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[1] This study presents a nonlinear spatiotemporal analysis of 1167 station temperature
records from the United States Historical Climatology Network covering the period from
1898 through 2008. We use the empirical mode decomposition method to extract the
generally nonlinear trends of each station. The statistical significance of each trend is
assessed against three null models of the background climate variability, represented by
stochastic processes of increasing temporal correlation length. We find strong evidence
that more than 50% of all stations experienced a significant trend over the last century with
respect to all three null models. A spatiotemporal analysis reveals a significant cooling
trend in the South-East and significant warming trends in the rest of the contiguous U.S.
It also shows that the warming trend appears to have migrated equatorward. This shows
the complex spatiotemporal evolution of climate change at local scales.
Citation: Capparelli, V., C. Franzke, A. Vecchio, M. P. Freeman, N. W. Watkins, and V. Carbone (2013), A spatiotemporal anal-
ysis of U.S. station temperature trends over the last century, J. Geophys. Res. Atmos., 118, 7427–7434, doi:10.1002/jgrd.50551.

1. Introduction

[2] Changes in climate have significant implications for
societies, future generations, the economy, ecosystems, and
agriculture. Consequently, climate change, and especially its
anthropogenic forcing, has been, and continues to be, the
subject of intensive scientific research and public debate
[The Royal Society, 2010]. Due to the complex nature of
climate dynamics, understanding the response of the cli-
mate system to different forcings is a challenging problem,
involving analysis of the variations and trends in long time
series of atmospheric measurements and proxy records.
The global mean surface air temperature is one of the
most important and most discussed indicators of global
change. It has risen by about 0.74ıC from 1906 to 2005
and been attributed (mostly) to a rise in greenhouse gases
[Intergovernmental Panel on Climate Change, 2007].

[3] While global mean temperature is a useful indicator of
global climate change, many policy makers and the general
public are more interested in whether they already feel the
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effects of global warming where they live. Because the
background climate variability plays a much larger role on
smaller spatial scales than for the global mean [Hawkins
and Sutton, 2009], local and regional temperature trends
are easily masked by natural temperature fluctuations, and
their identification is further complicated by the fact that
climate change is not happening in general in a monotonic
and uniform way [Wu et al., 2007].

[4] The term trend is frequently encountered in data anal-
ysis and is one of the most critical quantities in global change
research. For example, in a casual Internet search, there are
presently more than 12 million items related to trend and
detrending [Wu et al., 2007]. Since there is no general defi-
nition of what a trend should be [Wu et al., 2007; Franzke,
2009], different techniques have been used to identify a
trend, and so, in general, a trend depends on the method one
is using to identify it. The simplest definition of a trend, and
the one most often used in climate research, is a straight
line fitted to the data. But this may be illogical and phys-
ically meaningless in the real nonlinear and nonstationary
world [Wu et al., 2007; Franzke, 2009]. Another definition
of trend is a running mean of the data, which requires a pre-
determined time scale to carry out the smoothing operation.
This has little rational basis, since in a stochastic or chaotic
nonstationary process, the local time scale is unknown a
priori [Wu et al., 2007]. More complicated trend extraction
methods, such as regression analysis or Fourier-based filter-
ing, are often based on stationarity and linearity assumptions
and thus face a similar difficulty in justifying their usage
[Wu et al., 2007]. Since the trend should be an intrinsic
property of the data, the processes of determining it have
to be adaptive to accommodate data from nonstationary
and nonlinear processes. The recently developed empirical
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Figure 1. Geographic distribution of the 1167 stations.

mode decomposition (EMD) method [Huang et al., 1998]
fits these requirements.

[5] Fundamentally, climate change science concerns the
identification and understanding of climate trends caused by
changing external physical processes. However, it is com-
plicated by the fact that the climate system is a complex
system in which a large number of processes nonlinearly
interact with each other to produce variations over vastly
different time and space scales. Thus, even a stationary
climate system will create apparent, so-called stochastic,
trends over rather long periods of time, which need to be
distinguished from that of a nonstationary external influ-
ence [Fatichi et al., 2009; Barbosa, 2011; Franzke, 2009,
2010, 2012].

[6] In order to do this, it is usual to compare the observed
trend with the statistical distribution of possible trends from
a simple stochastic null model. The most widely used null
models in climatic trend analysis are Gaussian white noise
[e.g., Wu et al., 2007] or an autoregressive process of first
order (AR(1)) [e.g., Santer et al., 2000, 2008; Franzke,
2009]. These two are so-called short-range dependent pro-
cesses. However, there is increasing evidence that the
climate system is long-range serially correlated, unlike white
noise, and over a longer range than AR(1) [e.g., Huybers and
Curry, 2006; Koscielny-Bunde et al., 1998; Franzke, 2010].
For this reason, we will also use a long-range dependent
process in our trend analysis.

[7] In the present paper, we study the statistical prop-
erties of nonlinear annual mean local temperature trends
from 1167 stations covering the 48 geographically contigu-
ous states of the U.S. for the period 1898 through 2008.
A previous study by Lu et al. [2005] analyzed an earlier
version of this data set covering a shorter time period and
less stations. They also tested the significance of the linear
trends against a periodic autoregressive moving average pro-
cess. Here we will use the updated version of this data set
and test the significance of the trends against three differ-
ent null models of varying correlation length and also use
a nonlinear and nonstationary method to identify the trends.
In section 2, we present the data, and we provide a short
description of the nonlinear and nonstationary EMD method
for trend identification and its application to the U.S. station

data set. Then, we analyze the statistical significance of the
temperature trends (section 2), and finally, we present the
results (section 3) and draw conclusions (section 4).

2. Methods
2.1. Temperature Data

[8] In this study, we analyze the trends of monthly
temperature times series at individual stations from the
United States Historical Climatology Network (USCHN
version 2) [Menne et al., 2009] (the data are available at
http://cdiac.ornl.gov/epubs/ndp/ushcn/ushcn.html). The full
data set consists of 1218 stations and temperature records
are homogenized, namely processed to remove systematic
changes in the bias of a climate series and to mitigate
the impact of data gaps [Menne et al., 2009]. Moreover,
the urbanization effect is likely small [Menne et al., 2009;
Hausfather et al., 2013].

[9] In order to have same time coverage for each station,
we selected 1167 stations in the 48 contiguous states of the
U.S. spanning 111 years from 1898 up to 2008 (Figure 1).

2.2. Trend Identification
[10] The trends are identified through the empirical mode

decomposition (EMD) technique, developed to process non-
linear and nonstationary data [Huang et al., 1998; Vecchio
and Carbone, 2010], and successfully applied in many
different fields [Loh et al., 2001; Echeverria et al., 2001;
Coughlin et al., 2004; Vecchio et al., 2010; Laurenza et al.,
2012; Capparelli et al., 2011; Lee and Ouarda, 2011, 2012].
EMD decomposes a time series into a finite number of
intrinsic mode functions (IMFs) and a residual by using
an adaptive basis derived from the time series through a
so-called “sifting” process, namely,

T(t) =
m–1X
j=0

�j(t) + rm(t), (1)

where T denotes the temperature time series and each IMF
�j(t) and residual rm(t) are time-dependent. The “sifting”
algorithm works as follows:

7428

http://cdiac.ornl.gov/epubs/ndp/ushcn/ushcn.html


CAPPARELLI ET AL.: ON THE TEMPERATURE TRENDS OVER THE UNITED STATES

Figure 2. Annual mean temperature record for the station of Highland, Alabama. The EMD trend is the
solid red line, while the dashed lines denote the linear least square fits to the data (black) and the EMD
trend (red).

[11] 1. All local maxima and minima of the time series
T(t) are identified.

[12] 2. All local minima (maxima) are connected through
a cubic spline as a lower (upper) envelope of the time series.

[13] 3. The signal h1(t) is calculated as the difference
between the data and the mean of lower and upper envelopes
m1(t), namely, h1(t) = T(t) – m1(t).

[14] 4. h1(t) is identified as the first IMF �1 if it satisfies
two criteria: (i) the number of extrema and the number of
zero-crossings must either be equal or differ at most by one;
(ii) at some point, the mean value of the lower and upper
envelope is zero.

[15] 5. If h1(t) does not satisfy one of these conditions,
then step 3 is repeated using h1(t) as the data, namely,
h11(t) = h1(t)–m11(t), where m11(t) is a mean of the envelopes
derived from h1 rather than T. This procedure is iterated k
times until h1k satisfies the conditions (i) and (ii) or until the

difference between the successive sifted results is smaller
than a given limit [Huang et al., 1998]:

� =
NX

t=0

"
|h1(k)(t) – h1(k–1)(t)|2

h2
1(k–1)(t)

#
, (2)

which in our case is fixed as �thr = 0.3.
[16] 6. The first IMF is identified as �1 = h1k and steps 1–5

are repeated to find the next IMF.
[17] 7. When no more IMF can be extracted, the differ-

ence between the data T(t) and the sum of all identified
IMFs defines the residual rm(t). In this study, we define this
residual as the EMD trend.

[18] As shown by Wu et al. [2007], the IMFs and the
residual obtained by using EMD can depend on the stop-
ping criterion for the sifting process. The ambiguity depends
on the data set and in particular on the sampling rate. In

Figure 3. Statistical significance test for the annual mean temperature record for the Highland, Alabama,
station. The dashed line shows the 95% confidence interval of the spread function of white noise variance.
Diamonds show the variance as a function of the mean period for each IMF and the residual from the
EMD decomposition of the annual mean temperature time series.
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(a)

(c) (d)

(b)

Figure 4. Distribution of annual mean temperature trend slopes for stations with a significant trend
against: (a) white noise, (b) SRD, (c) LRD, and (d) all null models simultaneously. Trend slopes for all
stations from data (dotted line) and from EMD trend (dashed line).

a temperature record, the main modulations are the daily
oscillation (due to the difference of temperature from day to
night) and the annual oscillation (due to seasonality). If we
apply the EMD decomposition on temperature time series
with a sampling rate less than 1 year, then a single IMF mode
will turn out to be dominant compared to the rest of the IMF
modes [Vecchio et al., 2010], making the iteration to identify
the EMD residual very sensitive to the sifting conditions. For
this reason, we decided to use the annual mean of the tem-
perature time series for each station. Using these data, we
verified that for all stations, the shape of the residuals rm(t)
does not depend on the value of �thr selected.

[19] The complexity of the definition of a trend can
be seen in Figure 2, where we show an example of the
annual mean temperature time series of the station Highland
(Alabama).

[20] A linear least square fit to the data reveals an over-
all secular decrease with a slope of mdata = (–0.986 ˙
0.172)ıC/century, which is statistically significant with
respect to the null hypothesis of a white noise times series
with no trend. However, the residual rm(t) of the EMD anal-
ysis is a nonlinear function of time, implying the existence
of a “nonlinear trend.” While a linear fit of the residual
function rm(t) gives the linear slope mEMD = (–1.185 ˙
0.046)ıC/century, which is compatible with mdata, the occur-
rence of a nonlinear trend function implies different physical
and practical interpretations with respect to the linear model,
with local acceleration and deceleration of the average
mean temperature.

2.3. Statistical Significance Test
[21] In order to illustrate the fact that the stations expe-

rienced significant variability on many time scales, we first

consider the variance of each IMF with respect to a simple
white noise model. Following the arguments of Wu and
Huang [2004], Figure 3 shows the theoretical spread func-
tion (dashed line) of the logarithm of the variance and
the logarithm of the averaged period obtained from a
white noise process using a 95% confidence level. This
is compared with (diamonds) the relationship associated
with each �j(t) and rm(t) for the representative station of
Highland (Alabama).

[22] This analysis shows that this station experiences vari-
ability on many time scales which are different from the
simple uncorrelated noise model because the variances of
the IMFs are above the 95% spread function curve with
the exception of IMF with j = 2. In addition, note that
the observed trend is significant at the 95% level and thus
unlikely to be due to the intrinsic fluctuations of this simple
null model of the background climate variability.

[23] Thus, we use three different paradigmatic null
models with increasing correlation length to test the signif-
icance of the observed trends: (i) Gaussian white noise, (ii)
short-range dependent (SRD), and (iii) long-range depen-
dent (LRD). As the SRD model, we use an AR(1) process

Table 1. Number and Percentage of Statistically Significant
Annual Mean Temperature Trends, and the Spatially Averaged
Trend Slope, as a Function of the Different Null Models

Null Model # of Stations % of Data Set Trend (ıC/century)

White noise 900 77.1 0.667˙ 0.711
SRD 616 52.8 0.876˙ 0.730
LRD 751 64.5 0.778˙ 0.713
All 593 50.8 0.898˙ 0.731
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Figure 5. Annual mean temperature time series for Fairhope, Alabama, station. EMD trend is the solid
red line, and the dashed line is linear least square fit of the EMD trend.

[von Storch and Zwiers, 1999]. As the LRD model, we use
an autoregressive fractional integrated moving average pro-
cess (FARIMA) [Hosking, 1981; Beran, 1994; Robinson,
2003; Stoev and Taqqu, 2004; Franzke et al., 2012].

[24] To systematically assess the significance of trends,
we use the following approach for each station:

[25] 1. Estimate the slope of the residual of the empiri-
cal annually averaged temperature record obtained by EMD
decomposition with �thr = 0.3.

[26] 2. Estimate the parameters of the null model from the
monthly temperature station anomalies.

[27] 3. Generate ensembles of 1000 surrogate monthly
temperature records by taking into account the parameter
uncertainties for each null model [Franzke, 2010, 2012].

[28] 4. Appropriately average the surrogate data so that
they correspond to annual mean data.

[29] 5. Estimate the slopes of the surrogate data by EMD
decomposition with �thr = 0.3, i.e., in the same way as for
the empirical data in step 1.

[30] 6. Compare the slope of the empirical trend with
the distribution of surrogate slopes. If the empirical trend
is outside the 2.5th or 97.5th percentiles of the surrogate
distribution, then we identify that this station has a trend
that is unlikely to have arisen from the background climate
variability described by the corresponding null model.

[31] Here we use a standard approach to estimate the
AR(1) parameters [Hosking, 1981; Franzke, 2010]. The
parameters of the FARIMA(0, d, 0) model, which is a
particular case of the standard FARIMA(p, d, q) processes
are estimated by a semiparametric estimator [Geweke
and Porter-Hudak, 1983; Hurvich and Deo, 1999] from
detrended monthly temperature anomalies. Note that the sur-
rogate data are generated on monthly time scales, which is
less than the annual averaging period used for the empirical
data. This is in order to include the effect of so-called climate
noise, in which the averaging of rapid fluctuations produces
variability on much longer time scales and apparent trends
[Leith, 1973; Feldstein, 2000; Franzke, 2009].

Figure 6. Geographical distribution of the slopes of the EMD annual mean temperature trend for stations
with a significant trend (filled circles) and not significant trend (open circles) against all null models.
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Figure 7. Geographical distribution of the slopes of the linear least squares fit to the annual mean
temperature data.

3. Results
3.1. Statistical Significance of Linear Slopes

[32] The results of the Monte Carlo trend analysis
described above is summarized in Figure 4 and Table 1.

[33] As expected, stations with a linear slope close to zero
were preferentially excluded by the null model tests, corre-
sponding to a flat trend or an oscillating residual rm(t), as
illustrated in Figure 5.

[34] (Compare with the significant trend shown in
Figure 2.) Out of all 1167 stations, 900 (77%) have a signif-
icant trend against the white noise null model, 616 (52.8%)
against the SRD model, and 751 (64.5%) against the LRD
model. Thus, interestingly, while all stations which are sig-
nificant against the SRD model are also significant against
the white noise model, the number of significant trends does
not simply depend on the correlation range of the null model.

[35] Overall, 593 stations (50.8% of all stations) show a
significant trend against all three null models. This provides
strong evidence [Franzke, 2012] for large-scale temperature
change of the contiguous U.S. over the last century, con-
firming and extending the results of previous studies [Jones
et al., 1999; Hansen et al., 2001; Lund et al., 2001; Lu

et al., 2005] which tested trends against only white noise
or SRD models.

[36] The average significant trend corresponds to an
increase of temperature during the last century over the
United States. However, the trend distributions display both
significant cooling trends (negative slope) as well as signifi-
cant warming trends (positive slope). These vary in location
as shown in Figure 6 for significant EMD trends against all
null models and in Figure 7 for trends obtained by a linear
least square of the station data. Figure 6 shows that both
the widespread significant warming trends and the smaller
region of significant cooling trends (in the south-east of the
United States close to the southern Appalachian Mountains)
reported by others [Lu et al., 2005] are robust to the corre-
lation structure of the null model, including the LRD model
not previously tested. Moreover, this pattern has previously
been referred to as a “warming hole” [Robinson et al., 2002;
Pan et al., 2004; Leibensperger et al., 2012].

[37] To gain insight into the likelihood of finding signif-
icant trends in a region, we subdivided the U.S. into grid
cells of the same size (about 400 km2) and then computed
the ratio of stations with significant trends against all three
null models and the total number of stations in the grid cell.

Figure 8. Geographical distribution of the probability to have a significant temperature trend against all
three null models.
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Figure 9. Contours of the derivative of EMD trends in a space-time plane for the 593 U.S. stations with
a significant trend against all three null models. The y-axis represents the (a) latitude and (b) longitude.

Figure 8 shows the geographic variation of this probabil-
ity. There is a large region covering the South-East U.S. and
states like Pennsylvania and Ohio as well as regions in the
North-West (parts of Washington State and Montana) which
have a low probability of significant trends against all three
null models, although note that these are generally greater
than the assumed 5% critical probability. Furthermore, large
parts of the contiguous U.S. have probabilities of 50% or
higher of significant trends against all three null models.

3.2. Nonlinear Trend and Local
Geographic Parameters

[38] The advantage of EMD is to obtain the residual as
a time-dependent nonlinear function without any a priori
assumption about its structural form (see equation (1)).
For each station at a given time t, we can look for the
trend slope and its derivative. This information allows us
to investigate the climate trends from a point of view that
is local in time. In Figure 9, we show a map which dis-
plays the temporal evolution of the time derivative of the
EMD trends. The derivative is obtained numerically through
second-order finite differences for each station. The stations
are sorted according to the latitude (Figure 9a) and longi-
tude (Figure 9b). Coherent structures are evident, suggesting
robust relationships. In regard to the latitude, we can see an
increase of temperatures starting around 1920, but with a lag
of about 30 years for the stations situated below of 35ıN. For
the longitude, we can note a homogeneity in the onset time of
warming, except for a middle strip from –90ı to –80ı where
it is not possible to detect any positive (warming) trend, and
including the region of significant cooling in the South-East
U.S. seen in Figure 7.

4. Conclusions
[39] In this study, we discussed the spatiotemporal dis-

tribution of station temperature trends over the contiguous
United States covering the period 1898 through 2008. We
use the EMD decomposition to extract trends in a nonsta-
tionary situation [Wu et al., 2007]. Our main results can be
summarized as follows:

[40] 1. We defined temperature trends as the residual of
an EMD analysis. The most commonly used definition of
a trend, which is a straight line fitted to the data, has
been compared with the straight line fitting of the residual
EMD function rm(t). The EMD analysis additionally reveals
deviations from linear temperature trends. Our results
extend the previous works about the temperature trends
[Jones et al., 1999; Hansen et al., 2001, 2010; Lund et al.,
2001; Lu et al., 2005], providing a more detailed view
of the geographic distribution of the positive (warming)
and negative (cooling) slopes.

[41] 2. By comparing these trends against three differ-
ent null models for the background climate variability, we
have increased confidence in the significance of the observed
trends. About 50% of all stations are found to be significant
against all three null models. This provides strong evidence
that the U.S. has experienced climate change over the last
century, irrespective of the assumed correlation structure of
the null model.

[42] 3. The value of trend rate, calculated only for the
stations with a significant trend against to all three null
models, is 0.898 ˙ 0.731ıC/century, which compares with
1.126 ˙ 0.658ıC/century [Lund et al., 2001] and 0.932 ˙
0.612ıC/century [Lu et al., 2005].

[43] 4. According to Lu et al. [2005], the region spanning
the South-East U.S. up to the states of Ohio and Illinois have
seen a cooling trend while most other regions experienced
a warming trend. Our analysis shows that these patterns are
significant against three different null models.

[44] 5. Using the time derivative of the residual EMD
function rm(t), we can define the instantaneous changing
slope of temperatures. We found that the changing slope is
well ordered by the geographical longitude and latitude of
the place where measurements are taken, and suggests that
the onset of warming migrated in latitude.

[45] Taken together, using an updated data set covering
an extended period than previous studies [Lund et al., 2001;
Lu et al., 2005], our results strengthen, support, and extend
the evidence of a significant cooling in the South-East U.S.
and of a dominant significant warming over most of the
contiguous U.S. during the last century.
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