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ABSTRACT

This study investigates the significance of trends of four temperature time series—Central England Temperature

(CET), Stockholm, Faraday-Vernadsky, and Alert. First the robustness and accuracy of various trend detection

methods are examined: ordinary least squares, robust and generalized linear model regression, Ensemble Em-

pirical Mode Decomposition (EEMD), and wavelets. It is found in tests with surrogate data that these trend

detection methods are robust for nonlinear trends, superposed autocorrelated fluctuations, and non-Gaussian

fluctuations. An analysis of the four temperature time series reveals evidence of long-range dependence (LRD)

and nonlinear warming trends. The significance of these trends is tested against climate noise. Three different

methods are used to generate climate noise: (i) a short-range-dependent autoregressive process of first order

[AR(1)], (ii) an LRD model, and (iii) phase scrambling. It is found that the ability to distinguish the observed

warming trend from stochastic trends depends on the model representing the background climate variability.

Strong evidence is found of a significant warming trend at Faraday-Vernadsky that cannot be explained by any of

the three null models. The authors find moderate evidence of warming trends for the Stockholm and CET time

series that are significant against AR(1) and phase scrambling but not the LRD model. This suggests that the

degree of significance of climate trends depends on the null model used to represent intrinsic climate variability.

This study highlights that in statistical trend tests, more than just one simple null model of intrinsic climate vari-

ability should be used. This allows one to better gauge the degree of confidence to have in the significance of trends.

1. Introduction

An important issue in climate science is the identifica-

tion of significant trends in historical climate time series.

The investigation of past climate data is not only impor-

tant for understanding the climate system but also to test

and constrain climate prediction models for future

climate projections. While there is unequivocal evidence

for global warming as measured by the global mean

temperature, it is much harder to identify significant

warming signals on regional and local scales. On these

scales intrinsic climate variability plays a much larger

role than on global scales (Hawkins and Sutton 2009).

Thus, it will take a longer time period until the

warming signal emerges and can be distinguished from

intrinsic climate variability.

In practice it is important to decide if an observed

warming is due to external forcing (e.g., greenhouse gas

emissions) or if it is due to intrinsic climate variability,

which can arise because climate variables exhibit tem-

poral correlations. If the observed warming is due to

external forcing then we will call this a deterministic

trend; on the other hand, if the warming is due to in-

trinsic climate variability we will call this a stochastic

trend (Alexandrov et al. 2008; Fatichi et al. 2009).

The amplitude and duration of stochastic trends de-

pend on the autocorrelation structure of the time series.

The more strongly consecutive and far apart values are

correlated, the longer and larger the stochastic trends

can be. There are two paradigmatic models for the cor-

relation structure of time series: short- and long-range-

dependent models (Granger 1980; Hosking 1981; Beran

1994; Stephenson et al. 2000; Percival et al. 2001; Franzke

2010; Franzke et al. 2012). A short-range-dependent model

is typically used in climate science studies. The most used

paradigmatic model for climate variability is an autore-

gressive process of first order [AR(1)] (von Storch and

Zwiers 1999). This is a short-range-dependent process; that

is, to predict the next state one only needs knowledge of

the present state. Predictions of a long-range-dependent
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process need the knowledge of the whole past to pre-

dict the next state (Beran 1994). This means that in a

long-range-dependent process, even far-apart values are

still correlated with each other. The integral over the

autocorrelation function of a long-range-dependent

process is

lim
T/‘

ðT

2T
r(s) ds 5 ‘, (1)

where r(s) is the autocorrelation function at lag s:

r(s) 5

ðT

0
x(t)x(t 1 s) dt

var(x)
. (2)

For a short-range-dependent process the integral in

Eq. (1) has a finite value (e.g., Beran 1994; Robinson

2003). These differences in the temporal dependence

structure also lead to different stochastic trend charac-

teristics. This is illustrated in Fig. 1 for AR(1) and a

paradigmatic long-range-dependent process. While nei-

ther time series realizations have any sizeable trends

over the longest time period shown, they can exhibit

trends over shorter time periods, as can be seen for the

zoomed-in time periods. But these shorter time periods

can still be rather long, especially when compared with the

length of the observational record of many climate vari-

ables. There is increasing evidence that surface tempera-

tures are long-range dependent (Koscielny-Bunde et al.

1998; Gil-Alana 2005; Huybers and Curry 2006; Rybski

et al. 2006; Fatichi et al. 2009; Franzke 2010). This makes it

more pressing to also test all trends against a long-range-

dependent null model so as not to falsely assign a sig-

nificant deterministic trend to a time series with a

stochastic trend (e.g., Fatichi et al. 2009; Franzke 2010).

The statistical identification of significant trends from

historical data raises several important issues: (i) how to

FIG. 1. Examples of two possible models for the atmospheric temperature record and their

stochastic trends over different time ranges. (a) A short-range-dependent model [AR(1)]. (b) A

long-range-dependent model [ARFIMA(0, d, 0)] with d 5 0.28. Let us assume that the time units

represent years and the stochastic process time series (black solid line) denotes annual mean

temperature. Both processes are stationary with zero mean in the asymptotic limit. (top) Thus,

there is no trend on long time scales (e.g., over 1000 yr). (bottom) However, over shorter time

ranges (e.g., 200 yr) stochastic trends may be found, as illustrated by the colored straight lines,

which denote trends derived from linear least squares fits over 30 (red), 50 (blue), 70 (magenta),

and 90 (green) yr. Notice how stochastic trends exist over relatively longer time ranges for

the long-range-dependent model. In keeping with the way climate studies fit trends, the

least squares trends are fitted to the end of the randomly chosen time series chunks. For

reference, a 30-yr mean is traditionally viewed as representative of climate.
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define a trend, (ii) how to extract the trend from noisy

data, and (iii) how to test its statistical significance.

There is no unique definition of a trend (e.g., Wu et al.

2007; Barbosa 2011). Here we require that a trend is a

very smooth monotonic function that has only one ex-

tremum within the given observational data span that is

near the end points of the time series. A trend also al-

ways depends on the method one uses to define and

extract the trend. Because of that we will compare dif-

ferent trend detection methods in this study to examine

how important this choice is. Furthermore, while the

above definition of trend seems to be generally accepted

in the climate science community, other communities

have a different understanding of trend. For example, in

economics the annual cycle is usually referred to as a

trend (Alexandrov et al. 2008). In the climate commu-

nity this is seen as being an oscillatory mode and part of

the intrinsic climate variability.

How can we decide if an identified trend is significant?

A trend can be considered significant if this trend is

unlikely to have occurred by chance. This is determined

by comparing the observed trend with stochastic trends

generated by a simple stationary stochastic process. The

duration and magnitude of these stochastic trends de-

pend on the stochastic process one uses to test the trend

against. The stochastic process has to take into account

the temporal correlation structure of the background

climate variability. Of course, the presence of a deter-

ministic trend will likely impact the temporal correlation

structure. But subtracting a stochastic trend from a time

series also will influence the temporal correlation struc-

ture (Diggle 1990). Because of this we will not detrend

the time series before fitting the stochastic processes.

This will likely lead to an overestimate of the auto-

correlation time scale and increase the magnitude and

duration of stochastic trends if a deterministic trend is

indeed present. Consequently, our claims about finding

a significant trend will be much more conservative.

Because of nonlinear interactions, climate variability

operates on a multitude of vastly different temporal

and spatial scales. The climate variability on long time

scales is usually investigated by examining averaged

data (monthly or seasonal means). This is despite the fact

that the most dominant time scale of most climate vari-

ables is either an annual time scale (i.e., annual cycle;

Qian et al. 2011) or on a daily time scale (Feldstein 2000;

Franzke 2009; Franzke and Woollings 2011) when con-

sidering seasonal data. Thus, part of the observed climate

variability on monthly and seasonal time scales stems

from the fast weather fluctuations as a result of the

averaging. This part of the variability is called climate

noise (Leith 1973; Madden 1976; Feldstein 2000; Czaja

et al. 2003; Franzke 2009; Franzke and Woollings 2011).

Climate noise is also able to produce stochastic trends

(Feldstein 2002; Franzke 2009, 2010). Thus, in this study

we will test the observed warming trends against cli-

mate noise. To generate surrogate time series of cli-

mate noise we will use different paradigmatic models

representing short- and long-range-dependent processes

and we will also use a nonparametric method to generate

surrogate data.

In this study we want to discuss the principal aspects

of trend identification and significance testing of trends

and the role played by the null model of the background

climate variability. In a previous study (Franzke 2010)

we focused more on the temperature trends in a particu-

lar region (Antarctica) and on just one trend estimation

method. Therefore, we examine four exemplary tem-

perature time series, which are presented in section 2.

In section 3 we describe various methods for trend

identification and in section 4 we discuss significance

testing. In section 5 we discuss trend properties of the

temperature time series, and we summarize our results

in section 6.

2. Data

In this study we use daily temperature data from

(i) central England for the period 1 January 1772–31

December 2009 (Parker et al. 1992), (ii) Stockholm,

Sweden, for the period 1 January 1756–31 December

2009 (Moberg et al. 2002, 2003), (iii) Faraday-Vernadsky

(Antarctic Peninsula) for the period 1 January 1951–28

February 2007 (Turner et al. 2004, 2005), and (iv) Alert,

Canada, for the period 1 July 1950–30 September 2006.

The Faraday-Vernadsky and Alert data are currently

only available for these periods. The reason that we

focus just on these four time series is that Central

England Temperature (CET) and Stockholm are two

very long weather station–based temperature time se-

ries and Faraday-Vernadsky and Alert are temperature

station time series from two polar regions that have

experienced some of the most dramatic environmental

changes in the last few decades. Hence, these time series

constitute a good representation of general tempera-

ture variability and trend behavior. All these temper-

ature time series are quality controlled and the CET

and Stockholm time series are homogenized. Before the

analysis of the temperature data, a mean annual cycle is

subtracted by averaging over each 1 January, and so forth.

The monthly anomaly temperature time series evaluated

here are formed via the monthly averaging of the daily

temperature anomaly time series [see Franzke (2010)

for more details].

In the following we will estimate the parameters for

the statistical null models from the daily data. As
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alluded to in the introduction, climate noise can cause

apparent trends over finite periods of time. To test the

trends against a climate noise null hypothesis we pursue

the following approach (Feldstein 2002; Franzke 2009,

2010): we first estimate the trends from the four monthly

temperature anomaly time series. We then compute re-

alizations of the three different null models representing

daily values and then compute the monthly means of the

synthetic data. From these monthly means we estimate

the stochastic trends. We then use the distribution of the

stochastic trends to decide if the observed temperature

trends are significantly different from the climate noise

null hypothesis.

3. Trend estimation methods

We now discuss the methods we use in this study for

trend identification. We will use fitting of a low-order

polynomial via various regression methods and wave-

lets, and also the Ensemble Empirical Mode Decom-

position (EEMD) method.

a. Ordinary least squares

The most used approach for trend estimation in the

climate community is ordinary least squares (OLS),

which is a linear regression. This method is able to fit

polynomial functions of arbitrary order to data. OLS

assumes that a time series can be decomposed into a

signal and residuals. It is assumed that the residuals

come from a distribution that has a finite variance and

are serially uncorrelated. In this study we use linear,

quadratic, and cubic polynomials to identify trends. A

cubic trend would be of the form

y 5 a 1 bt 1 ct2 1 dt3, (3)

and the quadratic and linear trends would have corre-

spondingly fewer parameters.

b. Robust regression

Robust regression (Draper and Smith 1998) is a

method that is less sensitive to large changes in a small

subset of the data. It is a form of weighted least squares

regression and is done iteratively. At each iteration step

a new set of weights is computed based on the residuals,

with larger residuals having smaller weights. Thus the

weights depend on the residuals, and consequently large

deviations and outliers are down-weighted and have less

influence on the regression fit. This constitutes an iter-

ative estimation algorithm. Here we use bisquare weight-

ing (Holland and Welsch 1977) and the weighting function

w is given by

w 5 [abs(r)(1 2 r2)2] if abs(r) , 1, (4)

where r is given by

r 5 R/[Ts
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1 2 h)

p
] (5)

and R represents the residuals, h represents the leverage

values, s is an estimate of the standard deviation of the

error term, and T 5 4.685 is the default tuning constant

(optimal in the case of Gaussian residuals).

c. GLM regression

Generalized linear model (GLM) regression gener-

alizes linear regression by allowing the dependent vari-

able to stem from a distribution from the exponential

family (Draper and Smith 1998). The exponential family

of distributions includes the Gaussian and gamma dis-

tributions. Thus GLM regression should be useful in

situations when the distribution of the residuals is non-

Gaussian and known.

d. EEMD

The Ensemble Empirical Mode Decomposition method

(Wu and Huang 2009; Huang et al. 1998; Huang and Wu

2008; Wu et al. 2007; Qian et al. 2009; Franzke 2010) de-

composes a time series into a finite number of intrinsic

mode functions (IMF) and an instantaneous mean,

x(t) 5 �
M

j51
cj(t) 1 R(t), (6)

where the jth IMF cj can be written in polar coordinates

cj(t) 5 rj(t) sin[uj(t)], where rj is the jth time-dependent

amplitude, uj the jth time-dependent frequency, and R

the residual. An IMF is different from Fourier modes

for which both rj and uj are time independent. An IMF is

defined by the following two properties: (i) each IMF cj

has exactly one zero crossing between two consecutive

local extrema (i.e., a sequence of maxima and minima),

and (ii) the local mean of each IMF cj is zero.

With the following algorithm one can estimate IMFs

from a given time series (Huang et al. 1998):

(i) Find all maxima and minima of the time series.

(ii) Fit a cubic spline through all maxima (minima);

these splines define the upper eup and lower elo

envelope of the time series.

(iii) Calculate the mean of the upper and lower enve-

lope m(t) 5 [eup(t) 1 elo(t)/2].

(iv) Subtract m from the time series. The resulting curve

represents the first IMF. Then go to step (i) and

repeat the procedure until the residual is not an IMF

anymore.
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In practice, the algorithm has to be refined by a so-called

sifting process (e.g., Huang et al. 1998), which amounts

to iterating steps (i)–(iii) until this can be considered

a zero mean to some stopping criterion (Huang et al.

1998; Rilling et al. 2003). Once this is achieved the ef-

fective IMF has been determined. The above algorithm

is repeated until all IMFs are extracted and the residual

is not an IMF anymore; thus, it violates the above two

IMF criteria. The residual can now be interpreted as

the instantaneous mean of the time series. In case this

instantaneous mean is not constant we refer to it as a

trend, which is possibly nonlinear (Wu et al. 2007) on the

time scale of the time series length.

To avoid mode mixing EEMD adds white noise to

the observed time series before the sifting process of

the standard Empirical Mode Decomposition (EMD)

(Huang et al. 1998; Huang and Wu 2008; Wu et al. 2007;

Franzke 2010) and treats the mean of the ensemble as

the final IMF. Thus, EEMD is a noise-assisted data

analysis method. We utilize 100 ensemble realizations

with a noise amplitude of 0.75 standard deviation of

the original time series. The results are insensitive to

these parameter choices [e.g., using 1000 ensemble re-

alizations does not change the results; see Wu and Huang

(2009) for more details]. EMD and EEMD have been

shown to be able to extract nonlinear trends in climatic

time series (e.g., Huang et al. 1998; Wu et al. 2007; Wu

and Huang 2009; Wu et al. 2011; Franzke 2009, 2010;

Franzke and Woollings 2011; Qian et al. 2011).

An example of an EMD decomposition is given in

Fig. 2 for the monthly mean CET time series. On the top

lhs is displayed the CET time series with the mean annual

cycle removed. The IMFs are displayed on the rhs in de-

scending order. IMF1 is displayed on the top rhs and as can

be seen contains the highest-frequency fluctuations. The

subsequent IMFs contain increasingly lower-frequency

fluctuations. The bottom rhs displays the instantaneous

mean, which in this study is interpreted as a trend. The

panels below the top left display the CET with sub-

sequent IMFs subtracted. Here the filter and smoothing

characteristics of the EMD method become visible.

e. Wavelets

Wavelets are wavelike functions representing brief

oscillations (e.g., Mallat 1999). Here we use the wavelet

approach of Andreas and Trevino (1997) to detect linear

and quadratic trends. The wavelets used are the inverted

Haar wavelet at time t, I(t, L):

FIG. 2. (top to bottom) (left) Anomalous monthly mean CET time series (mean annual cycle

subtracted) and the CET time series with subsequent IMFs subtracted. (right) IMFs of CET

time series in descending order.
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A21I(t, L) 5

21, 2
L

2
# t , 0,

1, 0 # t #
L

2
,

0, elsewhere

8>>><
>>>:

(7)

and the elephant wavelet P(t, L):

B21I(t, L) 5

1, 2
L

2
# t , 2

L

6
,

22, 2
L

6
# t ,

L

6
,

1,
L

6
# t ,

L

2
,

0, elsewhere

8>>>>>>><
>>>>>>>:

(8)

where A 5 (2/L)2, B 5 (3/2L)3, and L denotes the di-

lation scale of the wavelet and is the total length of the

time series. We use these two particular wavelet functions

because the inverted Haar wavelet corresponds to a lin-

ear trend and the elephant wavelet to a quadratic trend.

The more commonly used Morlet wavelet (Torrence

and Compo 1998) does not necessarily extract a smooth

trend devoid of oscillations and thus is not used here.

With the help of the above wavelet functions one can

estimate the coefficients of a second-order polynomial

with less operations than OLS [see Andreas and Trevino

(1997) for more details].

f. Robustness of trend detection

To test the performance and accuracy of the above

trend detection methods we generate synthetic test time

series possessing known trend characteristics that were

superposed with various types of noise. As trends we use

linear, quadratic, cubic, and exponential functions. As

noise we use

d independent Gaussian noise;
d independent gamma noise with scale u 5 2 and shape

k 5 2 parameters;
d a-stable noise with a randomly sampled from a uni-

form distribution U(1.75, 2);
d short-range-dependent noise generated by an autore-

gressive process of first order with the autoregressive

parameter randomly sampled from a uniform distri-

bution U(20.5, 0.5) and unit variance white noise;
d long-range-dependent noise generated by an autore-

gressive fractional integrated moving average process

[ARFIMA(0, d, 0); Stoev and Taqqu 2004; Franzke et al.

2012] with d randomly sampled from a uniform distri-

bution U(0, 0.5) and with unit variance white noise.

We use a Monte Carlo approach and generate 100 noise

realizations and then calculate the root-mean-square error

(RMSE) between the estimated trends and the true

trend. We report here only the results for the quadratic

and exponential trends; results for the linear and cubic

trends are very similar. Overall, all methods perform

reasonably well; the differences in estimated trends are

very minor (see Figs. 3, 4. The RMSE is typically one–

two orders of magnitude smaller than the amplitude of

the superposed noise. As can be seen in Figs. 3, 4 for many

cases, the error bounds are overlapping and no method is

significantly better than the others. This shows that all

methods identify the trends reasonably accurately given

the amplitude of the noise.

Unsurprisingly, the parametric regression methods

perform slightly better than the EEMD and wavelet

methods. The robust regression performs the worst for

gamma noise. The ordinary least squares methods are

slightly more accurate than the wavelet-based method

for linear and quadratic trends. Since the additional

computational expense is small, the use of OLS is rec-

ommended over the wavelet method. It has to be noted

that the regression methods only outperform the non-

parametric EEMD if the functional form of the trend is

known. Fitting, for example, a straight line to a cubic or

exponential trend gives a huge error. This is a potential

advantage of the nonparametric EEMD method, which

does not a priori assume a functional form of the trend.

Our results show that the influence of deviations from

Gaussianity and correlated noise is negligible in our

test cases. All methods also work reasonably well in

the presence of gamma and a-stable noise. The gamma

variates represent a skewed distribution while a-stable

noise has a power-law decay of its distribution tail and,

thus, allows for rare very large values that can be seen

as representing outliers. Larger RMSE is produced by

a-stable noise than gamma noise. The a-stable case is

a particularly hard test because of the large number of

large values (which in this study will be considered to

be outliers), so it is not surprising that it produces the

largest RMSE. Robust and GLM regression give similar

results as OLS in our experiments. This suggests that

deviations from Gaussianity do not overly affect the

detection of trends for the methods used here.

4. Trend significance testing

In this study we are testing if any detected trends are

stochastic trends and in particular if they can be ex-

plained as arising from climate noise. This means that

we assume a priori that there is no deterministic trend

present in the data. Thus, we assume that a priori all

detectable trends are stochastic trends. This implies that

we fit our stochastic model for the background climate
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variability to undetrended data because stochastic trends

are part of the intrinsic climate variability. If the ob-

served trends are larger than the trends produced by

the null models we will claim that the observed trends

are significant; that is, they cannot be explained as hav-

ing arisen from intrinsic climatic fluctuations.

To carry out our trend significance tests we need a

model for climate noise. For the purpose of generating

surrogate data representing climate noise we use three

different approaches: (i) a short-range-dependent model,

(ii) a long-range-dependent model, and (iii) the phase

scrambling method. As a short-range-dependent pro-

cess we use an autoregressive process of first order. This

is a standard stochastic process widely used in climate

science (von Storch and Zwiers 1999). As a long-range-

dependent process we use an autoregressive fractional in-

tegrated moving average process (Granger 1980; Hosking

1981; Robinson 2003). The phase scrambling method of

Theiler et al. (1992) generates surrogate data that have

exactly the same autocorrelation structure as the original

FIG. 3. Box plots of RMSEs between estimated

trend and true trend for test time series with a qua-

dratic trend and superposed noise: (a) Gaussian white

noise, (b) a-stable white noise, (c) gamma noise, (d)

AR(1) noise, and (e) ARFIMA(0, d, 0) noise. On each

box the central mark is the median, the edges of the

boxes are the 25th and 75th percentiles, the whiskers

extend to the most extreme data points not considered

to be outliers, and outliers are marked individually.
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data by randomizing the phases. This method first entails

a Fourier transformation of the data. The autocorrela-

tion function is uniquely defined by the amplitudes of the

Fourier modes. To generate surrogate data, each complex

Fourier amplitude is multiplied by eif, where f is in-

dependently chosen from a uniform distribution U(0, 2p)

for each frequency. Thus the resulting time series is the

sum of randomly phased Fourier components whose am-

plitudes satisfy the condition that the power spectrum of

that time series is identical to the power spectrum of the

data time series [see Theiler et al. (1992) for more details].

With these methods we will now perform Monte Carlo

experiments by generating 1000 realizations of each of the

three surrogate models. The AR(1) estimator (von Storch

and Zwiers 1999) and the Geweke-Porter-Hudak (GPH)

semiparametric estimator (Geweke and Porter-Hudak

1983; Hurvich and Deo 1999; Franzke 2010; Franzke et al.

2012) are applied to the data to provide parameter esti-

mates and 5% uncertainty bounds for the short- and long-

range processes, respectively. The GPH estimator infers

the long-range dependence parameter d, which is a mea-

sure of the strength of the temporal dependence or

FIG. 4. As in Fig. 3, but with an exponential trend and

superposed noise.
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correlation structure of a time series (e.g., Granger 1980;

Hosking 1981; Beran 1994; Franzke 2010; Franzke et al.

2012). A d value of 0 denotes independent data and larger

d values indicate a strong temporal dependence. A

strong dependence means that the past history still

influences the future evolution of a system. This

characteristic is responsible for long-range-dependent

processes exhibiting apparent (stochastic) trends.

For the Monte Carlo experiments we take into ac-

count the parameter estimate uncertainty by sampling

from a normal distribution with the parameter estimate

as the mean and the uncertainty bounds as the variance.

The phase scrambling method automatically provides

different realizations of surrogate time series for dif-

ferent realizations of the randomly chosen phases.

Then we apply the various trend extraction methods to

this ensemble of surrogate data and compute the stochastic

trends of the surrogate data. The magnitude of a trend is

defined as the range of the trend over the whole time pe-

riod covered by the corresponding observed time series. If

the range of the trend in the observed data is outside the

5th or 95th percentile of the trend ranges computed from

the ensemble of surrogate data we claim that the observed

trend is statistically significant and is unlikely to have

arisen from climate noise based on the used null model.

When comparing the trend significance of different null

models one cannot expect that they will always agree. Our

null models are also not independent. Trends that are

significant against the long-range-dependent models will

also be significant against the AR(1) model but not nec-

essarily vice versa. Thus, this requires us to introduce

degrees of significance. We will use the following scheme:

d Trend is significant against all three null models:

strong evidence of a deterministic trend
d Trend is significant against two null models: moderate

evidence of a deterministic trend
d Trend is significant against only one null model: weak

evidence of a deterministic trend

In general, one can have more confidence in the signif-

icance of an observed trend if this trend is significant

against a large number of null models. However, the null

models have to be carefully chosen to be suitable and

relevant for the problem and the available data.

5. Long-range dependence and trend analysis of
surface temperature data

First we examine the temperature time series for evi-

dence of long-range dependence. Our analysis finds evi-

dence for long-range dependence for all four temperature

time series (Table 1). All long-range-dependence values

are significantly different from zero at the 5% level and

positive. Faraday-Vernadsky and Stockholm have the

largest long-range-dependence values at about d 5 0.28.

This is consistent with previous studies of surface tem-

peratures that also find evidence of the long-range de-

pendence of temperatures (Koscielny-Bunde et al. 1998;

Gil-Alana 2005; Huybers and Curry 2006; Vyushin and

Kushner 2009, 2012; Franzke 2010). The fact that all

d values are smaller than 0.5 but positive indicates that all

four time series are persistent and stationary. By station-

ary we mean that they have a constant finite mean and

variance. Furthermore, the estimates of the AR(1) pa-

rameters give values in the range of 0.74–0.79 (Table 1). It

has to be noted that the AR(1) process is better in cap-

turing the initial decay of the autocorrelation function

while long-range-dependent processes capture the long-

time decay.

Using the methods described above to compute the

trends reveals that a least squares cubic polynomial fit has

the smallest root-mean-square error for all four time series.

This provides evidence for the existence of nonlinear

trends in surface temperature. Also, the EEMD trends are

nonlinear and very similar to the cubic fits (Fig. 5). Fur-

thermore, all trends correspond to warming trends, with

Faraday-Vernadsky exhibiting the largest warming of

about 3.598C (for the period 1951–2007) while the other

time series experienced smaller warmings of about 18–

1.58C (Table 1). The warming at Faraday-Vernadsky is

consistent with the warming over the last 120 yr on the

Antarctic Peninsula as identified in an ice core (Thomas

et al. 2009).

Now that we have found evidence for warming in all

four temperature time series we have to check if this

warming could have arisen by chance, that is, whether

the warming trends are likely deterministic or stochastic

trends. Our Monte Carlo experiments show that the

warming trend at Faraday-Vernadsky cannot be ex-

plained as arising from climate noise for any of the

three null models (see Table 2). This provides strong

evidence that the trend at Faraday-Vernadsky is a de-

terministic trend. This is consistent with the findings by

Turner et al. (2005) and Franzke (2010).

TABLE 1. Estimates of the long-range-dependence parameter

d and of the AR(1) coefficient with the corresponding 5% confi-

dence bounds. Also given are the estimated warming values by

fitting a cubic polynomial to the data.

d AR(1) Trend in 8C

CET 0.19 60.03 0.78 60.0042 1.18

Stockholm 0.28 60.02 0.79 60.0040 1.47

Faraday-Vernadsky 0.28 60.04 0.74 60.0086 3.59

Alert 0.17 60.05 0.79 60.0084 0.92
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The warming trends of the CET and Stockholm time

series are significant for the AR(1) and phase scrambl-

ing tests but not the long-range-dependent model (see

Table 2). Thus we find moderate evidence for a signifi-

cant trend in these two temperature time series. The

warming trend at Alert can be explained as having arisen

because of climate noise since all three null models are

able to produce trends of at least the same magnitude (see

Table 2). Thus, we find no evidence for a deterministic

trend at Alert.

6. Concluding discussion

Our results highlight the importance of the null model to

the significance of temperature trends. The used null

models have different structures of the decay of the au-

tocorrelation function. This accounts for the fact that

highly autocorrelated time series can exhibit stochastic

trends over rather long periods of time. This fact has to be

taken into account in any significance test of trends. Dif-

ferent paradigmatic null models represent different as-

pects of the autocorrelation structure and, thus, impact the

test of statistical significance of trends. Thus, we recom-

mend using different null models in any significance test of

climate trends to see how strong the evidence is for a trend.

We also compared various trend identification

methods. Most climate studies use a linear least squares

regression fit (e.g., Santer et al. 2000, 2008; Feldstein

2002; Turner et al. 2005), though recently the EMD/

EEMD method has become popular in climate re-

search (e.g., Huang et al. 1998; Huang and Wu 2008;

Wu et al. 2007; Franzke 2010). We find in tests with

synthetic data that various regression methods,

EEMD, and wavelets are reliable tools in trend iden-

tification and are robust against non-Gaussian and

correlated intrinsic fluctuations. We also find evidence

for the presence of nonlinear trends. Our results

suggest that one should use low-order polynomials and

nonparametric methods like EEMD to compare the re-

sults from different trend detection methods.

Here we used three null models representing the

background climate variability, two parametric models,

and one nonparametric model. We find strong evidence

that the observed warming at Faraday-Vernadsky cannot

be explained as arising from climate noise. However, the

use of a long-range-dependent model for the background

climate variability negates the trends of two other

temperature time series (CET and Stockholm) when

compared with a short-range-dependent model. The

short-range-dependent model, an AR(1) process, is the

model used in almost all previous temperature trend

studies. Using the nonparametric phase scrambling

method, which produces surrogates with exactly the

same autocorrelation structure as the observed data,

provides evidence that CET and Stockholm experience

significant warming that cannot be explained as arising

from climate noise and, thus, are unlikely to be stochastic

trends. Thus, there is moderate evidence for a signifi-

cant temperature trend in the CET and Stockholm time

series.

These results highlight that the correlation and de-

pendence structure of the climate system needs to be

much better understood. It is also important to examine

if a short- or long-range-dependent model better

FIG. 5. Monthly mean temperature time series (black line; mean annual cycle subtracted) with cubic trend (red line)

and EEMD trend (blue line): (a) CET, (b) Stockholm, (c) Faraday-Vernadsky, and (d) Alert time series.

TABLE 2. Significance of the trends at the 5% level against the

various null models of climate noise. PS denotes the phase

scrambling method.

AR(1) ARFIMA(0, 1, 0) PS

CET X — X

Stockholm X — X

Faraday-Vernadsky X X X

Alert — — —
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describes internal climate variability. Studies by Percival

et al. (2001) and Vyushin and Kushner (2012) addressed

this question by comparing the fits of an AR(1) and

fractional differenced model; both models contain two

parameters that need to be fitted. Percival et al. (2001)

conclude that the current climate record is too short

to prefer one model over the other, while Vyushin and

Kushner (2012) conclude that both paradigmatic models

are inadequate for representing internal climate variabil-

ity. This suggests that either multivariate (von Storch and

Zwiers 1999), higher-order autoregressive (von Storch

and Zwiers 1999), or other models that combine short-

and long-range dependence like ARFIMA(p, d, q) or

nonlinear stochastic models (e.g., Majda et al. 2008,

2009) are needed. This question is part of our ongoing

research and will be reported on elsewhere.

These results also call for the investigation and the

procurement of new high-resolution, long, climatic time

series like ice cores and other climate proxies. The longer

the record is, the more unlikely it is to falsely classify

a stochastic trend as a deterministic trend or vice versa.

An analysis of an ice core from the Antarctic Peninsula

at Gomez shows strong evidence of long-range depen-

dence and also of a deterministic trend over the last

120 yr (Thomas et al. 2009). Because of the proximity

of Gomez to the Faraday-Vernadsky station, this pro-

vides further evidence that the observed warming of

the Antarctic Peninsula is a deterministic trend and not

due to natural fluctuations.
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