

Geological Survey NATURAL ENVIRONMENT RESEARCH COUNCIL

XXIV IUGG General Assembly Perguia, Italy **July 2007 Session: ASV039 Poster: 11943**

Corrected hourly values from Eskdalemuir observatory and the implications for studies on the long term changes in geomagnetic activity E. Clarke, O. Baillie, E. Dawson, S. Macmillan, S. J. Reay and A. Snedden British Geological Survey, West Mains Road, Edinburgh EH9 3LA, UK

Introduction

The UK observatory hourly values published in yearbooks were digitised in the 1970s, using data entry by groups of prisoners. These were made available for research purposes via the WDC for geomagnetism. It has recently been discovered [1] that the hourly values from Eskdalemuir (ESK) observatory for years 1911 to 1931 are 2hour running means, instead of the original hourly values published in the yearbooks (see Fig 2). Unfortunately there was no record of the original digitised data. This filtering was carried out to centre the data at 30 minutes past each hour instead of at 0 minutes, for homogeneity with the data from 1932 onwards. It may also have been the belief at the time, that the raw data from the yearbooks were spot values rather than estimated mean values, and averaging would have been appropriate. In any case the original raw digitised data should also have been stored. Following this discovery a campaign to re-digitise the ESK yearbook data began.

Figure 1: Aerial view of Eskdalemuir magnetic **Observatory. Measurements started in 1908.**

Research using Observatory Hourly Values

Data sets of this type were originally used for studies into the main geomagnetic field and its secular variation, where the absolute level of the data and changes of the order of years to decades are the most important factors, rather than the variations from hour to hour. More recently, variations in the hourly values from long running observatories, like ESK, which was first established ~100 years ago, have been identified as important for studies on the long-term changes in geomagnetic activity and modelling of magnetospheric and ionospheric changes. Associated metadata are now very important due to the detail required from such studies.

Long-term change in daily variation

In a recent study [2], long series of geomagnetic hourly mean data from 14 observatories, including ESK, were used to compute 11-year average amplitudes of the regular diurnal variation of the geomagnetic field, Sq, at monthly intervals. The cause of the patterns in the long-term diurnal variation is related to changes in the solar irradiance spectrum in the EUV band. This is demonstrated in Fig 6, where it

Figure 2: Ratios between ESK and Niemegk (NGK) annual mean IHV indices showing clear step in variability from 1931 to 1932 [1].

Digitisation Method

1. All yearbooks were located - some were transferred from the BGS archive at Hartland observatory and others from ESK.

2. Tests were carried out with different scanning hardware and different Optical Character Recognition (OCR) software packages to minimise the digitising errors. 3. Monthly tables for each component, i.e. intensities in the North (X), East (Y) and

285. i	Eskda	lemu	ir. (·	- Y.)				1.1			4,00	οy(·	04 C.G.	5. unit	t) +			10			1.11.050		·	J	lune,	1926
Hour. G.M.T.	о.	Ι.	2.	3.	4.	5.	6.	7.	8.	9.	10.	11.	Noon.	1.3.	14.	15.	16.	17.	18.	19.	20.	21.	22.	23.	24.	Mean
Day. 1 D 2 D 3 4 Q 5	γ 486 420 484 467 473	$\gamma \\ 480 \\ 313 \\ 497 \\ 465 \\ 466 \\ 466 \\ $	γ 479 332 470 465 471	$\gamma \\ 476 \\ 373 \\ 458 \\ 465 \\ 467 \\ 467 \\ $	γ 471 465 464 463 467	γ 459 452 453 454 459	γ 453 420 437 449 451	γ 453 459 431 445 445	γ 451 453 432 440 443	γ 445 492 437 445 451	γ 447 488 445 465 465	γ 471 491 465 479 474	γ 502 504 480 496 489	γ 512 512 495 505 498	γ 557 519 49.8 512 505	γ 566 521 497 510 511	γ 541 519 495 502 500	γ 551 516 494 496 492	γ 539 520 485 489 492	γ 531 499 485 484 490	γ 506 492 485 484 488	$ \begin{array}{r} \gamma \\ 472 \\ 481 \\ 485 \\ 485 \\ 478 \\ 478 \end{array} $	γ 465 479 476 476 474 482	γ 422 480 478 478 474 480	γ 420 484 467 473 482	γ 488 468 472 476 477
6 7 8 D 9 D 10	482 484 484 447 469	478 472 492 450 458	474 452 437 443 458	471 453 465 440 458	465 445 474 459 460	452 447 484 448 442	439 442 465 451 437	436 433 437 431 444	439 440 439 432 448	445 447 439 444 451	459 470 470 471 458	479 487 494 489 471	497 505 504 504 485	512 512 510 511 499	512 519 525 511 496	511 51.2 516 512 504	502 521 515 516 505	498 505 493 497 511	500 498 491 498 500	500 496 485 493 498	502 495 491 494 492	493 503 478 471 491	453 499 491 486 484	478 492 459 469 479	484 484 448 469 477	478 480 480 474 475
11 12 Q 13 14 15	477 481 483 466 477	472 477 479 460 467	452 477 477 464 466	446 471 473 460 464	452 465 468 465 466	457 457 464 462 465	446 450 454 452 451	437 446 456 448 450	434 445 457 445 452	437 450 458 451 448	452 457 466 459 475	473 477 487 471 479	492 497 497 489 490	504 512 514 505 499	512 524 522 516 500	515 516 528 514 504	50Ú 511 519 510 504	498 497 506 505 5015	490 492 497 497 507	491 497 499 495 506	490 491 490 486 496	491 491 490 484 490	483- 486 479 483 477	478 485 466 483 483	481 483 466 477 483	47 48 48 47 48
16 17 18 19 20 Q	483 481 477 477 481	480 477 476 477 477	492 477 483 471 477	499 481 483 478 470	477 479 490 483 466	451 458 467 465 457	450 451 457 459 448	448 452 448 451 442	442 452 448 450 444	441 471 451 456 452	464 471 463 471 459	476 479 471 479 470	493 490 483 484 491	499 497 497 489 499	497 504 498 497 499	505 505 498 497 497	505 504 496 497 497	498 502 501 493 496	487 496 490 495 497	496 493 489 491 485	494 490 489 488 485	493 485 491 485 483	492 484 483 483 483 483	485 489 479 485 484	481 477 477 481 483	48 48 47 47 47
21 22 23 D 24 25 Q	483 483 491 466 476	477 479 491 469 475	477 478 481 477 472	470 479 481 471 471	463 476 470 471 467	453 461 464 453 458	451 454 458 458 452	446 448 452 463 444	451 448 445 457 444	458 458 451 458 443	475 477 465 459 454	483 495 483 471 468	495 503 505 487 489	497 505 522 507 504	502 504 524 501 511	499 498 543 512 516	492 497 528 505 506	491 491 524 496	-+95 4-85 5-07 88 10	491 483 484 479 485	491 483 476 478 484	487 484 481 477 483	484 483 470 487 487	484 490 465 477 479	483 491 466 476 477	47 48 48 47 47
26 Q 27 28 29 30	477 484 481 481 474	476 483 471 471 471	476 483 468 474 470	471 476 466 470 469	468 469 463 451 464	459 460 450 445 460	446 451 446 431 457	439 446 448 431 450	440 436 445 457 452	444 439 446 459 452	460 452 451 464 464	477 471 466 476 483	492 491 491 483 496	497 510 511 490 498	497 521 511 503 503	503 524 524 510 503	30304 501 501 304	1924 1924 1924 1924 1924 1924 1924 1924	1-2-4 W	484 493 497 492 4914	483 490 491 485 490	483 485 484 479 488	483 485 479 477 480	484 483 472 477 472	484 481 474 475	414 47 47 47 414 47 47 47

Vertical (Z) directions, for each month over 23 years (~800 tables) were electronically scanned. Some of the books were in poor condition (Fig 3) and it became evident that the OCR process would take much longer than originally thought.

Figure 3: An example of a poor quality image of one table of hourly values scanned from the ESK yearbooks.

Figure 6: Top: Locations of 14 observatories with time series exceeding 70 years. Middle: The root mean square amplitudes of filtered Sq (from hourly values) at the 14 selected observatories. Bottom: solar irradiance proxies

is clear that the extrema in the different time series coincide. Although the cause of the observed longer term upward trend in Sq amplitude is not certain, it is in agreement with the upward trend in a previous analysis [3]. In general, studies considering only geomagnetically quiet periods, will not be significantly affected by the filtered data. Additionally, the results of this study [2] will not be affected by the corrections carried out to the ESK data, since the shortest period fitted was 8 hours. Daily ranges from ESK hourly values will be affected, as in [3]. However, a number of other observatories were included, and so the ESK correction, almost certainly, will not change their conclusions.

Long-term change in geomagnetic activity

A proposed measure of geomagnetic activity from a single station is the inter-hour variability (IHV) index [4]. By definition, averaging neighbouring hourly values before computing this index will decrease the values of IHV obtained. The effect of correcting ESK data is demonstrated in a recent study [1]. The fact that the filtered data covered the first 21 years has exaggerated the long-term upward trend in ESK *IHV* [5] for *H* componenet. In [5] and also demonstrated in Fig 7, Lerwick (LER) *IHV(H)* seems to be a close match to the original ESK *IHV(H)*, leading to the speculation that the LER hourly values were also filtered in the early years, but this is not the case. LER data from the WDC, and those from Abinger, the third observatory operational in the UK at this time, match the values given in the

4. Examples were sent to three different commercial specialist companies. They all recommended direct data entry as opposed to using OCR. One company was commissioned to carry out this work.

5. The digitised data were processed to compute Declination (D) and Horizontal Intensity (*H*) from X and Y and a two-point running mean filter was applied to enable comparison with the existing WDC data.

Figure 4: The number of errors in an example year after data entry. Absolute differences between the WDC H and the digitised, transformed and filtered H values are shown.

Another important question is when did the ESK values change from spot values to mean values? From 1911, the heading at the top of each table states "... at each hour of GMT". From 1914 to 1917 the headings change to "... for each hour of GMT", but there is no explanation of what changed. From 1918 the headings change again to say "Mean values for periods of 60 minutes centred at the hours of GMT", but an examination of the data suggests there

- 6. Many errors in the digitised data were discovered at this stage (Fig 4), indicating a poor job was carried out by the data entry company. Manual corrections were required as follows:
- step 1 to correct all the absolute differences of >10 nT (complete)
- step 2 to correct differences of >1nT (work in progress).

Figure 7: Plot of ESK IHV (H) computed with existing WDC data (red) compared with unfiltered digitised ESK IHV (H) for 1911 to 1931 (blue). LER *IHV (H)* from 1926 is also shown.

Conclusion and Recommendations

The effect of corrections to the ESK hourly data on the outcome of previous studies depends on the exact treatment of the data, some cases will be more significantly affected than others. The final corrections to the recently digitised data set should be completed and made available from the WDC for geomagnetism, Edinburgh, where the database of hourly values was transferred in 2007 (www.wdc.bgs.ac.uk). Research using these data, where the conclusions are solely based on the Eskdalemuir activity levels during 1911 to 1931 should be checked. Further work is planned to establish when the values changed from spot values to mean values, if indeed there was such a change.

Figure 5: Plot showing one full year of fully corrected X data. The hourly values are plotted in panels of 27 days and by Bartels solar rotation number. 27-day activity recurrence patterns are evident as are diurnal variations particularly during local summer months.

Whythere a source of the sourc	078											
Whythere and a second s	1079											
Nov	1080											
Dec												
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27												
Hourly Mean Values Plotted By Bartels Solar Rotation Number												

REFERENCES

[1] Martini, D. and Mursula, K., 2006. Correcting the geomagnetic *IHV* index of the Eskdalemuir observatory, *Ann. Geophys.*, 24, 3411-3419 [2] Macmillan, S. and Droujinina, A. 2007. Long-term trends in geomagnetic daily variation, *Earth Planets Space*, [3] Le Mouël, J.-L., Kossobokov, V. and Courtillot, V., 2005. On long-term variations of simple geomagnetic indices and slow changes in magnetospheric currents: The emergence of anthropogenic global warming after 1990? Earth Planet. Sci. Lett., 232, 273-286. [4] Svalgard, L., Cliver, E. W. and Le Sager, P. 2004. IHV: A new long-term geomagnetic index, Adv. Space Sci., 34, 436-439 [5] Clilverd, M.A, Clarke, E., Ulich, T., Linthe, J. and Rishbeth, H., 2005. Reconstructing the long-term aa index, J. Geophys. Res., 110, A07205, doi:10.1029/2004JA010762