Estimating uncertainty in terrestrial critical loads and their exceedances at four sites in the UK
Skeffington, R. A.; Whitehead, P. G.; Heywood, E.; Hall, J. R.; Wadsworth, R. A.; Reynolds, B.. 2007 Estimating uncertainty in terrestrial critical loads and their exceedances at four sites in the UK. Science of the Total Environment, 382 (2-3). 199-213. https://doi.org/10.1016/j.scitotenv.2007.05.001
Full text not available from this repository.Abstract/Summary
Critical loads are the basis for policies controlling emissions of acidic substances in Europe and elsewhere. They are assessed by several elaborate and ingenious models, each of which requires many parameters, and have to be applied on a spatially-distributed basis. Often the values of the input parameters are poorly known, calling into question the validity of the calculated critical loads. This paper attempts to quantify the uncertainty in the critical loads due to this “parameter uncertainty”, using examples from the UK. Models used for calculating critical loads for deposition of acidity and nitrogen in forest and heathland ecosystems were tested at four contrasting sites. Uncertainty was assessed by Monte Carlo methods. Each input parameter or variable was assigned a value, range and distribution in an objective a fashion as possible. Each model was run 5000 times at each site using parameters sampled from these input distributions. Output distributions of various critical load parameters were calculated. The results were surprising. Confidence limits of the calculated critical loads were typically considerably narrower than those of most of the input parameters. This may be due to a “compensation of errors” mechanism. The range of possible critical load values at a given site is however rather wide, and the tails of the distributions are typically long. The deposition reductions required for a high level of confidence that the critical load is not exceeded are thus likely to be large. The implication for pollutant regulation is that requiring a high probability of non-exceedance is likely to carry high costs. The relative contribution of the input variables to critical load uncertainty varied from site to site: any input variable could be important, and thus it was not possible to identify variables as likely targets for research into narrowing uncertainties. Sites where a number of good measurements of input parameters were available had lower uncertainties, so use of in situ measurement could be a valuable way of reducing critical load uncertainty at particularly valuable or disputed sites. From a restricted number of samples, uncertainties in heathland critical loads appear comparable to those of coniferous forest, and nutrient nitrogen critical loads to those of acidity. It was important to include correlations between input variables in the Monte Carlo analysis, but choice of statistical distribution type was of lesser importance. Overall, the analysis provided objective support for the continued use of critical loads in policy development.
Item Type: | Publication - Article |
---|---|
Digital Object Identifier (DOI): | https://doi.org/10.1016/j.scitotenv.2007.05.001 |
Programmes: | CEH Programmes pre-2009 publications > Biogeochemistry |
UKCEH and CEH Sections/Science Areas: | Watkins (to March 2011) Emmett |
ISSN: | 0048-9697 |
Additional Keywords: | Critical load, Uncertainty, Monte Carlo, Sensitivity analysis, Pollution control |
NORA Subject Terms: | Agriculture and Soil Science Ecology and Environment |
Date made live: | 14 Jan 2008 15:48 +0 (UTC) |
URI: | https://nora.nerc.ac.uk/id/eprint/2020 |
Actions (login required)
View Item |
Document Downloads
Downloads for past 30 days
Downloads per month over past year