, the

21



maximum vertical difference was 6.8°C in July. The lake became more or less isothermal in

September. In 1992, the surface water temperature range varied from 2.8°C in February to

19.1°C in July, the maximum vertical difference was 8.6°C in June. The breakdown in thermal

stratification began as early as August but was not completed until October. Finally, in 1993 the

range in the surface water temperature was from 3.2°C in March to 20.0°C in June, however,

summer temperatures were lower than in previous years. The maximum vertical difference was

6.3°C in July, and the end of stratification came in September.

The light penetration varied between 1.5 and 4.1 m during the period August to December 1990.

The mean value was 3.4 ± 0.8 m During the following years the fluctuations in the light

penetration were similar (Figure Tb), measurements ranged between 2.5 and 6.1 m and the

calculated aimual mean values were between 3.9 and 4.5 m.
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S. DISCUSSION

Although Bassenthwaite Lake contains a considerable number of algal species, conditions in the

lake appear to be ideally suited for diatom growth. Diverse populations of diatoms in spring

develop in response to the high overwintering concentrations of both phosphorus and silica.

With the depletion of both these nutrients and the onset of summer stratification diatom growth

is temporarily halted. Such conditions are not normally conducive to active diatom growth.

However, in Bassenthwaite Lake where a combination of a large expanse of shallow water and

frequent strong winds favoured a sequence of the mixing events to the deeper layers, which are

essential to diatom growth. Under these conditions diatoms, particularly those in the marginal

regions, could be returned to the upper water layers and take advantage of any nutrients similarly

made available.

Some of the crops of larger diatoms observed from July onwards would certainly have

had a requirement for PO? and Si02 in excess of the concentrations measured. Since the total

phosphorus remained at a relatively constant level throughout the year, it is likely that internal

nutrient loading due to mixing supplied the necessary amounts (Hilton et al. 1993)

Minor fluctuations in P0413 appeared sufficient to support a large and diverse summer flora,

consisting mainly of nanoplankton species of Chlorophyceae Cell numbers could be extremely

high, but by comparison the biomass was small, hence nutrient demands were not excessive

Mbdng and flushing, particularly in summer, does not create the ideal conditions for slow-mowing


gas vacuolate blue-green algae. Few opportunities for sizeable populations are provided, hence
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there is a paucity of such species in the phytoplankton. Anabaenaflos-aquae was the sole species

showing some consistent growth, with populations annually reaching into the lower thousands of

cells per ml, but still comparatively low compared to more eutrophic waters Surface blooms of

this alga have been reported, mainly within sheltered bays where wind swept material from other

regions of the lake most probably accumulated. A flos-aquae is a nitrogen-fixing alga, and as

such was able to grow in both lakes during periods of low nitrogen concentration

In contrast the smaller-celled species of blue-green algae, Aphanothece clathrata and, more

recently, Pseudanabaena linmerica have produced large populations. The small mucilaginous

colonies of Aphanothece are said to overwinter on the sediments where they escape winter

flushing (Starmach 1966) so in a large shallow lake they ought to be successful, as has been

observed. Both are non gas-vacuolate so mixing will be advantageous. Concentrations of both

total and soluble reactiCrephosphorus in 1993 were hieher than in the preceding years. However,

it is too soon to speculate whether or not this is an upward trend, or merely due to climactic

conditions at the time.

During this survey, some species new to Bassenthwaite Lake have been observed, notably

Aulacoseira ambigua (Canter & Haworth, 1991) and Tychonernabourrellyi The former is now

a well-established contributor to the diatom flora. Iychonema appeared in 1993, it is a non-gas

vacuolate blue-green alga which has often dominated the summer phytoplankton in Windermere.

Fortunately, the lake has with a short retention time and a very large drainage basin, so both alga

and nutrients can be diluted quickly. However, if a long period of dry weather in summer was

combined with strong wind action, then the Tychonema could quite easily flourish
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Physical features of Derwentwater closely resemble those of Bassenthwaite Lake but its trophic

status differs greatly. Derwentwater contains a flora which is typical for oligotrophic waters, and

mean chlorophyll a concentrations are annually < 7 mg 11. The lake supports an algal population

made up ahnost entirely of nanoplankton species of Chyrsophytes and Chlorophytes. Within the

former are many interesting species not common to the richer lakes, including in 1993 seven

species of Dinolnyon<many non-colonial) and seven species of Kephyrion/Pseudokephyrion The

two main components of a small diatom community are Cyclotella comensis and Uroselenia

eriensis both commonly associated with oligotrophic conditions.

Measurements revealed a paucity of soluble reactive phosphorus in the epilimnion, for very long

periods it was undetectable. As a result, growth was poor and except in 1993 no correlation was

seen between phosphorus and algal growth. Total phosphorus by comparison was relatively high

and constant throughoulthe year and could be a possible nutrient source. The situation appears

to favour internal loading through recycling or recruitment from the large area of shallow

sediments. In August 1993, there was an inexpl cable and sudden rise in soluble reactive

phosphorus to ca 14 mg1-1,at the same time a sudden increase in the concentration was observed

in Bassenthwaite Lake.

Another interesting feature was that of silica depletion. Concentrations in spring and autumn


were more than sufficient to support substantial diatom crops, yet only a few hundred cells per


were produced most probably due to phosphorus limitation. However, silica did decrease


gradually to a low point in summer and then gradually rose again. One can only speculate that


this loss in part was caused by benthic or epiphytic diatoms since these contribute 70 % to the
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diatom community (Dr E.Y. Haworth, pers. comm.). Another cause may be dilution by loss

through the outflow.

As was seen in Bassenthwaite Lake, the small blue-green alga Aphanothece clathrata formed

substantial populations in terms of cell numbers With extremely large areas of shallow water

in both lakes, they make an ideal habitat for this alga. Colonies can overwinter on the sediments,

where in shallower regions they will use the light and temperature more efficiently, before

emigrating into deeper waters.
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Flg. 1. Chlorophyll t (—) and Beech! disc (. _.) measured In (a) Bassenthwalte Lake

and (b) Derwentwater.
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(a)
Fig. 2. Total Phosphorus (—) and PS -P (._ .) measured In (a) Bassenthwalte Lake

and (b) Derwentwater.
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(a)

Fig. 4. SIC12 measured in (a) Bassanthwalte Lake and (b) Derwentwater.
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Flg. 5. Oxygen concentrations measured at Omand 20m In (a) Bassenthwatte Lake and
(b) Derwentwater.
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Fig. 6 . pH (—) and Alkalinity (. _ .) measured In (a) Bassenthwalts Lake and

(b) Dorwentwater.

10 —

(a)



0 i 1 1 1

1991 19921990 1993

Flg. 7. Water Temperature measured at Omand 20m In (a) Bassenthwalte Lake and
(b) Derwentwater.
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