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ABSTRACT 38 

The Aerosol Time-of-Flight Mass Spectrometer (ATOFMS) is one of few instruments able to 39 

measure the size and mass spectra of individual airborne particles with high temporal resolution. 40 

Data analysis is challenging and in the present study, we apply three different techniques (PMF, 41 

ART-2a and K-means) to a regional ATOFMS dataset collected at Harwell, UK. For the first time, 42 

Positive Matrix Factorization (PMF) was directly applied to single particle mass spectra as opposed 43 

to clusters already generated by the other methods. The analysis was performed on a total of 56898 44 

single particle mass spectra allowing the extraction of 10 factors, their temporal trends and size 45 

distributions, named CNO-COOH (cyanide, oxidised organic nitrogen and carboxylic acids), SUL 46 

(sulphate), NH4-OOA (ammonium and oxidized organic aerosol), NaCl, EC+ (elemental carbon 47 

positive fragments), OC-Arom (aromatic organic carbon), EC- (elemental carbon negative 48 

fragments), K (potassium), NIT (nitrate) and OC-CHNO (organic nitrogen). The 10 factor solution 49 

from single particle PMF analysis explained 45% of variance of the total dataset, but the factors are 50 

well defined from a chemical point of view. Different EC and OC components were separated: fresh 51 

EC (factor EC-) from aged EC (factor EC+) and different organic families (factors NH4-OOA, OC-52 

Arom, OC-CHNO and CNO-COOH). A comparison was conducted between PMF, K-means cluster 53 

analysis and the ART-2a artificial neural network. K-means and ART-2a give broadly overlapping 54 

results (with 9 clusters, each describing the full composition of a particle type), while PMF, by 55 

effecting spectral deconvolution, was able to extract and separate the different chemical species 56 

contributing to particles, but loses some information on internal mixing. Relationships were also 57 

examined between the estimated volumes of ATOFMS PMF factors and species concentrations 58 

measured independently by GRAEGOR and AMS instruments, showing generally moderate to 59 

strong correlations. 60 

 61 
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1. Introduction 64 

In the last decade numerous epidemiological studies have revealed a significant correlation between 65 

environmental particulate matter concentrations and adverse health effects. However, since most 66 

studies have used PM10 or PM2.5 mass concentrations to investigate correlations with human health 67 

outcomes it is likely that the health impacts of PM have been in most cases underestimated 68 

(Harrison et al., 2010). Atmospheric aerosol is especially problematic to characterize because of its 69 

complex and variable composition, wide size range and a broad spectrum of both natural and 70 

anthropogenic sources. In this connection, on-line measurements deploying Mass Spectrometric 71 

techniques are very promising in order to characterize both aerosol size and chemical composition 72 

for a wide range of substances (Pratt and Prather, 2011). Aerosol Time-of-Flight Mass 73 

Spectrometry (ATOFMS) is particularly attractive as it allows size and chemical characterisation by 74 

measuring the aerodynamic diameter and positive and negative ion mass spectra of individual 75 

particles in real time within the diameter range of 0.1 to 3 μm (Rebotier and Prather, 2007; Gard et 76 

al., 1997; Dall’Osto et al., 2004; Drewnick et al., 2008). The ATOFMS can measure in a single 77 

campaign hundreds of thousands of single particle mass spectra which present a considerable data 78 

analysis challenge.  79 

Successful analysis of ATOFMS data requires fast and reliable processing and interpretation of the 80 

huge amount of data generated. In order to reduce the time of analysis and the pre-deterministic 81 

nature of the manual classification, statistical methods can be used. The general aim of 82 

classification is to find a structure, i.e, groups of similar or related objects in the available data set 83 

(Hinds, 1999). The main difference between a clustering method and manual classification is that 84 

the clustering method has the ability to perform analysis over the whole spectrum, rather than as 85 

individual peaks. By applying a statistical algorithm to the ATOFMS dataset, the user bias of 86 

determining which chemical information is more important in the spectra is minimised. Therefore 87 

single particle data are usually treated with a clustering algorithm, such as K-means or ART-2a, in 88 
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order to group particles of similar size range and chemical composition (Rebotier and Prather, 2007; 89 

Gross et al., 2010; Healy et al., 2009; Pekney et al., 2006). 90 

In environmental studies, factor analysis techniques (PCA, PCFA, PMF) are widely used to perform 91 

source apportionment from data taken at receptor sites. PMF analysis has been successfully applied 92 

to 24h averaged data from analysis of particles collected on filters (Stortini et al., 2009; Jia et al., 93 

2010; Dogan et al., 2008; Bari et al., 2009; Alleman et al., 2010) whose principal limitation is the 94 

possibility of losing the point source contributions as the characteristic time of plumes from local 95 

sources is short. Thus the results obtained are usually limited to the extraction of the 3 or 4 main 96 

sources like crustal, marine, combustion sources and secondary particulate matter, while other 97 

sources can be extracted only with a wide range of chemical analyses, size segregation and more 98 

frequent measurements (Pekney et al., 2006; Wexler et al., 2008). On the other hand, PMF applied 99 

to high-resolution data (only obtainable for long periods with an on-line technique) can be a useful 100 

tool for this purpose. For example PMF analysis was successfully applied to 1h semi-continuous 101 

characterization data of both particulate and gas phase composition leading to the extraction of 6 102 

main sources, while by combining ATOFMS and AMS (aerosol mass spectrometry) data to the 103 

original dataset the PMF was able to identify 16 factors during a field campaign in Riverside, CA 104 

(Eatough et al., 2008). 105 

PMF has previously been applied to ATOFMS data after clustering by another technique (e.g. 106 

McGuire et al., 2011), but not to data before clustering. In the present study, for the first time, PMF 107 

analysis is directly applied to single particle mass spectra in order to deconvolve the different 108 

chemical species which contribute to ambient particulate matter in a rural background location in 109 

Harwell (UK). A comparison among three different data treatment techniques (PMF, K-means, 110 

ART-2a) is also conducted. Hourly temporal trends of the factors extracted from single particle 111 

analysis are compared to each other in order to highlight possible correlations and to study the 112 

mixing state of ambient particles. Moreover, temporal trends of factors and clusters are compared 113 
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with independent ion (and non refractory organic carbon) measurements to evaluate the 114 

performance of the data analysis. 115 

 116 

2. Methodology 117 

2.1. Measurement Site and Instrumentation 118 

The sampling campaign was conducted in Harwell (51°34’32”N, 1°18’49”W), a rural background 119 

site in Oxfordshire (UK) from the 4th October to the 17th October 2008 deploying two on-line mass 120 

spectrometric instruments, an Aerosol Time-of-Flight Mass Spectrometer (ATOFMS TSI Model 121 

3800-100) and an Aerosol Mass Spectrometer (Aerodyne high-resolution-ToF-AMS) (Drewnick et 122 

al., 2005; DeCarlo et al., 2006; Canagaratna et al., 2007; Jimenez et al., 2003), and a GRAEGOR 123 

(Thomas et al., 2009), which performs semi-continuous measurements of water-soluble trace gas 124 

species (NH3, HNO3, HONO, HCl and SO2) collected by two wet-annular rotating denuders and 125 

their related particulate compounds (NH4
+, NO3

-, Cl-, SO4
2-) collected in series by two steam-jet 126 

aerosol collectors (SJAC). Sample solutions are analyzed on-line by ion chromatography for anions 127 

and flow injection analysis for ammonia and ammonium (Thomas et al., 2009). During the 128 

campaign, the two inlets of GRAEGOR were placed at the same height (roughly XXX above 129 

ground) collecting PTS and PM2.5 simultaneously. 130 

Hourly data for gaseous pollutant concentrations measured as part of the UK national air quality 131 

network and local weather were obtained from the UK national air quality archive 132 

(www.airquality.co.uk). Five day air mass back-trajectories arriving at Harwell at three different 133 

altitudes (100, 500 and 1000 metres) were obtained using HYSPLIT (Hybrid Single Particle 134 

Lagrangian Integrated Trajectory Model) (Draxler and Rolph, 2003). Details of Harwell aerosol 135 

characterization and air mass trajectories have been provided in supplementary material. 136 

 137 

2.2. ATOFMS Technique 138 
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The ATOFMS (TSI 3800-100) collects, in real-time, bipolar mass spectra of individual aerosol 139 

particles. The instrument is constituted by an aerosol inlet, a sizing region and a mass spectrometer 140 

detector. In the aerosol inlet, particles are introduced into a vacuum system region through a 141 

converging nozzle, then focused through aerodynamic lenses into a narrow particle beam, which 142 

travels through the sizing region. The aerodynamic diameter of individual particles is determined 143 

from the time of flight between two continuous-wave laser beams (λ = 532 nm). After that, particles 144 

enter into the mass spectrometer region where a pulsed high power desorption/ionization laser (λ = 145 

266 nm) is triggered on the basis of the transit time of the particle measured in the sizing region. 146 

Mass analysis is then provided by a bipolar time of flight reflectron mass spectrometer (Gard et al., 147 

1997; Dall’Osto et al., 2004; Drewnick et al., 2008). 148 

During the campaign, the ATOFMS sampled aerosol through a 3/4 inch diameter copper pipe 149 

mounted vertically and in-line with the Aerodynamic Focussing Lens (AFL). The inlet of the 150 

copper pipe (roughly 4m above the ground) was protected using a simple hockey stick rain cap. The 151 

ATOFMS itself was fitted with a TSI 3800-100 AFL which admitted the aerosol at nominal 152 

volumetric flow rate of 0.1 L/min operating at a pressure of 2 torr. The device has a quoted size 153 

range of 100-3000 nm (Su et al., 2004) although in practice during the sampling campaign our 154 

system was capable of hitting 56898 particles with a measured aerodynamic diameter up to 3019 155 

nm. 156 

Before data analysis, single particles mass spectra were exported using the TSI MS-Analyze 157 

software. The peak-list were constructed using the following parameters: minimum peak height of 158 

20 units above the baseline, minimum area of 20 units and representing at least the 0.005% of the 159 

total area in the particle mass spectrum. The data obtained were analysed using positive matrix 160 

factorization (PMF), K-means cluster analysis and artificial neural network (ART-2a) analysis. 161 

 162 

2.3. Positive Matrix Factorization (PMF) Analysis 163 
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The PMF analysis was performed using the program PMF2 (Paatero and Tapper, 1994; Paatero, 164 

1998). Briefly, the positive matrix factorisation model (whose principles are detailed elsewhere 165 

(Paatero, 1994; Paatero, 1998)) solves the following equation X = GF + E where X is the original 166 

n×m data matrix, G is the n×p scores matrix (factors weight) and F is the p×m loadings matrix 167 

(factors profile), E represents the n×m residuals matrix. In the present case n is the number of 168 

particles, m is the number of m/z signals of the spectra and p is the number of factors. The exact 169 

number of factors to use was determined by monitoring the parameters suggested by Lee et al. 170 

(1999) and the chemical interpretation of the factors profile. 171 

Data matrices. Before the PMF analysis the dataset was reduced to 106 major m/z values (-146, -172 

144, -124, -121, -119, -104, -101, -99, -98, -97, -96, -95, -89, -88, -85, -84, -81, -80, -79, -76, -73, -173 

72, -71, -64, -63, -62, -61, -60, -59, -49, -48, -46, -45, -44, -43, -42, -37, -36, -35, -27, -26, -25, -24, 174 

-17, -16, -15, -14, -13, -12, 7, 12, 15, 18, 23, 24, 27, 36, 37, 39, 41, 43, 46, 48, 49, 50, 51, 52, 53, 175 

54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 69, 70, 71, 72, 73, 74, 75, 77, 81, 83, 84, 85, 86, 87, 88, 176 

91, 94, 96, 108, 115, 118, 120, 128, 132, 138, 139, 207) and 55357 particles by eliminating the bad 177 

variables (the ones that have more than 55000 zero point values on a total number of particles of 178 

56898) and the particles with a diameter below the calibration range. Absolute area of peaks was 179 

considered for the analysis, which was directly applied to single particle mass spectra.  180 

 181 

2.3.1. Data uncertainties 182 

Positive Matrix Factorization relies on the accuracy of error estimates to produce reliable non-183 

negative results and uses the estimates of the error in the data to provide both variable and sample 184 

weighting. This is particularly important when less robust datasets have to be used because of the 185 

presence of many missing or below detection limit values, as in the case of mass spectra, that could 186 

have the ability to define real sources or even be source markers (Owega et al., 2004; Paatero and 187 

Taper, 1994; Paatero, 1998; Zhang et al., 2008). The original noise of the data ( 4=bx , 4=bσ ), 188 

evaluated in zones of particle mass spectra without peaks, was added to the input matrix by 189 
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simulating it with random numbers between 0 and 8, to avoid multiple zero entries. In fact, circa 190 

70% of data in the input matrix are null values. The detection limit was evaluated as the blank value 191 

plus three times its standard deviation by integrating the mass spectra signals in several regions 192 

without peaks. The uncertainty of the data was evaluated in a laboratory experiment in which 193 

equimolar solutions of various salts were nebulised and analyzed with the ATOFMS. The data 194 

reproducibility was about 50% and 80% on the average signals for positive and negative ions 195 

respectively. Moreover, the particle diameter does not influence the signal intensity. These high 196 

uncertainties reflect the principal limits of the ATOFMS analyzer which reside in the size-197 

dependent transmission losses (Allen et al., 2000, Wenzel et al., 2003), laser intensity shot-to-shot 198 

variations (Bhave et al., 2002), ionization matrix effects (Reilly et al., 2000), different sensitivities 199 

among chemical species that make a semi-quantitative analysis possible to achieve only beside 200 

independent sampling measurements (Bhave et al., 2002; Gross et al., 2000; McGuire et al., 2011). 201 

The data uncertainties used for the PMF analysis were then calculated as follow sij = t + v . xij, 202 

where t=4DL=64 and v=0.4 in order to give the same weight to both low and high intensity signals 203 

and to avoid the effect of background noise upon the analysis. The data uncertainty of 40% was 204 

chosen because there were no further improvements by using a higher uncertainty or different 205 

uncertainties for positive and negative ions in terms of quality of the fit and explained variations. 206 

Although Q/Qexp = 0.43 could indicate a slight overestimation of real data uncertainty, the 207 

optimized value seems to be a good compromise considering laboratory experimental data.  208 

 209 

2.3.2. PMF solution 210 

The robustness of factor solutions was inspected by comparing the temporal trends of factors 211 

through the different PMF solutions. The global minimum of the factor solution was achieved by 212 

starting from 50 seeds (pseudorandom starting points). The rotational ambiguity was also tested by 213 

modifying the Fpeak parameter from -2.5 to 2.5. The effect of this variation was not significant with 214 

values in the range -0.5 – 0.5 while PMF analysis did not converge with larger Fpeak values. Thus 215 
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the PMF solution obtained could be considered unique and Fpeak=0 was used for the final analysis. 216 

After the PMF analysis, factor loadings (F) and scores (G) obtained were respectively normalized 217 

and weighted as follows: each factor loading vector was normalized by dividing it by a scalar value 218 

∑ =
=

m

j hjh fb
1

 and the corresponding score vector was weighted by multiplying it by the same scalar 219 

bh. 220 

 221 

2.4. Cluster Analysis 222 

2.4.1. K-means 223 

ATOFMS particle mass spectra were directly imported into ENCHILADA, an open source single 224 

particle mass spectra software package (Gross et al., 2010), and 56898 single particle mass spectra 225 

were clustered using the K-means/Euclidean square algorithm (McQueen, 1967). K-means, which is 226 

a non hierarchical clustering technique, starts with the random subdivision of objects (in this case 227 

single particles) into a number of clusters previously defined by the operator. The algorithm 228 

computes the total heterogeneity of the system ( )∑ ∑ ∑= = =
−=

C

c

I

i

V

v vcivcT
c c xxE

1 1 1
2 , which is related 229 

to the Euclidean distance of every object to the centroid of the cluster to which the object belongs 230 

to, and moves objects from a cluster to another until it finds the minimum of system heterogeneity 231 

(McQueen, 1967; Gross et al., 2010). In the current study, data analysis was repeated several times 232 

with increasing numbers of clusters. The exact number of clusters to use was chosen by monitoring 233 

ET and the chemical interpretation of the cluster centroid mass spectra. 234 

 235 

2.4.2. ART-2a 236 

The ATOFMS dataset was imported into YAADA (Yet Another ATOFMS Data Analyzer) and 237 

single particle mass spectra were grouped with Adaptive Resonance Theory neural network, ART-238 

2a (Song et al., 1999). The parameters used for ART-2a in this experiment were: learning rate 0.05, 239 

vigilance factor 0.85 and iterations 20. These are standard setting used in the ART-2a procedure on 240 
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ATOFMS data and further details of the parameters can be found elsewhere (Song et al., 1999; 241 

Dall'Osto and Harrison, 2006; Rebotier and Prather, 2007). An ART-2a area matrix (AM) of a 242 

particle cluster represents the average intensity for each m/z for all particles within a group. An 243 

ART-2a AM therefore reflects the typical mass spectrum of the particles within a group. 244 

 245 

2.5. Positive Matrix Factorization of AMS data 246 

Standard unit mass resolution PMF analysis was carried out on the organic matrix of the AMS 247 

dataset (Ulbrich et al. 2009). Two general factors were found: LV-OOA (low-volatile oxidized 248 

organic aerosol) and a SV-OOA (semi-volatile oxidized organic aerosol). Whilst the mass spectrum 249 

of LV-OOA factor was found to be equivalent to previous standard factor (Ulbrich et al. 2009), the 250 

factor SV-OOA contains the standard aliphatic series together with a high m/z 44 and m/z 60 251 

signals, indicating a contribution from biomass burning (Lanz et al. 2007). 252 

 253 

  254 
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3. Results and discussion 255 

3.1. PMF Analysis on Individual Particle Mass Spectra 256 

Single particle mass spectra were subjected to Positive Matrix Factorization analysis with solutions 257 

varying from 3 to 15 factors. According to both mathematical parameters and chemical 258 

interpretation of factor profiles, the 10 factor solution was selected. The factors extracted are:  259 

• F1 “CNO-COOH”, explaining 2% of variance, presents peaks of (CN-) (m/z -26) and oxidised 260 

species (CNO-) (m/z -42), (CHOO-) (m/z -45) and (CH3COO-) (m/z -59), i.e. carboxylic acids 261 

and organic nitrogen species (Angelino et al. 2001, Dall’Osto and Harrison 2006, Moffett et al., 262 

2008); 263 

• F2 “SUL” explaining 2 % of variance, is characterized by the main peak of sulphate (m/z -97); 264 

• F3 “NH4-OOA” with an explained variation of 4%, is characterized by peaks of (NH4
+) (m/z 18) 265 

and secondary organic species (C2H3
+) (m/z 27) and (C2H3O+) (m/z 43); 266 

• F4 “NaCl” explaining 6% of variance, is characterized by peaks of (Na+) (m/z 23), (Na2
+) (m/z 267 

46), (Na2O+) (m/z 62), (Na2OH+) (m/z 63) and (Na2Cl+) (m/z 81/83); 268 

• F5 “EC+” explaining 7% of data variation, contains the elemental carbon positive ions (C+, C2
+, 269 

C3
+ at m/z=+12,+24,+36); 270 

• F6 “OC-Arom” explaining 5% of variance, contains signals related to organic carbon and the 271 

benzene fragment (m/z 27, 41, 43, 51, 53, 55, 57, 63, 69, 77, 87, 91, 115) (McLafferty, 1983); 272 

• F7 “EC-” explaining 3%, is characterized by elemental carbon signals in the negative mass 273 

spectrum (C-, C2
-, C3

- at m/z=-12,-24,-36); 274 

• F8 “K” explaining 7%, contains the potassium signals (m/z 39/41); 275 

• F9 “NIT” explaining 4%, is characterized by the nitrate peaks (m/z -46/-62); 276 

• F10 “OC-CHNO” with an explained variation of 5%, is characterized by organic carbon and 277 

organic carbon related to nitrogen signals (m/z -26, 27, 37, 49-52, 60-63, 84-87). 278 

The 10 factors obtained can explain only 45% of the total data variance but they are characterized 279 

by clear and well defined chemical patterns (Figure 1). Despite the low explained variance, the 280 
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main signals constituting the factors are well represented and they account for up to 89% of the 281 

variance of potassium for example. Sulphate is explained at 84%, while the majority of the bad 282 

variables (m/z values with low signal/noise ratio, i.e. m/z=-146, -144, -124, -121, -119, -104, -101) 283 

are not explained at all. 284 

From inspection of residuals (Figure S1) it appears that the PMF analysis failed to extract a few 285 

components: this includes chloride signals (m/z = -35,-37), which are not present in the NaCl factor, 286 

water signals and some other signals probably related to m/z miscalibration problems (Dall’Osto 287 

and Harrison, 2006); however, these signals do not influence the interpretation of factors. It should 288 

be noted that despite the limited explained variance, which could be a problem in relation to 289 

quantification, the factors’ chemical profiles obtained are clear and well-defined and thus of 290 

qualitative value with the only exceptions of chloride and water signals. 291 

The results obtained demonstrate that Positive Matrix Factorization analysis applied to individual 292 

particle mass spectra allows the deconvolution of the mass spectra into the contributing specific 293 

chemical species (factors K, NIT, SUL, NaCl) or their related classes (factors EC+, EC-, OC-Arom, 294 

OC-CHNO, CNO-COOH, NH4-OOA) as well as the extraction of their temporal trends and size 295 

distributions (Figure S2). Positive and negative m/z signals are split into different factors (EC+ and 296 

EC-, K, NIT, SUL for example) due to different temporal trends either representing changing 297 

source contributions or varying relative ionization efficiencies (Bhave et al., 2002; Dall’Osto et al., 298 

2006; Gross et al., 2000). Unlike K-means or ART 2a, PMF does not cluster whole spectra, but 299 

disaggregates them into chemical constituents, or groups of constituents. The factors are used to 300 

reconstitute actual particle mass spectra as shown in Figure S3. From Figure S3, it may be seen that 301 

more than one factor is necessary to reconstruct each particle mass spectrum, demonstrating the 302 

mass spectral deconvolution made by PMF analysis on single particles. For example, in Figure S3a, 303 

the particle mass spectrum is reconstructed by 10% CNO-COOH, 3% SUL, 6% NH4-OOA, 26% 304 

OC-Arom, 10% EC-, 8% K, 8% NIT, and 29% remains unexplained. 305 
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Factor time-series were calculated as hourly sum of factor scores (not shown) and in equivalent 306 

numbers of particle (Figure 2a). Factor time series in equivalent number of particles are calculated 307 

as sum over each hour of particle fractions attributable to each factor by first calculating the fraction 308 

of particle i attributable to factor h as 309 

∑
∑
=

=

+
= m

j ijhjih

m

j hjih
ih

efg

fg
fF

1

1

)(
        (1) 310 

and then summing over each hour of particle fractions attributable to factor h: 311 

∑= hour ihhourh fFNfF ,          (2) 312 

The number size distributions were calculated by summing the factor scores of particles within the 313 

same size bin (size bin width of 0.01 µm). The factor size distributions are very similar to each 314 

other and all are dominated by the accumulation mode. The only exceptions are F4-NaCl, which 315 

presents a coarse distribution because of its origin from sea spray, and F9-NIT which presents both 316 

an accumulation and a coarse mode (Figure S2). Moreover, EC- and OC-CHNO factors clearly 317 

show a distribution that is shifted towards smaller particles with a tail in the direction of the Aitken 318 

mode particles. Despite not being corrected for size-dependent inlet efficiencies, these distributions 319 

show predictable differences. 320 

The analysis of the correlations between temporal trends of the factors, obtained by summing the 321 

score values of each factor within an hour, may give deeper insight into particle components and 322 

their sources. Correlations between factors were studied through the correlation coefficients (Figure 323 

3 and Table S1) in the Pearson correlation test. Almost every correlation is statistically significant 324 

(p-value < 0.05) but to different degrees. The NaCl seems to be an independent factor because it has 325 

no strong correlations with the other factors, according to the Cohen classification (Cohen, 1988) 326 

and it is not correlated to sulphate, EC-, potassium, nitrate and OC-CHNO (p-value>0.05). Sulphate 327 

is strongly correlated with potassium (r=0.64), nitrate (r=0.76) and the organic carbon factors, OC-328 

Arom (0.82) in particular. Potassium and nitrate are strongly correlated with almost every factor and 329 
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are the dominant species, present in the majority of the particles collected. This reflects, at least in 330 

part, the very high sensitivity of the ATOFMS to these species (Gross, 2000). 331 

Hourly temporal trends of EC- and EC+ present only a correlation of medium strength (r=0.41). 332 

EC- is strongly correlated with OC-CHNO (r=0.64) while EC+ is correlated more with secondary 333 

species (r coefficients for NH4-OOA, 0.87 and NIT, 0.61). This result suggests that the splitting of 334 

elemental carbon signals into two factors may not only reflect different ionization and detection 335 

efficiencies between positive and negative ions. It seems that the ionization pattern is influenced by 336 

the matrix composition (Reilly, 2000) distinguishing two different elemental carbon components: 337 

one probably freshly emitted (EC-) and one more aged (EC+), modified by oxidation reactions, and 338 

internally mixed with secondary species. In fact, as proposed by Reinard and Johnston (2008) 339 

secondary species like nitrate and sulphate could limit the electron availability, leading to a 340 

suppression of elemental carbon fragments negatively charged, while potassium and sodium, on the 341 

contrary, could lead to an enhancement of them. Moreover, the temporal trend of the EC- is 342 

characterized by a peak event on 16/10/2008 probably due to a combustion event near the sampling 343 

site. 344 

 345 

3.2. Cluster Analyses 346 

3.2.1. K-means 347 

The K-means analysis separated 13 clusters. Clusters obtained from miscalibrated mass spectra 348 

were eliminated and clusters with similar profiles and temporal trends were recombined to generate 349 

a total of 9 clusters (mass spectra are reported in Figure S4a and their temporal trends, expressed as 350 

the number of particles are reported in Figure 2b). The clusters are: 351 

• K (14140 particles, 25%), which presents high potassium signals and some signals of low 352 

intensity due to Na+, cyanide, nitrate and sulphate; 353 
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• K-EC (3252 particles, 6%), which presents negative ions signals related to elemental carbon, and 354 

to a lesser extent nitrate and sulphate signals, while in the positive mass spectrum it presents 355 

signals of a low intensity, related to oxidized organic carbon, potassium and sodium; 356 

• NaCl (10872, 19%), which mainly presents signals of sodium, chloride, potassium and nitrate; 357 

• EC (9436 particles, 17%), which presents both positive and negative signals related to elemental 358 

carbon and signals of nitrate and sulphate; 359 

• K-SUL-OC-NIT (1832 particles, 3%) presents CN-, NO-, NO2
-, SO3

-, HSO3
-, HSO4

- signals in 360 

the negative mass spectrum and potassium and OC aromatic signals in the positive mass 361 

spectrum; 362 

• OC (4625 particles, 8%) presents both aromatic, amine and oxygenated carbon signals and traces 363 

of ammonium, nitrate, sulphate and cyanide; 364 

• K-NIT (6829 particles, 12%) is mainly characterized by potassium and nitrate signals along with 365 

the presence of cyanide, sulphate, ammonium and oxidized organic aerosol fragments (m/z = 366 

+27/+43); 367 

• OOA (2006 particles, 4%), composed of signals corresponding to C2H3
+, C2H3O+ and carboxylic 368 

acids along with ammonium, potassium, nitrate and sulphate; 369 

• Fe-V (840 particles, 1%), characterized by signals at m/z = +51/+56/+67 that could be assigned 370 

respectively to V+, Fe+ and VO+ and by signals at m/z = +58/+60 that could be attributed to 371 

nickel and, to a lesser extent, by sodium, potassium, elemental carbon and nitrate. 372 

 373 

3.2.2. ART-2a 374 

The ART-2a algorithm generated 389 clusters used to describe the dataset (total particles 56898). 375 

The 50 most populated clusters represent more than 63% of the mass spectra from the study and 376 

thus were used for the results presented in this paper. The remaining clusters were mostly made up 377 

of a majority of miscalibrated mass spectra. By manually merging similar clusters according to their 378 

chemical and temporal profiles with the standard procedure elsewhere described (Dall’Osto and 379 



15 

Harrison, 2006), the total number of clusters describing the whole database was reduced to 9, 380 

representing about 63% of the total number of particles sampled (Figure S4b). The rest of the 381 

particles presented low signal to noise ratios and therefore were not classified. The 9 clusters are: 382 

• K-NIT (9613 particles, 17%) composed by potassium, nitrate, cyanide and sulphate; 383 

• NaCl (7852 particles, 14%) characterized by a mass spectrum identical to K-means NaCl; 384 

• OC (3172 particles, 6%) composed mainly by oxidized organic aerosol and aromatic 385 

compounds, and potassium, cyanide, nitrate and sulphate signals; 386 

• K-SUL (2355 particles, 4%) with high potassium and sulphate signals, along with ammonium, 387 

nitrate and aromatic organic compounds; 388 

• EC (5416 particles, 10%) which present a mass spectrum identical to the K-means EC; 389 

• K (1656 particles, 3%) with an high potassium signal and Na+, C3
+, nitrate and sulphate signals; 390 

• EC-Fe-V (1337 particles, 2%) composed by high signals of elemental carbon, and V+, Fe+ and 391 

VO+ in the positive mass spectrum while it does not present significant signals in the negative 392 

mass spectrum; 393 

• SOA (1066 particles, 2%) composed by ammonium, C2H3+, C2H3O+, potassium, low elemental 394 

and organic carbon signals, nitrate and sulphate; 395 

• K-EC (3390 particles, 6%) elemental carbon signals, potassium, sodium, cyanide, nitrate and 396 

sulphate. 397 

The mass spectra of the 9 clusters are shown in Figure S4b and their time-series, expressed as 398 

number of particles are reported in Figure 2c. Results obtained from ART-2a analysis are very 399 

similar to the K-means results. The two NaCl and EC clusters present the same mass spectrum. The 400 

two K-EC clusters are similar but the ART-2a cluster is characterized by higher cyanide, nitrate and 401 

sulphate signals. The OC ART-2a cluster presents higher aromatic signals than OC K-means 402 

cluster. The K-NIT K-means cluster presents aromatic organic carbon signals which are indeed not 403 

present in the K-NIT ART-2a cluster. The OOA K-means cluster has a mass spectrum similar to the 404 

SOA ART-2a cluster, with a high contribution of NH4
+, C2H3

+ and C2H3O+, but the former presents 405 
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carboxylic acids signals while the latter presents more aromatic organic compounds signals. The 406 

main differences reside in the abundance of the K cluster, which is probably overestimated by K-407 

means (25% of particles in the K-means clustering and 3% of particles in the ART-2a clustering), 408 

the EC-Fe-V ART-2a cluster which exhibits strong elemental carbon signals that are not present in 409 

the Fe-V K-means cluster, and K-SUL ART-2a cluster which has a different positive mass 410 

spectrum, dominated by the potassium signal, while the K-SUL-OC-NIT K-means cluster has OC 411 

aromatic signals in the positive mass spectrum. 412 

The differences between the two techniques could reside in the different approach to clustering the 413 

data. In K-means cluster analysis, all particles are assigned to the clusters by dividing them into 414 

groups of similarity. The number of clusters is chosen by the operator who proceeds with a trial-415 

and-error approach by incrementing the number of clusters until the division into more clusters is 416 

chemically meaningless (13 clusters in this case). On the contrary, ART-2a (running with standard 417 

parameters) usually produces a huge number of clusters (389 in this case). After that, clusters made 418 

by only few particles are eliminated and only the main contributing clusters are considered, and 419 

clusters of similar composition and size distribution are merged manually. Thus, ART-2a may give 420 

more clear and well defined clusters than K-means which considers more particles than the former 421 

in the final solution. 422 

 423 

3.3. Comparison between Results of PMF Analysis on Single Particles, K-means Cluster Analysis 424 

and ART-2a Artificial Neural Network Analysis 425 

PMF and cluster analysis can be viewed as complementary techniques. While K-means and Art-2 426 

give a rapid classification of whole particles by dividing them into classes of similarity the PMF 427 

analysis on single particle mass spectra permits the extraction of the chemical species constituting 428 

the particles. Much of the information on internal mixing is lost. 429 

The results of the correlation analysis (Pearson correlation test) among cluster and factor temporal 430 

trends (in equivalent number of particles) which have a similar chemical profile show a good 431 
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agreement (Table 1). For instance, taking into account K-means results, PMF F8-K is correlated to 432 

the K cluster with r2 = 0.99 and p-value = <0.001 (Pearson correlation test); F4-NaCl is correlated to 433 

the NaCl cluster (r2 = 0.91, p-value = <0.001) and F3 NH4-OOA is correlated to the OOA cluster (r2 434 

= 0.83, p-value = <0.001). The cross correlations between factors and cluster temporal trends 435 

confirm the conclusions obtained from the cross correlations between PMF factors (Figure 3 and 436 

Table S1). The NaCl cluster presents a strong correlation only with the NaCl factor. In fact, NaCl is 437 

an independent particle type which is directly associated with the sea spray source. The EC+ factor 438 

is strongly correlated with clusters characterized by secondary aerosol (OOA r2=0.53, K r2=0.59, K-439 

NIT r2=0.36) while EC- is not strongly correlated with any cluster, confirming the two different 440 

elemental carbon contributions to aged (EC+) and fresh (EC-) particles. The cluster Fe-V is strongly 441 

correlated with the EC+ factor (r2=0.49) probably because of a common origin from oil based fuel 442 

combustion (Korn et al., 2007) or transported from coal-fired power plants in Central Europe. In 443 

fact, EC+ abundance increased during long-range transport of air masses from Central Europe (see 444 

SI). Moreover, the K-EC cluster which is moderately correlated to organic factors as well as EC-, 445 

could represent a biomass burning signature (Bi et al., 2011; Healy et al., 2012). CNO-COOH, SUL 446 

and NH4-OOA PMF factors, as expected, are present in multiple clusters as they are highly 447 

oxidized aerosol components produced during aging processes. 448 

 449 

3.4. Comparison of PMF Analysis Results with Independent Measurements 450 

Alongside the ATOFMS, inorganic water soluble components in the TSP and PM2.5 size fractions 451 

were measured by GRAEGOR, and in non-refractory PM1 (NR-PM1) by the AMS, defined as those 452 

components within PM1 that volatilise rapidly at the vaporiser temperature of 600°C. In order to 453 

validate the PMF factor temporal trends, a correlation analysis (r-Pearson test) was made between 454 

them and these independent measurements. In Figure 5 the sulphate, nitrate, chloride, ammonium 455 

and organic concentrations are reported compared to the corresponding PMF ATOFMS factors. 456 
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For this purpose, factor temporal trends were calculated under the simplifying assumptions that all 457 

particles are homogenous, spherical and a constant mass of material is ionized from each particle, 458 

irrespective of their size (Dall’Osto et al., 2006). Particle volume was multiplied by the percentage 459 

contribution of each factor to it. The hourly time-series (in volume) of the factors were then 460 

calculated by summing the partial volume of each particle attributable to each factor (Figure 4). For 461 

comparison with AMS PM1 concentrations, PMF factor partial volumes were integrated for 462 

particles of < 1 µm diameter. It is important to note that ATOFMS time-series were not corrected 463 

for size-dependent inlet efficiencies (Dall’Osto et al., 2006). 464 

The SUL factor (expressed in volume of particles) is significantly correlated with sulphate 465 

concentrations in PM2.5 (r2 = 0.34, p-value = <0.001) and in AMS PM1 (r2 = 0.41, p-value = 466 

<0.001).  In the case of nitrate, the NIT PMF factor temporal trend is weakly correlated with nitrate 467 

concentration in PM2.5 (r2 = 0.07, p-value = <0.001), but is strongly correlated with nitrate in NR-468 

PM1 (r2 = 0.54, p-value = <0.001). The difference in the correlations may reflect different 469 

instrumental inlet characteristics leading to different large particle contributions to the temporal 470 

patterns. In fact, while NR-PM1 is fairly specific to NH4NO3, PM2.5 can contain also significant 471 

amount of NaNO3, produced by sea salt processing through HNO3. NIT PMF factor presents both 472 

an accumulation and a coarse mode, and the latter could be measured with higher efficiency than 473 

the former, and would also contain contributions that are not included in the NR-PM1. The high 474 

correlations seen for the NR-PM1 fraction are however reassuring. 475 

The NaCl factor is weakly but significantly correlated to the chloride measurements in PM2.5 (r2 = 476 

0.11, p-value = <0.001). On the contrary AMS chloride is not significantly correlated with the 477 

GRAEGOR chloride measurements (p-value = 0.32 for TSP and 0.46 for PM2.5), which shows 478 

much larger concentrations, because the AMS only detects the non-refractory fraction which is 479 

thought to be dominated by NH4Cl. The NH4-OOA factor, which contains both OOA and 480 

ammonium signals, is correlated with the ammonium concentration in PM2.5 (r2 = 0.61, p-value = 481 

<0.001) and in NR-PM1 (r2 = 0.59, p-value = <0.001) and to the organic component measured by 482 
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the AMS (r2 = 0.60, p-value = <0.001). The non-refractory organic concentration measured by AMS 483 

is strongly correlated with ammonium concentration and presents the highest correlation with the 484 

NH4-OOA PMF factor rather than with other organic factors. ATOFMS factors were also compared 485 

to TSP ion measurements, but because of different inlet characteristics, the correlations are in 486 

general weak or not significant and the results are not reported. 487 

The analysis shows clearly that PMF factors are highly significantly correlated with the 488 

corresponding chemical species mass concentrations, with a better agreement with NR-PM1 (if 489 

ATOFMS PMF factors are integrated for particles <1 µm). On the contrary, clustering analytical 490 

techniques such as K-means and ART-2a cannot disaggregate the contribution of the different 491 

chemical species present in the particles. For this reason, a direct comparison between the time-492 

series of a cluster and the mass concentration of one of its components is not appropriate. In fact, 493 

such correlation would be highly dependent on particle mixing-state. Thus, the disaggregation of 494 

species made by the PMF analysis (on single particles) proves very useful for quantification 495 

purposes of the principal substances or classes of substances constituting the particles. The 496 

determination coefficient, slope and intercept of the linear regressions between ATOFMS factors 497 

and the species concentrations measured by AMS in NR-PM1 are reported in Supplementary 498 

Material. (Table S2). Moreover, the correlation between PMF factors and the corresponding species 499 

concentrations may be even stronger if ATOFMS data are corrected for size-dependent transmission 500 

losses (Jeong et al., 2011). 501 

 502 

3.5. Comparison between ATOFMS-PMF factors and AMS-PMF factors for secondary organic 503 

aerosol 504 

In order to further validate the PMF analysis on single particle ATOFMS spectra, the factors 505 

obtained were compared with standard factors (Ulbrich et al., 2009) extracted by PMF analysis on 506 

the organic matrix of the AMS measurements (Table S3, Supplementary Materials). The 507 

comparison was conducted considering ATOFMS-PMF factor time-series in volume (integrated 508 
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over particles of < 1 µm diameter) because AMS-PMF factors are expressed in mass concentration 509 

(µg/m3). The results show that ATOFMS-PMF factors associated with aged aerosol (NH4-OOA and 510 

EC+) are better correlated with the most aged LV-OOA AMS-PMF factor (r2=0.66 and 0.67 for 511 

NH4-OOA and EC+ respectively) rather than with SV-OOA (r2=0.55 and 0.43 for NH4-OOA and 512 

EC+ respectively). On the contrary, fresh or less aged components (ATOFMS-PMF factors OC-513 

Arom and OC-CHNO) are better correlated with the less aged SV-OOA AMS-PMF factor (r2=0.54 514 

and 0.37 for OC-Arom and OC-CHNO respectively) rather than with LV-OOA (r2=0.36 and 0.07 515 

for OC-Arom and OC-CHNO respectively). 516 

Unexpectedly, EC- presented a correlation of medium intensity with both AMS-PMF factors (r2 = 517 

0.45 for LV-OOA and r2 = 0.43 for SV-OOA). However, the correlations are stronger, especially 518 

with respect to the less aged SV-OOA if the EC- time-series is expressed as the equivalent number 519 

of particles (r2 = 0.62). This may be due to the fact that using time-series calculated in volume we 520 

may further underestimate the contribution of small particles because of size-dependent 521 

transmission losses (Gross et al., 2000; Dall’Osto et al., 2006). 522 

 523 

3.6. Harwell Aerosol Characterization 524 

From the study of the back-trajectories of air masses arriving in Harwell during the sampling 525 

campaign (detailed in S.M.), it was clear that the NaCl factor was dominant during the sampling of 526 

marine-polar air masses, while during periods of sampling continental air masses (from Central 527 

Europe) elemental carbon, potassium, nitrate and sulphate concentrations increased. This is as 528 

expected as Harwell is a rural background site and it should not be influenced substantially by local 529 

primary sources. More interesting were two marine-continental periods. The first was characterized 530 

by air masses coming from the ocean, crossing Scotland and England before arriving at the Harwell 531 

site. It was characterized by high concentrations of NOx and other primary gaseous pollutants, and a 532 

high abundance of the OC-CHNO and EC- factors. The second was characterized by air masses 533 

coming from the west coast of France, low concentrations of primary gaseous pollutants and a high 534 
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amount of CNO-COOH and EC+ PMF factors. Thus, the first period was characterized by freshly 535 

emitted aerosol while the second period is characterized by aged and chemically oxidized particles. 536 

 537 

4. Conclusions 538 

PMF analysis has been applied to single particle ATOFMS mass spectra and allows the extraction 539 

and separation of significant contributing chemical components. In general, PMF factor profiles 540 

identify well defined chemical species or classes of substances from inorganic (NaCl, K, NIT, SUL) 541 

to organic families (EC+, EC-, OC-Arom, OC-CHNO, CNO-COOH, NH4-OOA). There is a partial 542 

loss of information on internal mixing of particles. 543 

From the cross correlation analysis among temporal trends of PMF factors it was possible to 544 

identify two elemental carbon components: the EC- factor, correlated to OC-CHNO, probably 545 

related to anthropogenic primary emissions and the EC+ factor present in aged particles internally 546 

mixed with secondary species. Furthermore, this is the first time in which different families of 547 

organic carbon have been extracted from ATOFMS data, including aromatic, oxidized organic 548 

compound and two different organic nitrogen components: primary (OC-CHNO) and oxidized 549 

(CNO-COOH). Oxidized carbon in the form of oxidised organic nitrogen and carboxylic acids is 550 

found only in aged aerosol while nitrate and sulphate are found in different proportions: the former 551 

in less aged aerosol such as in urban plumes while sulphate arose predominantly from long-range 552 

transport from continental sources. 553 

From the comparison of different data treatment techniques it emerges that K-means cluster 554 

analysis and ART-2a artificial neural network analysis give similar results, with particles grouped in 555 

clusters of similar composition, reflective of aerosol sources, chemical processes and a combination 556 

of both, while PMF analysis of single particle mass spectra allows the deconvolution of the mass 557 

spectra and the extraction of some constituent components. Moreover, when expressed in volume, 558 

the temporal trends of PMF factors are highly significantly correlated to the corresponding chemical 559 

species concentration measured by independent instruments, even in the case of highly internally 560 
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mixed particles, while the correlation between cluster temporal trends and corresponding chemical 561 

species concentration is highly dependent upon particle mixing state. Thus PMF analysis may prove 562 

useful for the quantification of the main components of PM data collected with the ATOFMS 563 

instrument. However, better repeatability of the ionization process and higher efficiency of particle 564 

detection would improve its quantification capability. 565 
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Table 1. Coefficient of determination (r2) values of the linear regressions between hourly temporal 721 
trends of PMF factors (equivalent number of particles) and K-means clusters or ART-2a clusters*. 722 

 r2 (PMF factors vs K-means clusters) r2 (PMF factors vs ART-2a clusters) 

PMF factors K 
K-
EC 

NaCl EC
K-SUL-
OC-NIT 

OC K-NIT Fe-V
OO
A 

K-
NIT 

NaCl OC 
K-

SUL 
EC K 

EC-
Fe-V 

SOA 
K-
EC 

CNO-COOH 0.43 0.34 0.00 0.09 0.28 0.09 0.25 0.02 0.12 0.29 0.00 0.19 0.27 0.10 0.09 0.01 0.04 0.16 

SUL 0.53 0.20 0.00 0.28 0.51 0.12 0.45 0.10 0.37 0.47 0.00 0.33 0.42 0.31 0.30 0.08 0.22 0.07 

NH4-OOA 0.76 0.01 0.11 0.68 0.01 0.17 0.64 0.27 0.83 0.78 0.12 0.19 0.46 0.76 0.73 0.23 0.48 0.03 

NaCl 0.06 0.06 0.91 0.12 0.06 0.00 0.03 0.06 0.08 0.07 0.82 0.00 0.05 0.12 0.12 0.05 0.07 0.01 

EC+ 0.59 0.00 0.14 0.99 0.00 0.02 0.36 0.49 0.53 0.53 0.16 0.04 0.38 0.87 0.60 0.66 0.24 0.01 

OC-Arom 0.54 0.31 0.00 0.25 0.36 0.29 0.59 0.08 0.42 0.53 0.00 0.45 0.34 0.30 0.29 0.05 0.26 0.11 

EC- 0.53 0.35 0.02 0.42 0.06 0.17 0.42 0.16 0.39 0.43 0.02 0.17 0.26 0.42 0.32 0.18 0.23 0.08 

K 0.99 0.03 0.04 0.56 0.03 0.04 0.47 0.17 0.61 0.78 0.05 0.11 0.64 0.58 0.60 0.21 0.25 0.07 

NIT 0.60 0.12 0.00 0.37 0.12 0.19 0.92 0.12 0.64 0.77 0.00 0.50 0.21 0.50 0.54 0.08 0.42 0.06 

OC-CHNO 0.14 0.40 0.00 0.08 0.11 0.83 0.49 0.03 0.30 0.24 0.00 0.51 0.03 0.14 0.12 0.01 0.36 0.11 

*strong correlated results (r2>0.5) are presented in bold 723 

 724 

  725 



28 

 726 

Figure 1. Mass Spectra of the 10 PMF factors.  727 
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 729 
Figure 2. Temporal trends of (a) PMF factors expressed in equivalent number of particles, (b) K-730 

means clusters and (c) ART-2a clusters in number of particles. 731 
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 734 
 735 

Figure 3. Dendogram obtained from the hierarchical cluster analysis of the temporal trends of PMF 736 
factors (single linkage method, r-Pearson correlation coefficient distance measure). 737 
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 739 

 740 
Figure 4. Hourly time-series of (a) chloride concentrations and NaCl factor, (b) nitrate 741 

concentrations and NIT factor, (c) sulphate concentrations and SUL factor, (d) ammonium, organic 742 
concentrations and NH4-OOA factor. 743 
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