Marsh, Terry; Harvey, Catherine L. 2012 The Thames flood series: a lack of trend in flood magnitude and a decline in maximum levels.

© IWA Publishing 2012

This version available http://nora.nerc.ac.uk/18966/

NERC has developed NORA to enable users to access research outputs wholly or partially funded by NERC. Copyright and other rights for material on this site are retained by the rights owners. Users should read the terms and conditions of use of this material at http://nora.nerc.ac.uk/policies.html#access

This document is the author's final manuscript version of the journal article, incorporating any revisions agreed during the peer review process. Some differences between this and the publisher's version remain. You are advised to consult the publisher's version if you wish to cite from this article.

Contact CEH NORA team at noraceh@ceh.ac.uk

The NERC and CEH trademarks and logos (‘the Trademarks’) are registered trademarks of NERC in the UK and other countries, and may not be used without the prior written consent of the Trademark owner.
The Thames flood series – a lack of trend in flood magnitude
and a decline in maximum levels

Terry Marsh and Catherine L Harvey
Centre for Ecology & Hydrology

Corresponding author
Terry Marsh
Centre for Ecology and Hydrology
Maclean Building
Crowmarsh Gifford
Wallingford
Oxfordshire OX10 8BB

Email: tm@ceh.ac.uk
Tel: +44 (0) 1491692286
Fax: +44 (0) 1491692424

Abstract

The flow series for the River Thames near its tidal limit is one of the most studied in the
world. Its length and completeness, and the richness of the historical information which
augments the formal flow record, ensures that the series is of immense value. However,
interpretation of the variability in flood magnitude and frequency that it captures needs to
be undertaken with caution. The homogeneity of the time series is influenced by a wide
range of factors – including changes in the hydrometric capability of the gauging station
and the impact of differing water, river and land management practices on the flow
regime.

Nevertheless, both the daily flow series and the record of lock levels provide some
reassuring signals regarding the resilience of the Thames to fluvial flood risk in a
warming world. Since routine flow measurement began in 1883, the Thames basin has
seen a substantial rise in air temperature, and a tendency for both winter rainfall and
annual runoff to increase. However, there is no trend in fluvial flood magnitude,
reflecting in part a decline in snowmelt contributions to major floods; and annual
maximum lock levels show a significant decline, reflecting a very sustained programme
of river management.

Key words:
Floods, climate change, hydrometeorological trends, river engineering,
Introduction

A series of major flood episodes in the early years of the 21st century (European Environment Agency, 2005) has fuelled speculation that flood risk in Europe is increasing because of global warming. In the UK, increasing trends in both annual runoff and the prevalence of high flows have been identified over periods of 30 and 40 years ending in 2004 (Werritty, 2002, Hannaford and Marsh, 2008). However when longer periods (>60 years) are examined there is only limited evidence of long term trends in annual peak flows (Robson, 2002, Centre for Ecology & Hydrology and Met Office, 2001, Marsh and Hannaford, 2007) and some historical evidence of higher magnitude and more frequent flooding prior to the 20th century (Clark, 2007, Macdonald, 2006, Beven, 1993).

This study examines trends in the annual maximum flow series for the Thames at Teddington which, beginning in 1883, has the longest continuous flow record in the UK. A substantially longer historical perspective is provided by flood marks which, although often incomplete, extend back four centuries or more (Griffiths, 1983) and a considerable volume of documentary evidence relating to historical flood events. Much of the latter, often qualitative in nature, has been assembled in the British Hydrological Society’s Chronology of British Hydrological Events (Black and Law, 2004). This evidence contributes, in particular, to understanding how the relative importance of different flood-generating mechanisms, snowmelt especially, may have changed over time.

Flooding results from high river levels rather than flows directly, and water levels reflect the hydraulic characteristics of the channel (and floodplain) as well as the magnitude of the river flow. Quantifying the multiplicity of factors impacting on flood
levels in the lower Thames is exceptionally difficult, but the systematic recording of lock levels (with records often exceeding 100 years) provides a valuable index of their net effect and allows a broad assessment of the benefits of river management programmes to be made.

In this paper, statistical analyses of a range of long hydrometeorological time series are provided to identify trends and assess their contribution to change, or a lack of it, in fluvial flood magnitude and frequency in the Teddington reach.

The Thames catchment and flow regime

The River Thames drains the largest basin in the UK (see Figure 1); the catchment area above Teddington Weir is 9948 km². Over the 1971-2000 period the average annual rainfall was 717 mm distributed relatively evenly through the year but with a slight tendency to a late autumn/early winter maximum. On average, around 460 mm is lost to evaporation (Marsh and Hannaford, 2008), approximately 80% of which occurs during the summer half year (April-September). The evaporation losses impose a marked seasonality on the flow regime; the average January flow at Teddington is four times that for August.

Rainfall patterns in the Thames basin vary substantially over the medium and longer term. For example, winters in the 20th century were wetter and summers drier than in the 19th century (Marsh \textit{et al.}, 2007). However, in relation to flood risk the frequency of exceptional rainfall totals is of greater significance. Annual daily rainfall maxima are concentrated into the June-October period (Wilby \textit{et al.}, 2008) but, usually, substantial soil moisture deficits greatly reduce the runoff from the summer and early
autumn storms. Correspondingly, flood events in the lower Thames are rare during the April-October period: out of a total of 66 events in the 1883-2009 period with daily naturalised flows > 350 m³s⁻¹, only two (in June 1903 and Sept 1968) have occurred in this timeframe whereas three-quarters were recorded during the winter (December-February).

The Thames catchment is topographically subdued but geologically diverse with permeable strata underlying around 45% of the catchment (see Figure 1). In flow regime terms there is a particular contrast between groundwater-fed streams draining the Chalk (e.g. the Chilterns and North Downs) and Jurassic Limestone (Cotswolds) hills, and the much more responsive rivers draining the impermeable clay vales. Whilst there are no significant gravity-fed reservoirs¹ in the catchment to help attenuate flood peaks, the geological structure of the Thames Basin provides significant benefit in terms of flood risk in the lower Thames. Commonly, the flood peaks from rapid runoff tributaries draining the impermeable parts of the lower basin (e.g. the Wey and Mole) are seen at Teddington before peaks from the upper and middle parts of the catchment. Flood risk would be greater if these two peaks were more synchronous.

Teddington Weir is on the western outskirts of London, the runoff from which constitutes only a very minor component of the Teddington flow. Land use and land management in the catchment have undergone major historical and more recent changes, but a broad distinction may be drawn between the rural headwaters and increasing urbanisation in the lower catchment. Recent population growth has been concentrated in a number of urban and suburban centres in the middle reaches of the river (e.g. Reading and Oxford). This growth has often been accompanied by significant encroachment on the floodplain.

¹ Small water supply and agricultural reservoirs, and urban retention ponds, have a local influence on flow regimes.
Flow Measurement at Teddington/Kingston

Teddington Weir dates from 1811 but the extant hydrometric record begins in 1883. The weir was designed primarily to maintain levels for navigation purposes and the complex barrage of gates and sluices, which has undergone many structural changes in the last 120 years (Anon. 1986), has many hydrometric limitations (Mander, 1978). Hydraulic formulae – recommended by Sir John Hawkshaw in 1875 (Hunt, 1921) – were initially used to calibrate Teddington Weir and some current meter gaugings were undertaken in 1892/93. Although a minor adaptation was made to the Teddington Weir rating (Allard, 1937), the gaugings broadly endorsed the hydraulic calibration at low and medium flows. However, the hydrometric performance of Teddington Weir in the flood range was acknowledged to have been poor (McClean, 1936). As a consequence, flows in excess of 85 m3s$^{-1}$ were generally computed using stage-discharge relations based on tail-water levels; the latter were routinely recorded twice a day at low tide2 (Mander, 1978).

In 1977, the commissioning of an ultrasonic gauging station at Kingston, 1km upstream of Teddington Weir (Child 1979) allowed high flows to be measured with much greater accuracy; the ultrasonic gauge was upgraded to a multi-path configuration in 1983. A comprehensive current metering programme to confirm the ultrasonic calibration endorsed the existing high flow rating (Mountain, 1980), which covered the period since 1951 when a major refurbishment of Teddington weir was completed.

2 The incoming tide commonly causes a short-term reversal of flow in the Teddington reach.
Correspondingly, the post-1951 flow data are both more reliable and more homogeneous than the earlier time series.

Knowledge gained from the operation of the ultrasonic station reinforced longstanding doubts about the accuracy of the flows associated with some of the earlier floods on the Thames, most notably the extreme 1894 peak. To address this particular issue a joint study was undertaken by the Centre for Ecology & Hydrology and the Environment Agency, using rainfall-runoff modelling techniques, to critically review the November 1894 flows. The analyses strongly supported the need for a reduction in the archived peak flow and a revised maximum gauged flow of 800 m3s$^{-1}$ was adopted – a deliberately rounded figure to avoid any implication of spurious precision (Marsh, et al., 2005).

Because instantaneous peak flows are not available for the greater part of the Teddington record, the water-year (October-September) maximum series (Amax) is necessarily based upon daily mean flows. The uncertainties associated with the measurement of flood flows prior to 1951, particularly in the early record when only a relatively modest proportion of the more exceptional peak flows would have been contained within bank, implies that a systematic over-estimation of the highest discharges cannot be discounted. In addition, the pre-1951 daily flows, derived from two level readings a day, will not have a closely comparable precision with contemporary flows (based on 15-minute data). The size and diversity of the Thames catchment means that within-day flow variations at Teddington are normally muted but an indication of the potential errors involved is provided by the differences between the daily average flows and the associated 15-minute maximum flows available since the commissioning of the multi-path ultrasonic gauging station at Kingston. For flood events with peaks > 350 m3s$^{-1}$, the average difference is 5.9% (with a maximum of 11.1%).
A further, and rare, characteristic of the Teddington Amax series is that it comprises naturalised rather than gauged flows. The former take account of the major abstractions for London’s water supply in the lower reaches of the Thames above the gauging station. Contemporary abstractions are well monitored, and can exceed 50 m3s$^{-1}$ (compared with a median Amax of 318 m3s$^{-1}$). There is more uncertainty associated with the early abstraction rates but they were systematically logged and the average over the first 10 years of the Teddington series was <5 m3s$^{-1}$ (Littlewood and Marsh, 1996). With peak abstractions rates now an order of magnitude greater than in the 1880s, a failure to adjust the gauged flows to accommodate the changes in abstraction rates would, in itself, introduce a tendency for the annual maximum series to decrease.

Major flood events

Extreme events are by their nature both rare and unevenly distributed over time. Figure 2 plots Amax for Teddington from 1883, which also shows the locally weighted regression smoothing curve (LOESS) (Cleveland, 1979); this provides a guide to fluctuations within the 1883-2009 period3. The series includes 11 events exceeding 500 m3s$^{-1}$. Eight occurred before 1930, and were accompanied by extensive floodplain inundations, but there have been none since November 1974. The subsequent period has been notable for

3 Dashes are used to indicate the greater uncertainty associated with the smoothing curve at the beginning and end of the series.
the lack of major events - no peaks approached the exceptional magnitude of the 1894, 1947 and 1968 floods.

Since routine flow measurement started at Teddington, the peak levels reported for the 1894 flood are generally the highest on record throughout the lower Thames. Several earlier flood events achieved appreciably higher maximum levels though. The 1821 peak was “10 inches higher” (0.254 m) and the 1809 peak was “a foot higher” (0.305 m) in the lower Thames, and at Hampton the 1774 event was higher by “about a foot” (Symons and Chatterton, 1895). The higher peak levels associated with these pre-1894 events is confirmed by other historical peak flood marks in the middle reaches of the Thames (Griffiths, 1983).

Flood-generating mechanisms

The two outstanding events in the Teddington flow series (1894 and 1947) exemplify the two primary flood-generating mechanisms in the lower Thames. In November 1894, flooding resulted from sustained heavy rainfall over a 4-day period (totalling around 120 mm) falling on an already saturated catchment (Symons and Chatterton, 1895). By contrast, the March 1947 flood followed the second coldest winter in the 20th century which left snow accumulations of 50-100 cm across much of the country by early March. The passage of a warm front on the 12th (with rainfall of around 20 mm) triggered a rapid

< Figure 2 >

4 3 km upstream of Teddington
snowmelt over still-frozen ground (Howorth et al., 1948). This resulted in the most extensive flooding across England and Wales in the 20th century (Marsh and Hannaford, 2007) with widespread and sustained floodplain inundations throughout the Thames basin.

Over time, the relative contribution of the main flood-generating mechanisms has changed, and this has important implications for flood risk in a warming world. Snowmelt (sometimes over frozen ground) was a more common mechanism in major flood events prior to the 1960s and was a contributory factor to many major historical floods, including those of 1809, 1774 and 1768. Though supporting evidence is very limited, an extreme example of a snowmelt flood was recorded by Sydney Gillingham in 1593 (Griffiths, 1983). After an exceptionally cold winter, snow accumulations in Oxford were remarkable and a rapid thaw triggered flood levels which were noted as “13 feet over Christchurch Meadows” (4 metres). Many perished in the flooding and the pestilence that followed. It is expected that the thaw would have been general throughout the Thames basin, and therefore this flood would have been one of the most outstanding on record.

Rising winter temperatures have seen snowmelt decline as an aggravating factor in relation to flood risk in the Thames basin. Similarly, ice-jam floods (often associated with increased backwater from weirs whose performance was compromised by ice accumulations) also became increasingly rare through the 20th century. Thus, in the context of flood risk in the Thames basin, global warming has had some clear beneficial impacts. Kay et al. (2006) suggest also that drier soil conditions, particularly in the spring and autumn, may restrict the length of the flood season and consequently reduce flood risk.
Changing hydraulic characteristics of the Thames

The relationship between river levels and flows has been influenced by human activities over many centuries. As a consequence, historical peak levels in many rivers cannot provide a complete and direct comparison with contemporary flood levels. Generally, river management has increased conveyance (albeit unevenly) over time and, for any given flood flow, historical levels may well have been higher than those in the modern era. Correspondingly, the floodplain inundations would have been more extensive.

River and catchment management in the Thames basin has a long history (Ackroyd, 2008). In the Middle Ages, the construction of weirs (mostly for milling, fisheries or navigational purposes) tended to exacerbate flood risk. By the 19th century extensive land drainage in the Thames basin began to have a considerable impact on the flow regime (Robinson, 1990); the Rev. J. C. Clutterbuck noting that the time-to-peak in the middle reaches had decreased substantially (Denton, 1862). A further extensive land drainage programme (with associated river improvements) was implemented during World War II to help increase food production.

The capacity of the Teddington reach in the late nineteenth century is uncertain but Andrews (1962) reported that “for many years” bankfull at Teddington corresponded to a flow of 4500 mgd\(^5\) (237 m\(^3\)s\(^{-1}\)). Subsequently, river management (including channel-reprofiling and re-alignment, and improvements in weir design) has had a very significant moderating impact on flood risk. The 1930 Land Drainage Act and the 1947

\(^5\) Million gallons per day.
flood provided major stimuli to increase the conveyance of the lower Thames (Environment Agency, 2009). In relation to the former, Stock (1947) asserted that river engineering, generally increasing the cross-sectional area and slope (and reducing the roughness) of the channel, together with improvements in weir design were intended to increase the channel capacity to 8,000 mgd (415 m³/s) by 1935.

It is unclear whether this increased conveyance was fully achieved. The limited channel and weir maintenance during World War II (when Teddington Weir itself suffered structural damage) may have reduced the carrying capacity of the lower Thames. Following the 1947 flood, a strategic dredging programme was initiated to lower the bed of the river between Reading and Teddington by a foot (0.305 m) whilst the capacity of many of the weirs was further increased (Environment Agency, 2009). Quantifying the net effect of the many factors which influence channel conveyance in the lower Thames is outside the scope of the paper. However, an indication of the overall impact of successive channel improvement (and flood alleviation) programmes is provided by the January 2003 flood. Significant floodplain inundations did occur within the Thames catchment (Environment Agency, 2008) but in the Teddington reach a peak daily gauged flow of 461 m³/s was accommodated with no local overspill (Marsh, 2004). The implications of this improved conveyance are considered further on page 21.

Hydrometeorological time series for the Thames catchment

This section reviews the observational evidence for trends in flood magnitude and frequency in the lower Thames, using a range of relevant hydrometeorological variables,
most extending over more than 100 years. To provide a necessary backcloth for the trend analyses, the provenance of each time series is outlined below.

Temperature (CET)

Annual mean temperatures derived from the Central England Temperature (CET) series (Manley, 1974) are used here as a surrogate for long term temperature changes in the Thames basin over the 1883-2009 period. Mean temperatures exhibit considerable inter-decadal variability but the overall increase in the CET (around 1.2° Celsius) represents a historically rapid rise in temperature over the period for which measured flows are available for Teddington.

Annual 3-day rainfall maxima (Rmax)

The lower Thames is particularly vulnerable to notable (multi-day) rainfall events during sustained wet periods (Crooks, 1994), especially when catchment soils are close to saturation. In this study annual 3-day rainfall maxima are used to index changes in the magnitude of high-flow-generating rainfall in the Thames catchment – see Figure 3. The plot is based on accumulations derived from the daily catchment rainfall series developed by Thames Conservancy (Bowen, 1960) and now maintained by the Environment Agency. The daily totals are the mean of 12 well-distributed standard raingauges; inevitably however, there have been a number of site changes since the series was instigated (Chambers, 1969). Conventionally, ‘rainfall’ implies total precipitation (including sleet and snow) and it is expected, but not fully verifiable, that guidelines on the measurement of precipitation established by the British Rainfall Organisation (Burt,
2010) and subsequently adopted by the Met Office (Meteorological Office, 1989) have been followed. The modest systematic undercatch of standard raingauges (Rodda, 1967) can become significant when snowfall is a substantial component of the total precipitation.

The catchment rainfall series for the Thames begins in 1904 but Figure 3 also incorporates estimates of an extreme rainfall episode in June 1903. During this event moderate-intensity rainfall fell continuously for 50-70hrs (spanning 13-15th June) across large parts of the catchment; the estimated 3-day rainfall accumulation (80 mm) is based on the maps and tabulations featured in British Rainfall 1903 (Mill, 1904).

Annual frequency of 3-day catchment rainfall >30mm

A 30 mm threshold for catchment-wide 3-day rainfall totals is adopted here to allow sufficient events to be identified for temporal changes in the annual frequency of notable (but not necessarily high-flow-generating) rainfall events to be examined.

Annual naturalised runoff (Runoff)

Annual naturalised runoff totals for Teddington, computed using daily flows stored on the UK National River Flow Archive.

Q5 flows at Teddington (Q5 Nat)

Annual naturalised Q5 (the flow exceeded 5% of the time in each year) is a commonly used index of high flows; the naturalised Q5 series for Teddington is shown in Figure 4.
Annual frequency of flow events > 250 m3s$^{-1}$

In relation to flood risk, both the magnitude and frequency of notably high flows are of importance. Figure 5 shows the annual frequency of independent events with peak daily naturalised flows exceeding 250 m3s$^{-1}$ – a relatively modest threshold to allow high flow frequency to be examined.

A_{max}

The highest daily mean flow in each water-year. In this study both the gauged maximum and the naturalised maximum (illustrated in Figure 2) have been analysed.

L_{max}

Headwater and tailwater levels at the navigation locks throughout the Thames are routinely recorded at three-hourly intervals during the day. All peak levels above a chosen threshold (typically around bankfull) were abstracted to provide a peak-over-threshold (POT) series (Crooks, 1994). This current study uses the 1904-2009 series of annual maximum headwater levels (taken from the POT series and updated by the Environment Agency) for Molesey Lock which is at the upstream end of the Teddington reach and is unaffected by all but the most extreme tides. The headwater levels are shown in Figure 6 (there are 12 years, spread throughout the series, for which no headwater level exceeded the chosen threshold). It is probable that the outstanding nature of the 1894 peak level reflects, in part, substantial backwater due to debris
accumulation at Molesey Weir (Marsh et al, 2005); debris (and ice-jams) will also, on occasions, have influenced other levels in the series.

<Figures 3, 4, 5, 6>

Trend analyses

Identifying convincing hydrological trends is a complex challenge, not least because of the natural variability in rainfall and river flow patterns, the influence of multi-decadal climatic variations and a range of data homogeneity issues associated with many hydrometric time series (Svensson et al., 2006, Wilby et al., 2008).

With regard to indexing changes in flood risk in the lower Thames, the most pertinent data limitation concerns the uncertainty associated with flood magnitudes prior to the refurbishment of Teddington Weir in 1951. Correspondingly, the trend analyses incorporate split record components (1883-1951 and 1952-2009) as well as the full time series.

Methodology and results

The World Meteorological Organisation (WMO) guidelines for hydrological trend analysis (Kundzewicz and Robson, 2000) recommend the use of several indicators of
trend. In this study, two methods were employed to assess the various time series for trends:

- The Mann-Kendall (MK) test (Kendall, 1975); a widely-used, non-parametric, rank-based test.
- Least-squares linear regression, testing the gradient of the regression line.

Permutation re-sampling, was applied to assess the significance levels of the slope estimate; it is a particularly robust method for hydrological time series (Kundzewicz and Robson, 2004). The approach involves the generation of a large number of sample time series by randomly re-ordering the observed values. The trend test statistic (e.g. the regression slope) is calculated for each of the re-samples. These are then ranked and if the slope estimated from the original statistic falls outside the 5-95 percentile range of the re-sampled slope values, then the slope is considered significant at the 95% level. For those time series exhibiting significant autocorrelations, a block re-sampling approach was applied.

The results of the MK trend tests for the nine time series are given in Table 1; the sign and significance of any trend is indicated by the number of + or – symbols. The linear regression analyses produced very similar results (see note accompanying Table 1).

The analyses found no trend in any of the hydrometeorological series over the post-1951 period. Over the full record, the expected very significant increase in temperature was confirmed but there is no compelling long term trend in either the 3-day annual rainfall maxima or the frequency of 3-day catchment rainfall totals exceeding 30 mm. A significant increase in annual naturalised runoff and a modest tendency to

6 The block-resampling approach was applied to the temperature, annual frequency of floods > 250 m³s⁻¹ and runoff series.
increase in the naturalised Amax is evident over the 1883-2009 period. This reflects, in particular, depressed runoff rates prior to 1910 (see below). The annual frequency of daily naturalised flows greater than 250 m3s$^{-1}$ shows a very significant increase over the full record and a less significant increase is evident for Q$_5$.

The results presented in Table 1 index long term trends but do not capture the substantial multi-decadal variability and persistence that characterises many hydrometeorological time series. LOESS curves have therefore been used to illustrate variability within the full span of the time series featured in Figures 2-6. Recent studies (e.g. Khaliq et al., 2009, Wilby et al., 2008) have highlighted the sensitivity of significance testing to short or long term persistence. Where such persistence manifests itself as particularly flood-rich or flood-poor episodes near the beginning or end of a hydrological time series, the impact on the overall trend can be marked.

In relation to the Thames, singularly persistent drought conditions, with a notably low frequency of floods, are a defining feature of the pre-1910 Teddington record. Intense drought conditions began in 1887, and notwithstanding some exceptionally wet interludes, runoff rates generally remained relatively depressed until around 1910. One consequence of this ‘Long Drought’ (Cole and Marsh, 2006, Burt and Shahgedanova, 1998) is that trends in the Teddington hydrometric record are generally more evident in the early half of the record.

The impact of the drought can also be seen by examining changes in the significance of any trends as data are removed (or added) to the series under review (Wilby, 2006). Here, and using the Amax series as an example, the Mann-Kendall test
was applied to the full record 1883-2009 (127 years), then 1884-2009 and so on up to 1980-2009. Figure 7 illustrates the dependency of the trends on the chosen start year\(^7\) for six of the time series under review. A steep decline in significance of the trends associated with the three river flow series (Amax, runoff and Q\(_5\)) is evident as the years of the *Long Drought* are omitted from the analysis.

Two compelling trends may be identified in Figure 7. Most exceptionally, the increase in temperature over the 1883-2009 period exhibits a very significant (<1\%) trend whatever start year is used. The decline in annual maximum lock levels (1894-2009) is also very significant for most start years prior to the mid-1920s, and a negative tendency then continues until the end of the major river engineering programme in the late 1950s. The trend in the Rmax series of 3-day rainfall totals (1904-2009) approaches significance (positive) over timespans beginning before 1920 but not thereafter. In the context of flood risk, any compelling trend in Amax would have important implications for flood alleviation strategies. Figure 7 however shows no discernible trend in Amax over the 100 years since the end of the Long Drought.

The importance of a combination of an overall decline in maximum lock levels and the absence of trend in Amax is illustrated in Figure 8. It shows decadal counts of events where the maximum daily naturalised flows exceeded 350 m\(^3\)s\(^{-1}\), a flow which would have resulted in overbank flows throughout the greater part of the Teddington flow record. The highest frequency is for the decade beginning in 2000 but, given the sensitivity of the analysis to the flow threshold used and the large inter-decadal
variability, any statistical inferences should be drawn with caution. Importantly, however, none of the events during the 2000-09 period produced any appreciable fluvial flooding in the Teddington reach. This is largely a consequence of the improved conveyance in the lower Thames implied by Figure 6.

< Figure 8 >

Discussion

There is considerable evidence that man-induced global warming will impact on river flow regimes (Huntingdon, 2006). A number of climate modelling studies have predicted that exceptional rainfall events are likely to become more frequent in the UK (Huntingford et al., 2003) – particularly during the winter. Worldwide climate modelling studies also suggest an increase in rainfall intensities, particularly at middle and high latitudes (IPCC, 2007). If realized, such predictions would have major implications for flood risk management and engineering design. However, current assessments of potential future impacts in the UK display large spatial variability and are subject to considerable uncertainties (Prudhomme et al., 2003, Wilby et al., 2008).

The existence of flood-rich and flood-poor periods has been demonstrated in lengthy UK flood time series (Robson, 2002) and a number of studies have identified increases in winter rainfall, annual runoff and flood frequency for parts of the UK over various timespans since 1960 (Black, 1996, Hannaford and Marsh, 2008, Dixon, 2006, Werritty 2002). However, for policy development and the design of flood mitigation strategies, the rate of any changes in flood-generating rainfall and fluvial flood
magnitude are of primary importance. Observational evidence from the Thames indicates that, whilst temporal variability in runoff patterns has been substantial and positive trends exist for some flood-related variables (e.g. Q₅ frequency), there has been no significant change in Amax over the full span of the instrumented flood record at Teddington.

In addition, no significant change was identified in the magnitude of 3-day Rmax or the frequency of 3-day accumulations >30 mm. If a higher 3-day rainfall threshold of 50 mm is adopted, 25 events in the Thames catchment rainfall series can be identified, distributed throughout the record with the highest decadal frequencies in the 1960s (5) and 2000s (4). All except five of these major rainfall events occurred in the second half of the year with August and October registering the highest frequency. The soil moisture conditions associated with this seasonal distribution meant that few of the >50mm rainfall accumulations produced exceptionally high flows; for only two of the events did flows at Teddington exceed 400 m³s⁻¹. In a study examining flood-generating rainfall for the Thames catchment above Marlow, Crooks (1994) found a significant decrease in rainfall intensities between the 1892-1940 and 1941-1990 periods. This may be a contributory factor to the relatively low frequency of exceptional flows in the latter half of the Thames record.

Whilst improved mechanisms for indexing historical floods according to their primary generating mechanisms are being developed (Macdonald, 2010), the absence of comprehensive snowfall and snowmelt-flood chronologies for the Thames is a barrier to quantifying the decline of snowmelt as a contributory factor in relation to flood risk. Flows exceeding 330 m³s⁻¹ at Teddington in early 2010 provided a reminder that snowmelt can still provide a significant contribution to flows in the lower Thames (Anon., 2010) but such circumstances have been rare since the winter of 1981/82 when
snow accumulations reached 26 cm at Heathrow in December (Eden, 2008). The paucity of snowmelt events over the last 30 years and the expectation that winter temperatures will continue to rise (UKCP09, 2009) suggests that their frequency will continue to decline.

The incorporation of lock level data as well as river flows in the trend analysis has allowed the major impact of river management on fluvial flood risk in the lower Thames to be examined. Headwater lock levels are normally more susceptible to the operation of weir gates than tailwater levels but for the great majority of the annual maxima featured in Figure 6, Molesey weir would have been fully drawn (all gates open to maximise conveyance). Corroboration of the general pattern of lock levels featured in Figure 6 is provided by a study of the tailwater series for Molesey undertaken as part of a study of peak lock levels throughout the Thames (Crooks, 1994); the general pattern closely replicates that in Figure 6.

Since 1930, a major, sustained and costly programme of river engineering has produced a very substantial increase in the channel capacity of the lower Thames. The Teddington reach is now able to contain flows of around 1.5 Qmed; a flow which would have triggered very extensive flooding 100 years ago. Whilst not investigated in this study, an associated reduction in flood risk may derive from the river improvement programmes in some of the lower tributaries (e.g. the Wey and Mole) which would be expected to extend the time lag between the flood peaks associated with rapid runoff from the impermeable lower basin and the flow peaks deriving from the slower-responding upper catchment.

The climatological, geological and land use characteristics of the Thames basin are broadly typical of catchments in the English Lowlands but differ appreciably from those in western and northern Britain. Research capitalising on the recently-released UK
Climate Projections (UKCP09, 2009) suggests that the heterogeneity of the UK may be reflected in spatially very variable catchment responses to climate change (Bell et al., 2009). This implies the need for caution when generalising from the evidence presented in this study. In addition, the large spatial and temporal irregularity associated with exceptional flood events implies that trends (or the lack of them) in individual long records may not be representative. Nonetheless, the lack of long term trend in the Teddington Acmax series is consistent with the lack of trend characterising most lengthy UK flood series (Robson, 2002, CEH and UKMO, 2001, Marsh and Hannaford, 2007).

The very significant decline in maximum lock levels, associated with improvements in river management in the lower Thames demonstrates a clear moderation in flood risk at Teddington. It is essential to emphasise however that impact of flood events, when they occur, has not declined. Continuing floodplain development and urban growth has contributed to the rapidly rising economic costs of notable flood events. The dangers of inappropriate floodplain development have long been recognised and attempts to ensure that natural storage function of the floodplain is not unduly compromised are central to most flood alleviation strategies. Such provision, together with other flood alleviation measures, improved forecasting capabilities and increased alertness of those exposed to flood risk provides the opportunity to increase resilience to what, even in the absence of global warming, would remain a real and continuing threat.

Conclusions

Naturalised runoff for the Thames at Teddington over the 2000-2009 period was 20% above the 1884-1999 average and the frequency of flows exceeding 350m3s$^{-1}$ was the
highest decadal total on record. Such hydrological indices may have contributed to a perception that fluvial flood magnitude and frequency is increasing in a warming world.

This study has found no evidence of a significant increase in water-year maximum daily mean flows or of an increase in the frequency of flood-generating rainfall over the 128-year Teddington series. As notably, none of the hydrometeorological series under review exhibits a positive trend over the post-1951 period. This suggests an insensitivity of flood magnitude to temperature increases. Evidence from historical flood chronologies strongly suggest that this is, in part, a consequence of the decline in snowmelt as an exacerbating factor in relation to major flood events. Furthermore, the statistical analyses strongly support the supposition that flood levels in the Teddington reach have declined relative to the first half of the Thames record. This is a direct reflection of the river management and flood alleviation measures implemented throughout much of the last 100 years.

At this time, when river flow regimes are expected to be undergoing change, long hydrometric time series assume a particular importance. They are a pre-requisite for the identification, quantification and interpretation of hydrological trends which, in turn, provide an essential foundation for the development of robust future flood alleviation strategies. Maximising the completeness and quality of lengthy river flow series requires a continuing commitment to the highest hydrometric and data stewardship standards.

Acknowledgements
The authors extend their thanks to colleagues in the Centre for Ecology and Hydrology (Mark Robinson, Susan Crooks and Jamie Hannaford in particular) and the Environment Agency (David Rylands and Richard Holland in particular) for their help and advice in the preparation of this paper.

References

Bell VA, Kay AL, Jones RG, Moore, RJ, Reynard, NS. 2009 Use of soil data in a grid-based hydrological model to estimate spatial variation in changing flood risk across the UK. Jour. of Hydrol, 337: 335-350.

Child SC. 1979 The calibration and operation of Kingston ultrasonic gauging station (includes brief comparison of Teddington and Kingston discharges). Thames Water, Thames Conservancy Division Internal Report.

Hunt EF. 1921 Note in National River Flow Archive. *Station File 39001*.

Kay AL, Jones RG, Reynard NS. 2006 RCM rainfall for UK flood frequency estimation. II. Climate change results. *Jour. of Hydrology* **318**: 163-172.

Tables

Table 1 Results of the Mann Kendall trend test.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Temp</th>
<th>Rainfall</th>
<th>Flow</th>
<th>Lock Levels</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Annual mean CET</td>
<td>3-day Rmax</td>
<td>Frequency of 3-day totals >30 mm</td>
</tr>
<tr>
<td>Full record</td>
<td>+ + +</td>
<td>•</td>
<td>•</td>
<td>+</td>
</tr>
<tr>
<td>Pre-1952</td>
<td>+ + +</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Post-1951</td>
<td>+ + +</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
</tbody>
</table>

Key to symbols: ‘•’ indicates that no significant trend was found. One, two and three ‘+’ or ‘-’ symbols indicate that trends were significant at the 10%, 5% and 1% levels respectively.

Note: The linear regression analyses differed only in that the Amax trends were not significant over any period and the Q₅ trend was not significant in the full record analysis.

Figures

Figure 1 Location Map
Figure 2 Amax (naturalised) flows for Teddington

Figure 3 Annual maximum 3-day rainfall totals for the Thames catchment

Figure 4 Annual Qs (naturalised) for the Thames at Teddington
Figure 5 Annual frequency of flows >250 m³ s⁻¹ at Teddington

Figure 6 Annual maximum headwater levels at Molesey Lock

Figure 7 Variations in the significance of trends in hydrometeorological time series with decreasing record length
The Z statistic (the number of standard deviations above or below the sample mean) is a measure of the significance of the trend. Increasing trends plot above the line, decreasing trends below.

Figure 8 Decadal count of flow events exceeding $> 350 \, \text{m}^3\text{s}^{-1}$ at Teddington