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Abstract With the development of transgenic crop vari-

eties, crop–wild hybridization has received considerable

consideration with regard to the potential of transgenes to

be transferred to wild species. Although many studies have

shown that crops can hybridize with their wild relatives and

that the resulting hybrids may show improved fitness over

the wild parents, little is still known on the genetic con-

tribution of the crop parent to the performance of the

hybrids. In this study, we investigated the vigour of lettuce

hybrids using 98 F2:3 families from a cross between culti-

vated lettuce and its wild relative Lactuca serriola under

non-stress conditions and under drought, salinity and

nutrient deficiency. Using single nucleotide polymorphism

markers, we mapped quantitative trait loci associated with

plant vigour in the F2:3 families and determined the allelic

contribution of the two parents. Seventeen QTLs (quanti-

tative trait loci) associated with vigour and six QTLs

associated with the accumulation of ions (Na?, Cl- and

K?) were mapped on the nine linkage groups of lettuce.

Seven of the vigour QTLs had a positive effect from the

crop allele and six had a positive effect from the wild allele

across treatments, and four QTLs had a positive effect from

the crop allele in one treatment and from the wild allele in

another treatment. Based on the allelic effect of the QTLs

and their location on the genetic map, we could suggest

genomic locations where transgene integration should be

avoided when aiming at the mitigation of its persistence

once crop–wild hybridization takes place.

Introduction

Gene flow between crop species and their wild relatives

may result in the introgression of crop genes into wild

genomic background, or in the formation of new species

through novel combinations of crop and wild genes (Burke

and Arnold 2001; Hails and Morley 2005). The possibility

of hybridization between transgenic crops and their wild

relatives has brought interest on crop–wild gene flow to

another level due to the potential ecological consequences

of the possibility that transgenes could also be introgressed

into wild populations (Tiedje et al. 1989; Hall et al. 2000;

Snow et al. 2005; Warwick et al. 2009; Wilkinson and

Tepfer 2009).
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Gene flow can lead to hybrid plants containing crop

alleles. Crop alleles subsequently have a higher likelihood

of becoming established in the population of the wild rel-

ative with few crop–wild hybridization events, when they

provide a selective advantage to the fitness of the hybrid

plants and their offspring than when they are selectively

neutral (Lee and Natesan 2006). In the introgression and

speciation processes, the unit of selection in the first gen-

erations of hybrids is not the crop gene as such, but

genomic blocks from the crop consisting of the gene under

selection and the surrounding linked genomic region

(Stewart et al. 2003). Consequently, linkage between genes

plays a crucial role in the introgression process, because a

gene (or transgene) that has no effect on fitness may

become introgressed just by hitchhiking along with a gene

that increases fitness. Conversely, a (trans)gene could be

selected against due to its proximity to a gene that reduces

fitness. Such linkage would provide a natural mechanism

against introgression and escape of transgenes into wild

populations (Stewart et al. 2003; Kwit et al. 2011).

Multiple studies have focused on the rate of hybridiza-

tion between crops and wild relatives (Arias and Rieseberg

1994; Hoc et al. 2006; D’Andrea et al. 2008; Giannino

et al. 2008; Kiær et al. 2009), and on the occurrence of

hybrids and their fitness in relation to the fitness of the wild

parent (Snow et al. 2003; Hooftman et al. 2005, 2009;

Campbell and Snow 2007). However, few studies have

been conducted with the aim of understanding the specific

contribution of the crop and wild parents to the fitness of

the hybrids, the role of the genomic locations of the genes

(as for instance assessed through quantitative trait loci

(QTL), Baack et al. 2008), and the role of epistasis and

genotype by environment interaction on the fitness or

vigour of the hybrids. The combination of synthetic map-

ping populations and genetic linkage maps provides an

excellent tool for studying the introgression process in an

experimental setup. It allows the determination of QTLs

affecting hybrid vigour or fitness, estimation of the con-

tribution of each parent to the performance of the offspring

under controlled or non-controlled conditions and moni-

toring of specific genomic blocks in different generations

after hybridization (Rieseberg et al. 2000; Burke and

Arnold 2001; Stewart et al. 2003; Baack et al. 2008).

In this study, we investigated the contribution of the

crop alleles to the performance of a crop–wild hybrid

population derived from a cross between cultivated lettuce

(Lactuca sativa L.) and wild prickly lettuce (Lactuca

serriola L.). Cultivated lettuce and wild prickly lettuce are

interfertile species, the hybrids of which are viable and

fertile (Lindqvist 1960; Ryder and Whitaker 1976; De

Vries 1990). Experiments have shown that lettuce crop–

wild hybrids are more vigorous than their parents (Hooft-

man et al. 2005, 2007) and that this increased vigour may

lead to improved fitness of their offspring (Hooftman et al.

2009). In this study, we investigated the genetic basis of

improved hybrid vigour of lettuce hybrid plants at the

rosette stage. When drawing conclusions on fitness in wild

populations, studies following plants during a complete

cycle from seed to seed would be most optimal. However,

early life stages of plants such as germination, seedling

stage and vegetative growth are crucial phases as they

determine the survival and reproduction of the plant,

especially under stress conditions (Foolad 1996; Albacete

et al. 2008; Donohue et al. 2010). In lettuce crop–wild

hybrids, selection takes place on young plants, leading to

surviving lineages with higher vigour and fitness than the

wild genotypes (Hooftman et al. 2005, 2009). Therefore,

studies of young plants could already give valuable clues

on crop–wild hybrid fitness in an efficient manner through

performing relatively short experiments under controlled

conditions. Under natural conditions, the hybrids will most

likely be subject to adverse conditions of abiotic stress such

as drought, heat, cold, etc. Tolerance to abiotic stress fac-

tors is a prominent goal of today’s GM breeding and

evaluation, and the release of GM crop varieties tolerant to

the major abiotic stress is expected in the near future for

many crop species (Castiglioni et al. 2008; Abdeen et al.

2010; Li et al. 2010; Choi et al. 2011). Therefore, we

conducted experiments under controlled abiotic stress

conditions of drought, salinity and nutrient deficiency in

the F2 progeny of a cross between L. sativa and L. serriola.

We addressed the following questions: (1) how is the

performance of the hybrids relative to the wild parent under

non-stress and stress conditions? (2) Do crop alleles con-

tribute an advantage or disadvantage to the crop–wild

hybrids under non-stress and abiotic stress conditions

(drought, salinity and nutrient deficiency)? (3) How are the

vigour QTLs distributed along the genome, and what is the

nature of their allelic effects?

Materials and methods

Lactuca serriola and L. sativa

Lactuca serriola, prickly lettuce, is a weedy species that

thrives in ruderal, anthropogenic areas (Lebeda et al. 2001).

It is the closest relative of cultivated lettuce (L. sativa) with

which it could even be considered to be conspecific

(Kesseli et al. 1991; Hill et al. 1996; Koopman et al. 1998).

The two species have the same number of chromosomes

(2n = 2x = 18), are completely cross-compatible and the

resulting hybrids are also viable and fertile (Lindqvist

1960; Ryder and Whitaker 1976; De Vries 1990).

L. serriola and L. sativa therefore constitute a classic crop–

weed complex perfect for introgression studies. Both
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species are basically autogamous, but with a limited rate of

out-crossing by insects of 1 to 5 % for L. sativa (Thompson

et al. 1958) and an interspecific hybridization rate of up to

2.5 % between the two species (D’Andrea et al. 2008). A

recent large-scale population genetic study has shown the

occurrence of spontaneous hybrids in the field in Europe

(Uwimana et al. 2012a).

Development of hybrid plants

F1 progeny was created by crossing L. serriola and L. sa-

tiva in the greenhouse. The L. serriola parent was a

progeny of a plant collected from Eys (Province of Lim-

burg, The Netherlands), and it represents a commonly

occurring genotype among L. serriola in northwestern and

Middle Europe (designated as ‘‘cont83’’ in Van de Wiel

et al. 2010). For the L. sativa parent, we used the com-

mercial cultivar Dynamite, a butterhead lettuce developed

by Nunhems Zaden. It harbours genes for resistance to

aphids, downy mildew and lettuce mosaic virus (Van der

Arend et al. 1999), which represent important breeding

goals of lettuce cultivars. L. sativa was used as the pollen

donor, mimicking a scenario of pollen flow from a crop to

its wild relative. Crossing was performed according to the

protocols by Nagata (1992) and Ryder (1999) as described

in Hooftman et al. (2005). F2 seeds were produced by

selfing of one F1 plant. F2 seeds were sown and 200

seedlings were randomly chosen, transplanted and geno-

typed as described below. The plants were selfed and the

resulting F3 seeds were harvested per individual F2 plant.

Genotyping and construction of the linkage map

The Compositae Genome Project at UC Davis Genome

Center has developed single nucleotide polymorphism

(SNP) markers from lettuce populations derived from

crosses between closely related cultivars of L. sativa and

between L. sativa and L. serriola. These SNPs were mined

initially by re-sequencing PCR-amplified genes of interest

between Lactuca sativa cv. Salinas and L. serriola acc.

UC96US23 using Sanger sequencing (McHale et al. 2009)

and by mining Illumina sequencing data aligned to refer-

ence EST assemblies (http://compgenomics.ucdavis.edu/

compositae_SNP.php). cDNA libraries from parental lines

were sequenced with Illumina Genome Analyzer II. These

ESTs sequences encode genes for disease resistance and

plant development. In this way, more than 10,000 SNPs

were developed from 3,950 ESTs in four parental pair

combinations, namely Salinas 9 Valmaine, Pavane 9

Parade, Emperor 9 El Dorado and Thompson 9 Cisco

(http://compgenomics.ucdavis.edu/compositae_SNP.php).

To improve the conversion success rate of bio-informati-

cally identified SNPs to molecular markers, potential SNPs

were filtered to 1,083 SNPs that had been previously

assayed and shown to be robust, were polymorphic in more

than one of the four parental pair combinations, were not

located in intron/exon splice sites, were limited to one SNP

per contig, were candidate genes of interest, were evenly

distributed based on previous mapping work and the ultra-

dense lettuce map, and for which the surrounding sequence

was suitable for oligonucleotide design for the Illumina

GoldenGate assay. The selected 1,083 SNPs were con-

verted into Custom GoldenGate Panels (OPA) for geno-

typing, using an Illumina BeadXpress assay. From the

1,083 SNPs, a customized OPA of 384 SNPs which were

polymorphic between the F2 parental lines was made spe-

cifically for the population.

DNA was extracted from freeze-dried leaf samples of

the 200 F2 and parent lines using the QIAGEN DNeasy 96

Plant Kit (QIAGEN, Venlo, The Netherlands) with slight

modifications for dry plant tissue to obtain a minimum

DNA concentration of 60 ng/ll. The DNA concentration

was quantified using a NanoDrop 1000 Spectrophotometer

V3.7 (Thermo Scientific). We genotyped 187 F2 individ-

uals and the parents using the customized 384 SNP OPA in

a BeadXpress assay. Out of the 384 SNPs, 355 were suc-

cessfully scored in the 187 F2 and parental lines. 331

Markers were co-dominant, 16 were dominant for the

L. serriola allele and 8 were dominant for the L. sativa

allele. The genotypes for the 187 F2 individuals were used

to build a genetic linkage map using JoinMap� 4 (Van

Ooijen 2006). Segregation distortion was tested against the

expected allele frequency ratio of 1:1, using the v2 test of

goodness of fit with one degree of freedom. Markers within

linkage groups were ordered using the maximum likeli-

hood option of JoinMap (Jansen et al. 2001). The linkage

map was displayed using MapChart 2.2 (Voorrips 2002).

Greenhouse experiments

Based on the genotypes of the 187 F2 individuals, we

selected a set of 98 F2 plants that optimized the number of

different combinations of parental haplotype blocks, using

the program ‘‘Genetic Distance Optimization’’ (GDOpt)

(Odong et al. 2011). The program uses adapted K-medoids

clustering (Kaufman and Rousseeuw 1990) in which one

individual in each of the K clusters acts as cluster centre

and clusters are formed by minimizing the total distance of

all individuals to the nearest of the K individuals desig-

nated as cluster centres. In order to obtain a good starting

point, the initial configuration of cluster centres was pro-

vided by a modified version of Genetic Distance Sampling

(Jansen and van Hintum 2007).

F2:3 families were derived from the genotyped F2 plants

by selfing, and these were used together with the parents of

the cross in greenhouse experiments in Wageningen, The
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Netherlands. To the experimental lines, we added two

additional lines, L. serriola acc. UC96US23 and L. sativa

cv. Salinas, which, together with the parental lines, were

later used to estimate the environmental error. We carried

out two experiments: (1) the ‘‘drought experiment’’

(March–April 2010), which comprised drought and control

treatments and (2) the ‘‘salt–nutrient experiment’’ (June–

July 2010), which comprised salt, nutrient deficiency and

control treatments. Each F2 plant was represented by 12

F2:3 seedlings per treatment. The parents and the two

additional lines were also replicated 12 times per treatment.

During first establishment, the seedlings were irrigated

twice a week for 2 weeks with water supplemented with

nutrients. Subsequently, the treatments were started at the

beginning of the third week after transplanting of the

seedlings, when the plants had four to five leaves. For

the drought experiment, the plants in the control treatment

were still watered twice a week, while the plants in the

drought treatment were not given water at all. For the salt–

nutrient experiment, the plants were again irrigated twice a

week, but with added 100 mM of NaCl in the irrigation

water. The plants under nutrient deficiency treatment

received water to which no nutrients were added. The

control plants received nutrients for the whole period of the

experiment. Stress was applied for 3 weeks after which

time the plants were harvested at the rosette stage, 35 days

after transplanting. A photoperiod of 18 �C/16 h of light

and 15 �C/8 h of darkness was maintained throughout the

experiments by temperature control and application of

artificial lighting as needed. However, high summer tem-

peratures influenced the greenhouse conditions during the

salt–nutrient experiment when outside temperature reached

as high as 35 �C.

Phenotypic measurements

For each plant, vigour was determined by fresh and dry

shoot biomass and shoot height. Vigour can be taken as a

proxy for fitness at this young growth stage, but under the

caveat that fitness could only be comprehensively assessed

by following plants during a whole cycle from seed to seed.

Shoot dry weight was measured after these were dried at

80 �C for 3 days. We also calculated shoot relative mois-

ture content as the ratio of the amount of water in the shoot

to the total shoot weight [(fresh weight - dry weight)

9 100/fresh weight]. The ion content (Na?, K?, and Cl-)

for salt and control treatments of the salt–nutrient experi-

ment was measured. Because ion content is measured

based on dry matter, the 80 �C-dried shoots were dried

again at 100 �C for 24 h. The 12 plants per line per

treatment were pooled, ground to fine powder, well mixed,

and about 30 mg of dry matter was measured with the

precise weight recorded. The ground samples were ashed at

545 �C for 5 h, diluted in 3 M formic acid and further

diluted 1,000 times with extra-pure water. The diluted

solutions were used in ion chromatography analysis on an

881 Compact IC pro (Metrohm AG, Herisau, Switzerland,

Stolte et al. 2011).

Analysis of phenotypic data

Statistical analysis was performed using GenStat 13 (Payne

et al. 2011). Drought and salt–nutrient experiments were

analysed separately. The significance of the different terms

was determined by the analysis of variance, fitting the

model:

Response ¼ general meanþ blockþ genotype

þ treatmentþ genotype� treatmentþ error

Broad sense heritability of family means of the traits

was estimated for each treatment separately as the

proportion of the total variance accounted for by the

genetic variance using the formula

H2 ¼ VgðF2Þ= VgðF2Þ þ Ve=r
� �

;

where VgðF2Þ is the genetic variance among F2:3 families, Ve

is the environmental variance, and r is the number of

replications (Chahal and Gosal 2002). VgðF2Þ was estimated

based on the restricted maximum likelihood (REML)

method from the mixed model:

Response ¼ general meanþ blockþ F2 genotypeþ error;

with the response term representing the measured traits,

and the term F2 genotype taken at random. Ve was the error

variance derived from a one-way analysis of variance of

the model:

Response ¼ general meanþ blockþ parentsþ error;

with the term parents representing the two parents of the F2

plants and the two added lines (L. serriola acc. UC96US23

and L. sativa cv. Salinas).

Quantitative trait loci (QTLs) analysis

In order to effectively model genotype by environment

interaction (G 9 E, with environments represented by the

different treatments) through QTL by environment inter-

action (QTL 9 E), each trait was analysed individually

using the single trait—multiple environment option of the

programme. Genome-wide association between markers

and traits was decided based on a significance level of 0.05

corrected for multiple tests using the Li and Ji method (Li

and Ji 2005). After the selection of the best variance–

covariance model for the treatments (Malosetti et al. 2004),

the candidate QTLs were determined by an initial genome
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scan. Final QTL positions were determined by composite

interval mapping taking into account co-factors. The allelic

effect of the detected QTLs in each treatment, the effect of

QTL 9 E and the explained phenotypic variance of each

QTL per treatment were determined by running a backward

selection on the candidate QTLs in a mixed linear model,

taking the QTL effect in each treatment as fixed terms and

the interaction between each hybrid family and the treat-

ment as random (Mathews et al. 2008). In that way, each

QTL detected in one treatment was tested for its effect and

significance in the other treatments.

Epistasis was tested for the detected QTLs (Holland

2007). Each QTL region was represented by the genotypic

scores of the most significant marker in a multiple

regression model in GenStat. To avoid the effect of link-

age, overlapping QTLs were represented by one SNP

marker and no interaction was estimated for QTLs on the

same linkage group even if they did not overlap. In each

treatment, every trait was explained by the main effects of

all the detected QTLs to which interaction between one

pair of QTLs was added at a time. QTL 9 QTL interaction

was decided significant at a level of 0.05, which was cor-

rected for the number of traits by the Bonferroni method

(Bland and Altman 1995).

Results

Phenotypic variation

The analysis of variance revealed significant genotypic

variation for the measured vigour traits (plant height, fresh

weight, dry weight and relative moisture content; Pgenotype

\ 0.001), and there was significant genotype 9 treatment

variation (Pgenotype 9 treatment \ 0.001). Broad sense heri-

tability of family means of the traits ranged from moderate

to high (0.51 B H2 B 0.99, Table 1), showing that the

phenotypic variation among the F2:3 families was mainly

explained by genetic factors. Heritability depended on the

treatment. Plant height and relative moisture content seem

to show similar heritability under controlled and stressed

conditions. For the weight traits (both fresh and dry),

however, heritability is consistently lower for all the

stressed conditions and particularly so for drought and

nutrient deficiency. Crop–wild hybridization released

genetic variance: even when the means of the parents were

not significantly different, heritability was relatively high

as observed for dry weight under control (H2 = 0.90) and

drought conditions (H2 = 0.66) and for relative moisture

content under nutrient deficiency conditions (H2 = 0.89)

(Table 1).

For each trait and under all the treatments, there were

F2:3 individuals whose measurements were equal to or

greater than the means of the two L. serriola lines (Online

Resource 1). In addition, the mean for the L. serriola parent

always fell within the range of the minimum and maximum

values of the F2:3 families for all the traits and under all the

treatments (Table 1). Therefore, among the crop–wild let-

tuce hybrid families, there clearly are a relevant number of

examples having potentially increased vigour in compari-

son to the wild parent under the four tested conditions

(non-stress, drought, salt and nutrient deficiency

conditions).

Plant height positively correlated with biomass, except

under salt treatment where fresh weight was negatively

correlated with plant height (r = -18, Table 2). Under salt

treatment, Na?, Cl- and K? negatively correlated with

plant height. The correlation between ion content and plant

biomass was apparently due to shoot moisture content as

Na? and Cl- positively correlated with fresh weight and

relative moisture content, but did not correlate with dry

weight (r = 0.03 for Na? and r = 0.07 for Cl-). The lack

of correlation between ion content and dry weight indicates

that the accumulation of ions in the shoots is not related to

the biomass of the plants under salt treatment.

Genotypic data

The linkage map comprised 345 SNPs (Fig. 1) which, at an

LOD score of 4, gave nine linkage groups (LG) repre-

senting the nine chromosomes of lettuce. These had a total

length of 1,312 cM, with an individual length of

105–174 cM per LG. Each LG had 33–48 markers, with a

median distance between the markers of 1.2–3.2 cM,

except for LG9 that had 19 markers with a median distance

between the markers of 4.2 cM.

Based on the 331 co-dominantly scored SNPs in 187 F2

plants, the whole crop genome was represented in the F2

population. The average crop allele content in the F2 plants

was 50 % as expected, with individuals comprising 28–

66 % of crop alleles. The selection of the 98 F2 plants for the

experiment did not alter the average crop genome content.

Using a significance level of 0.05 corrected for multiple tests

by the Bonferroni method (a = 0.05/331, Bland and Altman

1995), eight markers (2.4 %) had crop/wild allele frequency

ratios that significantly deviated from the expected 1:1 ratio

(v2 ranging from 14 to 65). Three of these markers could not

be placed on the map and the remaining five mapped on LG3

where they spanned a continuous segment of 76 cM, with a

bias towards the crop allele (Fig. 1). The flanking markers

had relatively high v2 values as well (Pv2 = 0.0015) on both

sides of the segment, indicating a non-random effect of

segregation distortion of the segment.
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QTL analysis

Seventeen QTLs were mapped for vigour traits (plant

height, fresh weight, dry weight and relative moisture

content) and six QTLs were mapped for ion content traits

(Na?, Cl- and K?). The details about the detected QTLs

under control and stress conditions are shown in Table 3

and their locations on the linkage map are presented in

Fig. 1. The QTLs were located on eight linkage groups,

with LG1 having no QTL. The dominance effects of the

QTLs were not significant, except for two QTLs, one for

fresh weight and another one for Na? content, indicating

that the vigour of the hybrids was not mainly due to the

heterozygous genotypes. QTL by environment interaction

(here, the environments represented by the treatments) was

significant for all the vigour trait QTLs and Cl- content

QTLs. This non-additive QTL effect from one treatment to

another was due to the presence of a QTL in one treatment

and its absence in another or to a differential QTL allelic

effect characterized by unequal or opposite allelic effect

from one treatment to another.

Eleven QTLs were detected in the drought experiment

and seven of them had a positive effect from the crop allele.

Five of the QTLs were common in the control and drought

treatments, while three were specific to the control treatment

and three were specific to the drought treatment. Fifteen

vigour QTLs were detected in the salt–nutrient experiment

with five of them having a positive effect from the crop

allele and three QTLs having a positive effect from the crop

allele in either the control or salt treatment and a positive

effect from the wild allele in the nutrient-deficiency treat-

ment. Plant height was solely inherited from the wild parent

in all the treatments, while the other vigour traits were

inherited from both the crop and the wild parents.

Although the QTLs were located on eight out of nine

lettuce LGs, 16 of the 23 detected QTLs were located on

Table 1 Mean, range values and heritability for measured traits of the F2:3 families and their parents under drought, salinity, nutrient deficiency

and non-stress conditions

Trait Treatment L. serriola mean L. sativa mean F2:3 families

Mean Min Max H2

Plant height (cm) Control-D 35.88 25.69 32.95 26.49 44.99 0.84

Drought 21.63 17.85 20.52 16.80 26.43 0.82

Control-SN 57.68 22.85 43.31 13.17 89.28 0.98

Salt 27.08 14.72 25.68 13.34 53.53 0.99

Nutrient deficiency 21.22 12.12 18.91 10.03 48.07 0.98

Fresh weight (g) Control-D 44.76 72.55 53.14 31.91 69.55 0.90

Drought 10.22 13.94 11.16 8.46 14.02 0.51

Control-SN 34.51 55.18 42.25 28.5 53.44 0.86

Salt 12.64 24.98 15.28 9.38 19.92 0.83

Nutrient deficiency 7.46 10.73 8.10 5.62 10.53 0.66

Dry weight (g) Control-D 3.08a 3.20 3.02 1.60 4.39 0.90

Drought 1.83a 1.91 1.62 1.19 1.96 0.66

Control-NS 2.98a 2.46 2.91 2.12 4.32 0.90

Salt 1.33 1.97 1.54 1.09 2.21 0.80

Nutrient deficiency 1.05 1.58 1.14 0.78 1.58 0.71

Relative moisture Control-D 93.09 95.62 94.44 93.07 95.73 0.82

Content (%) Drought 81.47 85.49 84.67 79.38 88.50 0.89

Control-SN 91.31 95.56 93.08 88.62 94.57 0.93

Salt 89.41 92.10 89.84 85.99 91.78 0.96

Nutrient deficiency 85.88a 85.32 85.81 81.53 88.76 0.89

Na? (lg/g dry weight) Control-SN 11.02 13.24 9.19 3.18 20.70 –

Salt 24.35 49.91 31.47 8.32 54.89 –

Cl- (lg/g dry weight) Control-SN 10.51 19.28 15.56 7.24 22.13 –

Salt 56.37 78.47 67.78 20.65 105.67 –

K? (lg/g dry weight) Control-SN 44.14 82.77 66.14 38.36 93.07 –

Salt 49.91 39.22 49.10 23.39 72.92 –

Control-D control treatment in the drought experiment; control-SN control treatment in the salt–nutrient deficiency experiment
a L. serriola and L. sativa not significantly different
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three LGs. These were LG4, 7 and 9 and they constituted

QTL ‘‘hotspots’’ because the QTLs overlapped on the same

segments (Fig. 1). On LG7, six QTLs overlapped on a

chromosome segment of 28 cM and two more QTLs

overlapped in a neighbouring region. Five QTLs over-

lapped on LG9 and three QTLs overlapped on LG4.

QTL epistatic effect

Twenty-one QTL pairs epistatically affected the traits

under the five treatments, increasing the explained pheno-

typic variance by 6–12 % (Table 4). Heterozygosity did

not play an important role in the epistatic effect: for 18

QTL pairs, the predicted means for homozygous genotype

combinations were equal to or greater than the predicted

means for the heterozygous combinations. Four of these

QTL pairs were homozygous for the crop allele, six were

homozygous for the wild allele, and eight of the QTL pairs

were homozygous for the crop allele at one locus and

homozygous for the wild allele at the other locus.

Discussion

We studied the tolerance of young lettuce crop–wild hybrid

plants to drought, salinity and nutrient deficiency and

mapped 17 QTLs associated with plant vigour under those

conditions in F2:3 families derived from a cross between

L. serriola and L. sativa. In Avena barbata, early plant

growth was found positively correlated to survival, fully

grown plant biomass and plant fitness under field condi-

tions (Latta and McCain 2009). In lettuce crop–wild

hybrids, selection mainly takes place on young plants,

leading to surviving lineages with higher vigour and fitness

than the wild genotypes (Hooftman et al. 2005, 2009).

Nevertheless, our results can only be taken as a first

approach to assessing fitness in wild populations, as this

would call for following complete growth cycles from seed

to seed. We will discuss the effects of segregation distor-

tion and QTLs affecting vigour on crop–wild introgression,

and end with the possible implications for transgene dis-

persal mitigation.

Segregation distortion

Interspecific crosses have been reported to result in high

pre-zygotic segregation distortion in progeny (ranging from

22 to 90 % of the markers) and to be associated with

reproduction barriers (Jenni and Hayes 2009; Yue et al.

2009; Platt et al. 2010). The relatively low rate of distorted

segregation in the F2 population (2.4 %) is consistent with

the close relatedness of L. serriola and L. sativa and the

complete fertility between the two species (Ryder and

Whitaker 1976; De Vries 1990; Kesseli et al. 1991; Ko-

opman et al. 1998). In the same crop–wild cross, Hooftman

et al. (2011) observed a segregation distortion of 7.5 %

Table 2 Pearson’s coefficients of correlation among the traits

Trait Treatment Plant height Fresh weight Dry weight Relative moisture content Na? Cl-

Fresh weight Control-D 0.28

Drought 0.50

Control-SN 0.04ns

Nutrient deficiency 0.40

Salt -0.18

Dry weight Control-D 0.35 0.83

Drought 0.29 0.58

Control-SN 0.59 0.61

Nutrient deficiency 0.24 0.76

Salt 0.33 0.77

Relative moisture content Control-D -0.24 -0.19 -0.69

Drought 0.31 0.64 -0.17

Control-SN -0.68 0.13 -0.65

Nutrient deficiency 0.17 0.12 -0.52

Salt -0.80 0.17 -0.47

Na? Salt -0.56 0.56 0.03ns 0.69

Cl- Salt -0.77 0.65 0.07ns 0.80 0.79

K? Salt -0.32 0.01ns -0.13ns 0.23 -0.31 0.20

Control-D control treatment in the drought experiment; control-NS control treatment in the salt–nutrient deficiency experiment; ns correlation

coefficient not significant (P [ 0.05)
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under greenhouse (no mortality) conditions. Their results

are similar to ours with the differences in percentage

accountable to different methods of correcting the

significance level for multiple tests. The region on LG3

where the distortion was located in our study could

unfortunately not be compared with the results of
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Fig. 1 Linkage map of 345 SNPs based on 187 F2 plants derived

from a cross between L. sativa and L. serriola. The names of the

markers are shown on the left of the LG bar and the distance is given

on the right in centimorgans. The markers with distorted segregation

are shown in red (distortion towards the crop allele). The genomic

localizations of the QTLs for plant height (L), fresh weight (FW),

dry weight (DW), relative moisture content (RMC), sodium (Na),

potassium (K) and chloride (Cl) as mapped under control (black),

drought (red), salt (blue) and nutrient deficiency (green) conditions in

98 F2:3 families are represented by the blocks. Solid QTL block: effect

positive for the crop allele; open QTL block: effect positive for the

wild allele. Map and QTLs displayed using MapChart 2.2 (Voorrips

2002)
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Hooftman et al. (2011) due to the lack of common markers.

The occurrence of genomic regions at which one of the

parental alleles is favoured during segregation may result

in an increase in frequency of one parental allele at the

expense of the other allele in subsequent generations. On

one hand, further selfing of the hybrids will lead to a rapid

fixation of the crop alleles in regions such as on LG3 where

segregation is skewed in favour of the crop alleles,
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regardless of the fitness effect of the crop (trans)genes. On

the other hand, regions with segregation skewed in favour

of the wild alleles will slow down the crop allele fixation,

although none was identified in this specific cross. The

identification of such genomic regions with pre- and post-

zygotic segregation distortion could be exploited to mini-

mize the introgression likelihood of transgenes. However,

those regions are relatively rare in the lettuce crop–wild

crosses and the usefulness of such regions in minimizing

the escape of transgenes will depend on the stability of the

distortion over generations and across genotypes.

Hybrid performance and QTL effects

Hybridization between cultivated and wild lettuce resulted

in a moderate to high heritability for the vigour traits and

many of the hybrids showed improved vigour over the wild

parent under non-stress and stress conditions. The results

suggest that, if early vigour results in better fitness, lettuce

hybrids could outperform the wild parent under stress

conditions of salinity, drought and nutrient deficiency.

These results also are in line with previous experiments on

lettuce, which have shown that crop–wild hybrids could

perform equally or better than the wild parent and that,

depending on their fitness, hybrids could displace the wild

taxon L. serriola in its natural habitat (Hooftman et al.

2005, 2008). In addition, transgressive segregation was

observed among the progeny of our lettuce cross, as also

found in a cross of A. barbata ecotypes varying in drought

tolerance by Latta et al. (2010). Despite the close related-

ness between L. serriola and L. sativa and L. sativa’s

most likely domestication from ancient population(s) of

L. serriola, a recent large-scale population genetic study on

crop–wild gene flow using microsatellite data on a large

genebank collection and samples of wild L. serriola from

all over Europe has shown that the two species are still for

the largest part genetically distinguishable (Uwimana et al.

2012a). Improved hybrid vigour in early generations of

hybrids may be associated with heterosis, which in turn

could be based on dominance, overdominance and/or epi-

static loci in the repulsion phase (pseudo-overdominance)

(Birchler et al. 2003; Burke and Arnold 2001).

Table 4 Significant QTL 9 QTL interactions as detected by generalized linear model analysis fitting the main QTL effects and adding

interaction between one pair of QTLs at a time

Treatmenta Trait QTL 9 QTL % expl.

variance

Predicted genotypic meansb

a/a a/h a/b h/a h/h h/b b/a b/h b/b

C-D Plant height (cm) L-6-1 9 RMC-5-1 11 32.7 31.8 35.5 30.1 33.4 34.5 34.0 32.6 31.9

Dry weight (g) FW-6-2 9 DW-4-2 8 2.9 2.7 2.6 2.5 3.2 3.1 2.5 3.2 3.5

Relative moisture

content (%)

L-4-1 9 RMC-5-1 7 94.8 94.7 93.5 94.6 94.4 94.2 94.7 94.5 94.4

FW-2-1 9 RMC-5-1 7 94.7 94.9 94.0 94.8 94.3 94.1 94.5 94.6 94.2

D Plant height (cm) FW-8-1 9 DW-4-2 12 18.2 21.3 20.4 19.7 20.8 20.2 20.7 19.4 21.8

Dry weight (g) FW-3-1 9 RMC-4-3 12 1.7 1.6 1.6 1.5 1.7 1.8 1.5 1.6 1.6

Relative moisture

content (%)

L-6-1 9 FW-8-1 9 85.3 84.0 84.2 83.9 85.1 86.3 83.7 84.3 85.2

C-SN Fresh weight (g) L-4-1 9 L-9-1 11 43.2 41.6 47.18 44.4 43.1 38.8 39.51 42.5 38.1

L-6-1 9 RMC-4-3 11 45.7 41.0 42.9 35.8 43.1 43.5 39.2 42.1 42.0

Dry weight (g) L-4-1 9 L-9-1 9 2.9 2.8 3.2 2.8 3.1 2.8 2.4 3.0 3.1

L-4-1 9 L-7-1 8 2.8 2.9 3.4 2.7 2.9 3.2 1.9 3.0 2.8

L-7-1 9 L-9-1 11 2.7 2.6 2.4 2.7 3.1 3.0 2.7 3.2 3.6

L-7-1 9 FW-8-1 7 2.6 2.6 3.1 3.2 2.9 2.7 3.6 3.2 2.8

Relative moisture

content (%)

L-4-1 9 L-9-1 6 93.4 93.2 93.1 93.6 92.83 92.8 94.0 92.9 91.9

L-9-1 9 DW-4-2 6 93.2 93.6 93.7 93.3 93.0 92.7 93.3 92.9 91.6

DW-4-2 9 RMC-5-1 6 94.0 93.7 92.4 93.4 93.2 93.1 92.0 92.4 92.9

N Plant height (cm) L-7-1 9 L-9-1 6 11.2 7.7 14.0 13.1 20.0 25.4 15.6 25.7 31.6

Dry weight (g) L-7-1 9 L-9-1 12 1.3 1.2 1.1 1.1 1.2 1.2 1.0 1.1 1.3

S Plant height (cm) L-4-1 9 L-9-1 6 22.9 22.4 27.0 20.7 24.9 24.9 25.5 29.2 40.8

Fresh weight (g) FW-6-2 9 RMC-5-1 7 15.4 15.5 14.6 16.2 15.5 14.4 14.5 14.7 16.6

Relative moisture

content (%)

L-9-1 9 DW-4-2 6 90.6 90.1 90.9 89.7 89.5 90.7 89.3 89.5 88.7

a a homozygous for the crop allele, b homozygous for the wild allele, h heterozygous
b C-D control treatment of the drought experiment, D drought, C-SN control treatment of the salt–nutrient experiment, N, nutrient, S salt
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Combination of epistatic and additive allelic effects from

two parents at different loci in the repulsion phase has been

associated with the origin of transgressive segregation that

leads to the creation of superior phenotypes (Latta et al.

2010). It has been considered that this could even lead to

ecologically diverging phenotypes that could invade new

ecological areas, such as the sunflower hybrid species

Helianthus paradoxus (Lexer et al. 2003a, b) and crop–

wild hybrid radish (Raphanus spp.) (Campbell et al. 2006;

Campbell and Snow 2007).

Hybrid vigour due to dominance and overdominance is

expected to be short lived, as it is associated with the

advantage of the heterozygote genotypes, which breaks

down over subsequent generations due to selfing. In this

study, additivity was the major allelic action at 16 of the 17

vigour QTLs identified in the F2 population. Dominance

was significant for one vigour QTL (FW-2-1). This sug-

gests that dominance is not the most important genetic

basis behind the improved vigour among F2:3 families.

Conversely, epistasis as a result of non-additive effect of

genotypes at two QTLs was significant for the traits under

stress and control conditions. Despite the proven impor-

tance of epistasis on polygenic traits (Yu et al. 1998; Tisné

et al. 2010), it is often underestimated due to the required

large population size, which is experimentally challenging

to handle, combined with computational load, which makes

it difficult to scan all pairs of loci, especially in highly

heterozygous populations such as an F2 (Carlborg and

Haley 2004). In a whole genome epistasis analysis, Bai

et al. (2010) found that the interaction between identified

QTLs accounted only for 18 % of all the interacting pairs

of loci. We have probably also underestimated epistasis, as

it was calculated only for those loci whose main effect was

significant on their own and background loci were not

included in the interaction analysis. Despite including only

a subset of all loci in the analysis, the effect of epistasis

was significant and it accounted for 6–12 % of the phe-

notypic variance of the traits per pair.

QTL effects and transgene dispersal mitigation

QTLs affecting vigour negatively could be used to reduce

transgene dispersal when they would be in close linkage to

the transgene (Kwit et al. 2011). For a GM approach to

such containment, i.e. linking the transgene for the desired

trait to a gene conferring a disadvantage under natural

growing conditions, such as a dwarfing gene, proofs of

principle have been reported for tobacco under greenhouse

conditions (Al-Ahmad et al. 2004) and for oilseed rape in

the field (Rose et al. 2009). In the present study, we have

been searching for genomic regions with such a gene.

Many of the vigour QTLs in our stress experiments map-

ped to the same genomic regions, notably on LG4, LG7

and LG9. The QTL region on LG7 corresponds to the QTL

for germination under low and high temperature with a

positive effect from the wild allele found in the crop–wild

cross Salinas 9 L. serriola UC96US23 (Argyris et al.

2005). It also overlaps with the QTL for the number of

lateral roots in the bottom length of the taproot with a

positive effect from the wild allele in the same cross

(Johnson et al. 2000). Co-localizing QTLs were also

obtained by Baack et al. (2008) for traits related to survival

and morphology in a recombinant inbred line population of

crop–wild sunflower hybrids. QTL co-localization may be

due to a pleiotropic effect, if one QTL affects more than

one trait, but it is also possible that the QTLs are geneti-

cally linked and inseparable with the markers and recom-

bination events observed in this study. The combination of

QTL hotspots with QTL 9 treatment interaction through

opposite allelic effect across treatments makes it difficult to

choose which QTL region favours which parental allele.

Nevertheless, these regions will remain under selection,

positively or negatively, depending on to the prevailing

conditions (optimum, dry, saline or nutrient deficient).

Therefore, as insertion site of a transgene, such QTL

regions could better be avoided because there is always a

chance that the regions happen to come under positive

selection, leading to an increased frequency of linked loci

through genetic hitchhiking, and thus to a higher likelihood

of introgression of crop alleles or transgenes into the wild

population (Stewart et al. 2003; Hooftman et al. 2011; Kwit

et al. 2011). As a consequence of the ‘‘hotspots’’ of vigour

QTLs, examples of QTLs with apparently more simple

implications for transgene presence were relatively few,

e.g. on LG2 where only wild alleles were favoured and

LG8 where only crop alleles were favoured. The LG8 QTL

could thus clearly be better avoided, whereas the LG2 QTL

could be hypothesized to be a safer place, but as there were

only two conditions with the wild allele effect, this has

only weak support (see Fig. 1). From F1 progeny, the

natural process of introgression in lettuce will continue

with the creation of inbred lines through continued selfing

or backcrosses to L. serriola, or a combination of the two.

In an accompanying study, QTLs were also assessed in

BC1 and BC2, where similar QTL ‘‘hotspots’’ were found

as in the F2 (Uwimana et al. 2012b). With regard to the

above examples, the LG8 QTL with positive crop allele

effects were confirmed, but the LG2 QTL was not found.

This study was limited to a single cross and to mea-

suring plant vigour at an early stage of growth of the hybrid

plants under controlled greenhouse conditions, while

spontaneous crop–wild hybrids grow under natural field

conditions. Additionally, greenhouse and field experiments

are not always consistent (Gardner and Latta 2008; Latta

and McCain 2009). Hence, in follow-up experiments

hybrids from another cross are evaluated as well, and the
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hybrids are evaluated on the field in order to correlate early

vigour with adulthood and reproduction, and link individ-

ual stress treatment with field conditions, which may

encompass multiple abiotic stress factors in combination

with biotic stress factors such as diseases and herbivores.
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