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Abstract 10 

 11 

River flow records are fundamental for the sustainable management of water resources and 12 

even very short gaps can severely compromise their utility. Suitably-flagged flow estimates, 13 

derived via judicious infilling, are potentially highly beneficial to data users. The UK 14 

National River Flow Archive provides stewardship of, and access to, UK river flow records. 15 

While many datasets held on the archive are complete, gaps remain across a wide range of 16 

flow records. A comprehensive assessment of existing techniques for infilling these gaps is 17 

currently lacking. This paper therefore assesses fifteen simple infilling techniques (including 18 

regression, scaling and equipercentile approaches), each relying upon data transfer from 19 

hydrologically-similar donor stations, to generate estimates of flow at 26 representative 20 

gauging stations. Results reveal the overall superiority of equipercentile and multiple 21 

regression techniques compared to the poorer capability of catchment area scaling. Donor 22 

station choice has a strong influence on technique performance. Modifying datasets to 23 

improve homogeneity, by seasonally grouping flows or excluding certain periods, offers 24 

improved performance. These findings provide a basis upon which guidance on infilling river 25 
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flow records can be based in future, allowing hydrometric practitioners and data end-users 26 

alike to adopt a consistent and auditable approach towards infilling.  27 

 28 
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 32 

Introduction 33 

 34 

River flow records are a vitally important asset and their completeness forms a crucial aspect 35 

of their utility. Even very short data gaps can preclude the meaningful calculation of 36 

important summary statistics and hydrological indicators, such as monthly runoff totals or n-37 

day minimum flows, thus inhibiting the analysis and interpretation of past flow variability. 38 

River flow records are also a vital input to hydrological models, including those used for 39 

predicting future behaviour (Hannah et al. 2010); gaps can have a deleterious impact on 40 

estimates derived from prediction and forecasting tools. Complete records are therefore 41 

critical to the sustainable management of water resources worldwide, and gaps in records 42 

represent a loss of information which can potentially affect the interpretation of data, and the 43 

scientific outcomes of analysis; Marsh (2002) argues that, in many cases, the inclusion of 44 

suitably flagged flow estimates is preferable to leaving gaps in records. 45 

Within the UK, the National River Flow Archive (NRFA) acts as the main 46 

hydrometric archive, collating data from different monitoring network operators. Daily mean 47 

river flows are stored for over 1500 gauging stations and validated, analysed and 48 

disseminated to a wide range of users (Dixon 2010). Whilst the majority of these flow records 49 

have high overall percentage completeness (78% of stations have records that are at least 50 
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95% complete, Marsh & Hannaford 2008), closer inspection reveals a significant quantity of 51 

both contemporary and historical gaps, ranging in length from a single day to several months. 52 

Such gaps are an inevitable consequence of factors such as essential gauging station 53 

maintenance, equipment malfunction, changes in instrumentation, data processing issues and 54 

human error.  For some gaps, the data are likely to be unrecoverable; for example, an extreme 55 

high flow event that destroys a gauging station may be difficult to estimate with any degree 56 

of certainty.  In most cases, however, gaps may be amenable to infilling, particularly where 57 

hydrological conditions are relatively stable. 58 

A previously observed decline in the completeness of river flow data submitted to the 59 

NRFA (Marsh 2002) can in part be attributed to a lack of standardised infilling guidance 60 

which, in its absence, has discouraged the infilling of gaps. While there has been a  61 

demonstrable improvement in completeness in recent years (Dixon 2010), historical data gaps 62 

remain and short sequences of missing daily mean flows (which appear readily amenable to 63 

infilling) still regularly occur in data submitted to the NRFA. This highlights a need for 64 

informed guidance on the use of infilling techniques to promote a consistent, repeatable 65 

approach towards such record gaps. Simple, quick-to-apply techniques that perform well 66 

across an extensive range of catchments could find wide applicability, thus limiting the 67 

investment of time and resources required to infill data to an appropriate degree of accuracy, 68 

while also significantly enhancing the overall utility of time series.  However, there are 69 

currently no widely-accepted standard techniques for data infilling, either in the UK or 70 

internationally. 71 

The aim of this paper is to evaluate the performance of a range of existing simple 72 

methodologies for gap filling.  A variety of catchment types in the UK are used, in order to 73 

test the applicability of such techniques across a broad spectrum of hydrological settings.  74 

This testing framework is crucial as the aim is not to find a “one size fits all” methodology; 75 
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rather to assess the range of applicability of the multiple techniques and their limitations. 76 

Similarly, it is recognised that infilling will not be appropriate in many situations, so the aim 77 

is to find mechanisms which show good general applicability over the flow range, rather than 78 

to identify specific instances where such methods could and should be applied.  The overall 79 

aim is to identify infilling mechanisms which demonstrate accuracy and versatility, for future 80 

application alongside expert judgment. 81 

The appraisal presented in this paper is an important first step in the development of 82 

guidance on data infilling for hydrometric measuring authorities.  It is anticipated that this 83 

approach will also hold relevance for the wider hydrometric data user community both within 84 

the UK and internationally, and may feed into future developments in international protocols 85 

for data management (e.g. World Meteorological Organization 2008). Systematic reviews of 86 

data infilling techniques are rare, and (to the authors’ knowledge) no previous study embraces 87 

such a range of techniques (fifteen) across such a number of cases (26 catchments UK-wide).  88 

The paper is structured as follows. Firstly, a review of published techniques is 89 

presented. The UK river flow data and the methodology used to quantify the performance of 90 

existing techniques are then described.  A results section follows, drawing out the key 91 

findings from an intercomparison of all techniques. The applicability of these techniques in 92 

practice is then demonstrated, firstly by reference to examples that illustrate particular issues 93 

with practical application of the methods, and then through two case studies of infilling 94 

applied to catchments which were not in the original dataset used for technique appraisal. 95 

 96 

Review of existing infilling techniques and studies 97 

  98 

Many papers in the literature undertake some form of river flow data infilling, which 99 

is often done rather casually, without adequately describing how the infilling was completed 100 
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or assessing its effects on the results.  However, there are also a number of specific 101 

methodologies for infilling which have been advocated in the literature. Existing techniques, 102 

developed either exclusively for infilling or alternatively for flow record extension, were 103 

assessed for appropriateness (Table 1). Most techniques rely upon functions for transferring 104 

data from other gauging stations. Such stations are referred to as ‘donors’, whilst the term 105 

‘target’ indicates the station record that requires infilling. The qualities that constitute a useful 106 

donor are arguably a research topic in their own right; the topic of “regionalisation” of 107 

hydrological variables, i.e. their extrapolation in space, is a fertile area of research with a long 108 

history. There are a wide range of approaches to donor selection even in the UK (for general 109 

reviews see Wagener et al. 2007; Shaw et al. 2010), with no single technique appropriate for 110 

the full range of flows. Common considerations include proximity and similarity to the target 111 

catchment in terms of hydrological responsiveness, climate and catchment physiography 112 

(Rees 2008). Where available, multiple donors can enhance the likelihood of capturing the 113 

many influences impacting a target’s flow regime, but a single donor could be sufficient if it 114 

has a similar hydrological regime, which is more likely if located very close to the target or 115 

on a major upstream tributary (Hughes & Smakhtin 1996). 116 

In relation to the issue of donor selection, there is much scientific debate in the 117 

literature on regionalisation as to which mechanisms (and which catchment attributes) should 118 

be used to index catchment similarity (e.g. McIntyre et al. 2005;  Yadav et al. 2007) or even 119 

whether to use catchment similarity measures as opposed to local data transfer (Merz and 120 

Blöschl 2005).  However, there is currently no agreed framework for catchment similarity 121 

classification in hydrology (Wagener et al. 2007), and the concept of ‘uniqueness of place’ 122 

(Beven 2000) – whereby catchments are unique in terms of their topography, soils, rock 123 

types, vegetation and anthropogenic modification – arguably limits the potential for such 124 

generalisation.   The present study will therefore not address donor selection criteria, but will 125 
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attempt to test infilling mechanisms on as wide a range of donor – target pairs as possible, to 126 

determine which methods work best across a range of situations. 127 

 128 

<Table 1> 129 

 130 

Earlier studies of infilling techniques have focused on either a single technique or a 131 

small number of techniques all belonging to the same general approach (for instance, 132 

regression techniques: Hirsch 1982; scaling techniques: Kottegoda & Elgy 1977). A novel 133 

aspect of the present study is the consideration of a large number of techniques, 134 

encompassing a broad range of possible approaches.  135 

To date, the majority of studies have limited their analyses to a small number of case-136 

study targets (for example: Gyau-Boakye & Schultz 1994; Elshorbagy et al. 2000; Amisigo 137 

& van de Giesen 2005). Hughes & Smakhtin (1996) considered a larger sample, but only a 138 

single infilling technique was tested. Across the UK, the marked variability in hydrological 139 

regimes and the prevalence of anthropogenic influences (Marsh 2002) necessitates 140 

consideration of a high number of target stations, in order to reliably determine whether a 141 

technique is widely applicable. This study will therefore test techniques on a sample of 26 142 

hydrologically representative UK gauging stations. 143 

The relative performance of infilling techniques can be compared through infilling 144 

artificially created gaps (for example: Gyau-Boakye & Schultz 1994) but, despite careful 145 

selection to reflect diverse conditions, this methodology is still dependent upon the nature and 146 

magnitude of the time series when the gaps are established. An alternative approach, 147 

followed by the present study, is to compare the ability of techniques to simulate entire target 148 

flow records (for example: Elshorbagy et al. 2000), thus indicating which techniques can be 149 

expected to perform better for any given gap, across the flow range. 150 
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 151 

Methodology and data 152 

 153 

There are three factors which are likely to influence the reliability of data infilling, (1) 154 

the nature of the donor station(s), (2) the location and duration of the gap and (3) the infilling 155 

procedure.  As the aim of this study is to compare a wide range of infilling mechanisms (item 156 

3), this study seeks to control (1) and (2) insofar as possible, by selecting a wide range of 157 

donor-target situations, and testing the infilling methods across the whole flow range rather 158 

than for particular gaps.  An intercomparison is therefore made of fifteen different 159 

techniques, for 26 donor – target combinations.  For each technique, a full daily mean time 160 

series was simulated using the observed donor flow time series.  The utility of techqniues is 161 

assessed using three indicators of performance. The following sections describe the process 162 

in detail.  163 

 164 

Infilling techniques  165 

This study assesses the utility of fifteen infilling techniques, including equipercentile, 166 

scaling and regression approaches, all of which exploit data transfer from either one (single 167 

donor techniques) or two (dual donor techniques) other gauging stations (Table 2).  Prior to 168 

applying infilling techniques, datasets can be modified to potentially improve technique 169 

performance. For example, separating time series into monthly or seasonal divisions can 170 

result in more homogeneous flow groups (for example: Raman et al. 1995), which may also 171 

address the common non-stationarity of flow records (Hirsch 1979). Other data 172 

preconditioning can include the application of a log-transformation to flow series to reduce 173 

skewness in the distribution of the data (for example: Hirsch 1979; 1982). The chosen 174 

techniques therefore feature variations of the same approach based upon first log-175 
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transforming and/or seasonally grouping flows, with the latter reflecting a compromise 176 

between the reduced sample size effected by grouping data, the potential improvement such 177 

grouping could afford and the computational demands of seasonal versus monthly grouping.  178 

Despite its potential to offer highly accurate estimates, hydrological modelling was 179 

not considered, since such methods are too resource-intensive for rapid application to a large 180 

number of stations; the results would be very dependent on the choice of model used, limiting 181 

their utility for developing generic guidelines in future. Simple manual inference and serial 182 

interpolation techniques were also ignored as, despite their undoubted practical utility in 183 

certain circumstances, especially short gaps, they are heavily reliant upon subjective 184 

decisions and cannot be easily automated and objectively compared within the testing 185 

framework used in this study. A final criterion was to utilise only river flow data sources in 186 

the infilling process, avoiding dependence upon other datasets (in particular, catchment 187 

rainfall) which may not always be readily available to users. 188 

 189 

<Table 2> 190 

 191 

Intercomparison dataset  192 

The 26 target stations were selected from the NRFA to provide a broad spatial 193 

distribution across the UK and incorporate both very responsive and baseflow-dominated, 194 

large and small, and natural and artificially influenced catchments (Fig. 1). For each target, a 195 

primary donor station was selected for use with the single donor techniques and an additional 196 

secondary donor station for use with the dual donor techniques (Table 3). Donors were 197 

selected primarily on the basis of factors such as location, base flow index (BFI; Gustard et 198 

al. 1992) and regime similarity. For a few target stations in parts of the country where the 199 

network is sparse the choice of donors was restricted.  Within the UK, Hydrometric Areas 200 
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(HA) represent a group of connected catchments with one or multiple outlets to either the sea 201 

or a tidal estuary or alternatively a number of adjacent catchments of similar topography and 202 

separate tidal outlets (Marsh & Hannaford 2008). This study makes use of donors located 203 

both upstream and downstream of targets and in catchments belonging to the same or 204 

neighbouring hydrometric areas.  It is recognised that choice of donor catchment is likely to 205 

be an important influence, but the primary aim of this study is to determine how well various 206 

infilling methods perform given previously-defined donor catchments, rather than to consider 207 

the suitability of donors. Nevertheless, the potential impact that differing characteristics of 208 

donors can have on technique performance is considered in the interpretation of results.   209 

 210 

<Figure 1> 211 

 212 

<Table 3> 213 

 214 

Performance indices 215 

Each method was tested by comparing the observed flow data from the target 216 

catchment against data simulated using the method, for the whole period-of-record rather 217 

than for any particular gap. Observed and simulated target flow series were compared using 218 

three commonly used indices, chosen according to the recommendations of studies which 219 

have explicitly compared such performance indicators and provided critical reviews of their 220 

utility (for example: Moriasi et al. 2007; Legates and McCabe 1999; Krause et al. 2005).  221 

These studies advocate the use of multiple performance indicators, due to the different 222 

strengths and limitations of the individual indices. 223 

 224 

1. Nash-Sutcliffe Model Efficiency Coefficient (NSE; Nash & Sutcliffe 1970): 225 
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             (1) 226 

This statistic is extensively used within hydrology for evaluating model performance 227 

and, being standardised, is readily comparable across different catchments. The NSE provides 228 

an evaluation of the relative magnitude of the variance of the residuals compared to the 229 

variance of the observed flow data. Values can range from -∞ to 1, with higher values 230 

implying greater accuracy and values below zero indicating that the simulated series is less 231 

accurate than if the mean of the observed series had been used.  The NSE has been criticised 232 

for being overly influenced by higher flows and sensitive to errors in time-sequencing or 233 

when residuals are autocorrelated (e.g. Beven, 2001; Krause et al. 2005; McCuen et al. 234 

2006). 235 

  236 

2. Root Mean Square Error (RMSE): 237 

-   238 

           (2) 239 

RMSE is an absolute error measurement which is used to describe the difference 240 

between simulated and observed data in the unit of the variable, which aids in interpretation 241 

of the results. Both Legates & McCabe (1999) and Moriasi et al. (2007) recommend that 242 

measures of absolute error be used alongside dimensionless tests such as the NSE. Lower 243 

values indicate better performance, but comparing values between targets is limited since 244 

differing variance is not accounted for. 245 

 246 

3. Percent Bias (PBIAS):  247 
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            (3) 248 

The percent bias is useful in this study as, unlike the previous methods, it provides an 249 

indication of systematic bias in the simulated data. Positive (negative) values highlight 250 

consistent under(over)-estimation of target flows. 251 

In addition to the above statistics, the means of the absolute residuals between 252 

observed and estimated flows were calculated for each target station. In order to judge the 253 

relative performance of infilling techniques against each other these means of residuals were 254 

compared using the non-parametric Wilcoxon test, to indicate whether a given technique 255 

generated estimated series with significantly lower means of residuals than those generated 256 

by other techniques. Using this measure, the percentage of cases where one technique 257 

significantly outperforms another can be compared.  258 

 259 

Results of technique intercomparison 260 

 261 

Overall technique performance is illustrated by box and whisker plots of the NSE and PBIAS 262 

values derived from comparing the estimated and observed target series and grouped 263 

according to infilling technique (Fig. 2), whilst bar charts of the NSE values for each target 264 

and technique contrast performance between the targets (Fig. 3). The RMSE and NSE values 265 

yield very similar findings and hence the latter are presented in this paper since they represent 266 

standardised quantities. 267 

The box and whisker plots of NSE values indicate that, for the vast majority of 268 

targets, all of the techniques generate estimated series with associated NSE values exceeding 269 

0.5, albeit to varying degrees. Some techniques (MOVE.1 regression and catchment area 270 

scaling) feature outlying NSE values below zero, which suggests they are less applicable in 271 

some catchments.  The strongest performing techniques are arguably the equipercentile and 272 
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dual donor techniques, none of which have outliers below 0.5 and all of which have higher 273 

upper quartile, median and lower quartile values than the other techniques. Not only do these 274 

techniques therefore have broader applicability, but overall they produce estimated series 275 

which best replicate the observed target series. Catchment area scaling, on the other hand, 276 

emerges as a comparatively poorer technique for simulating daily time series, with the lowest 277 

upper quartile, median and lower quartile values and the greatest number of outliers. 278 

The PBIAS values are generally of low magnitude, with the exception of those for the 279 

catchment area scaling technique, which is conspicuous for its tendency to consistently over- 280 

or under-estimate target flows. Techniques based upon log-transformed flows also exhibit 281 

bias to some extent. This can be connected to the failure of these techniques to maintain the 282 

mean of the observed target series in their estimates. 283 

 284 

<Figure 2> 285 

 286 

<Figure 3> 287 

 288 

The bar charts (Fig. 3) of NSE values expose some interesting disparities between 289 

technique performance for individual target stations. Whereas for some targets there is little 290 

distinction between the techniques (for example: 54029 and 85004), for others there is much 291 

greater divergence (for example: 35003, 33039 and 76003). In certain cases, the dual donor 292 

techniques show distinctly higher simulation accuracy than the equivalent single donor 293 

techniques (for example: 33006 and 38014), endorsing the general argument of multiple 294 

donors being more capable of capturing the many influences affecting target flows. On many 295 

other occasions, however, the single and dual donor techniques yield similar performance, 296 

such that there is no marked advantage to including multiple donors. 297 
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The Wilcoxon significance testing results (Fig. 4) further reinforce the above findings, 298 

with the equipercentile and dual donor techniques more frequently producing estimated target 299 

series with significantly lower means of residuals than the other techniques. All of the 300 

techniques out-perform the catchment area scaling technique for the vast majority of the 301 

targets. 302 

 303 

<Figure 4> 304 

 305 

Comparing the ability of the chosen infilling techniques to estimate observed target flow 306 

series has revealed certain techniques which combine wide applicability with the ability to 307 

outperform other techniques for specific target stations. This is a key outcome, highlighting 308 

the value of assessing a large sample of target stations. Despite its common usage it appears 309 

that, in the UK at least, catchment area scaling is essentially too simple to capture the 310 

influences affecting a target. Previous work has established that even closely related stations 311 

seldom exhibit a linear relationship with catchment area (Hughes & Smakhtin 1996).  312 

However, despite its poorer performance in daily flow infilling, catchment area scaling is 313 

widely used in hydrology (e.g. Shaw et al. 2010) and it has been shown to perform 314 

effectively in estimating summary hydrological characteristics (e.g. annual mean flow and 315 

annual peak flows).  The limited range of hydroclimatic conditions in the UK mean that this 316 

finding cannot necessarily be generalised to other environments. The limited utility of scaling 317 

may reflect the spatial heterogeneity found in the UK but in regions with more homogeneous 318 

hydrological conditions the method may be more effective. 319 

The results demonstrate that most techniques can perform competently across a broad 320 

spectrum of catchment types (see Table 1 for basic catchment characteristics). Indeed, the 321 

majority of techniques are shown to produce estimated series with NSE values exceeding 0.9 322 
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(Fig. 3) for both large (15003) and small (21026) catchments, and across permeable, 323 

baseflow-dominated (39101) and impermeable, flashy (74001) regimes.  324 

Results suggest that seasonally grouping flows prior to technique application 325 

enhances technique performance. NSE values are generally higher for seasonal based 326 

techniques (Fig. 2a) and direct comparisons between the non-seasonal and seasonal 327 

applications of techniques show that in all cases the latter produces a significantly lower 328 

mean of residuals for over 85% more catchments than its non-seasonal equivalent (Fig. 4). 329 

The same cannot be concluded for log-transforming flows, where non-transformed flow 330 

versions of techniques tend to produce estimated series with higher NSE values, but not 331 

significantly lower means of residuals. This most likely reflects the bias of the NSE statistic 332 

towards over-estimation of model performance at higher flows and under-estimation at lower 333 

flows, as identified by Krause et al. (2005), and its subsequent failure to capture the superior 334 

performance of the log-transformed versions of techniques when estimating lower magnitude 335 

flows (this issue is discussed in detail in one of the case studies presented below). 336 

Calculation of the correlation coefficients between target and donor flows reveals 337 

donor station choice as a highly influential factor in technique performance. The five targets 338 

for which at least twelve techniques have associated NSE values exceeding 0.9 are those 339 

where observed flows have the highest correlations with the primary donor record (exceeding 340 

0.95), whilst conversely the four targets for which at least twelve techniques have associated 341 

NSE values falling below 0.8 are those which have the lowest correlations with their primary 342 

donors (below 0.87). The links between superior technique performance and higher 343 

correlations between target and donor flows conform to general expectations since higher 344 

correlation coefficients indicate similar behaviour between flow regimes.  345 

Technique performance also shows some correspondence to the relative locations of 346 

donors to their targets. For example, there are seven targets whose primary donors belong to 347 
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different hydrometric areas and I all of these cases none of the techniques generate estimated 348 

series with NSE values exceeding 0.9, which can be linked to lower correlations between 349 

flow series as a result of differing rainfall patterns and hydrological processes. With respect 350 

to dual donor techniques, there are eight targets whose donors share equivalent relative 351 

locations (for example, both are downstream on the same river as the target) and in only one 352 

of these cases the tested techniques yield an estimated series with an NSE value exceeding 353 

0.9. On the contrary, there are four targets whose donors represent upstream and downstream 354 

versions of the same relative location (for example, both located on the same river as the 355 

target but one upstream and the other downstream), and for three of these the majority of 356 

techniques generate estimated series with NSE values exceeding 0.9.  357 

For three of the targets (27071, 41023 and 43017, Fig. 3), series estimated via 358 

catchment area scaling have distinctly lower NSE values than those estimated under all other 359 

techniques, in addition to the only PBIAS magnitudes exceeding 50%. The latter were 360 

negative in all three cases, signifying consistent over-estimation of target flows. This can be 361 

linked to the hydrogeology of the catchments involved, with the primary donor catchments 362 

generating proportionately higher runoff than those of the targets and thus leading to an over-363 

estimation of target flows when employing this simple scaling technique. 364 

 365 

 366 

 367 

 368 

Practical applications of infilling methodologies 369 

 370 

The general conclusions that have been drawn thus far from the intercomparison 371 

between infilling techniques constitute a basis on which to develop broad infilling guidelines 372 
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in future. However, there remain important issues which must be considered in applying such 373 

techniques in practice, which may limit the utility of the methods applied herein, and 374 

additional treatment of data may be required to address these issues prior to infilling.    In this 375 

section, two important issues are discussed and illustrated using examples from the 376 

intercomparison sample of catchments (applying the full range of techniques used above) and 377 

recommendations are made for how these issues could be addressed in future.  Subsequently 378 

two contrasting case studies are used as application examples, which demonstrate the best 379 

performing techniques, applied to new target catchments which have not been used in the 380 

intercomparison dataset.  381 

 382 

Record inhomogeneity issues 383 

 384 

The Salmon Brook at Edmonton (38014) gauges a small, impervious catchment in the south 385 

of the UK and originally comprised a compound broad-crested weir, known to be less 386 

effective than its 1980 flat V weir replacement (Marsh & Hannaford 2008). This hydrometric 387 

change manifests itself in a difference between pre-1980 and post-1979 data quality. 388 

Technique performance is shown to improve if the poorer quality data (pre-1980) is excluded 389 

before applying the infilling techniques (Table 4). This improvement is less discernible for 390 

the dual donor techniques, a likely reflection of the fact that the primary donor record extends 391 

back to 1954 but the secondary donor record only started in 1971 (and thus a smaller number 392 

of poorer quality years are excluded when the approach is applied under the dual donor 393 

techniques). In addition, high NSE values are already associated with these techniques even 394 

before the poorer quality data is excluded (Fig. 3). 395 

An equivalent approach can be taken for station 33007 (the Nar at Marham), the 396 

primary donor associated with target 33006 (the Wissey at Northwold), a base flow 397 
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dominated catchment in eastern England. Excluding pre-1987 data, to reflect the 398 

discontinuation of three groundwater abstractions in 1986 (Marsh & Hannaford 2008), leads 399 

to a noticeable improvement in the performance of the single donor techniques and, to a 400 

lesser degree, the majority of the dual donor techniques which, as before, reflect high NSE 401 

values even before excluding the early record data (Table 4; Fig.3). 402 

 403 

<Table 4> 404 

 405 

The above examples demonstrate that removing a known inhomogeneity in a dataset, 406 

by carefully selecting the period of record considered, prior to applying infilling techniques 407 

can enhance technique performance. As well as the replacement or modification of gauging 408 

structures and changes concerning artificial influences, the homogeneity of UK flow records 409 

is affected by a host of other factors (e.g. instrumentation changes, catchment changes such 410 

as land-use) which are typically also major issues globally (Hannah et al. 2010). Assessing 411 

records for such changes and adapting them accordingly should therefore form an integral 412 

stage of infilling, which relies upon them being readily identifiable and underlines the 413 

necessity to maintain comprehensive metadata and user guidance alongside hydrometric 414 

records (Dixon 2010). 415 

 416 

 417 

 418 

Estimating different magnitude flows 419 

 420 

The Eamont at Udford station (76003) in north-west England gauges a catchment artificially 421 

influenced by controlled storage in lakes and reservoirs. Upstream donor stations were 422 
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selected which have the same factors affecting runoff. For this target, the single donor 423 

techniques regressing log-transformed flows perform markedly more poorly overall than 424 

those regressing non-transformed flows (Fig. 3). As would logically be expected, however, 425 

visual inspection of the estimated series suggests that log-transforming flows yields more 426 

reliable estimates of lower flows, despite less accuracy at higher flows (Fig. 5). This suggests 427 

that combinations of techniques may offer the best solution to infilling flow data and a 428 

number of studies have previously advocated that a single technique is unlikely to be optimal 429 

for all occasions of missing data (for example: Hughes & Smakhtin 1996; Gyau-Boakye & 430 

Schultz 1994). 431 

 432 

<Figure 5> 433 

 434 

To further explore this finding and isolate techniques which consistently surpass 435 

others when estimating particular flow ranges, the accuracy of simulated target series was 436 

assessed according to primary donor flow magnitude. This reflects the practical application of 437 

infilling techniques, in that only donor flows will be available throughout a gap. Estimates 438 

were therefore grouped into three generalised classes of those relating to lower 439 

(Q95<Q≤Q65), medium (Q65<Q≤Q35) and higher (Q35<Q≤Q5) primary donor flows, thus 440 

ignoring the highest and lowest 5% of donor flow magnitudes since, as previously mentioned, 441 

estimating extreme flows is more challenging, and may not be appropriate due to the higher 442 

uncertainties associated with these data. In line with the findings outlined previously, where 443 

relevant, datasets were first modified to develop more homogenous divisions of data. 444 

Box and whisker plots of the NSE values associated to each group of estimates (Fig. 445 

6) show that, while variations are present, the relative general performance of the techniques 446 

reflects a similar pattern to those observed for the complete flow regime (Fig. 2). The 447 
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equipercentile and dual donor techniques maintain stronger performance across all magnitude 448 

groupings, whilst catchment area scaling is a poorer performing technique. 449 

As expected for the lower flow magnitude class, the performance of the regression 450 

techniques based on log-transformed flows noticeably exceeds that of their counterparts 451 

based on non-transformed flows and, coupled with the equipercentile technique, these 452 

approaches demonstrate the strongest performance for this class (Fig. 6a). It should be noted 453 

that the NSE values associated to the lower flow estimates for target 41023 have been 454 

excluded for clarity since they are the lowest for any technique and are extreme outliers in 455 

some cases. This is a consequence of flows at this target often falling to zero because of its 456 

ephemeral nature (due to permeable geology), behaviour which is not reflected in either 457 

donor and is therefore inherently difficult for statistical techniques to simulate.  458 

The above result does not reverse for higher magnitude flows, with little difference 459 

evident between the performance of techniques based on non-transformed flows and their 460 

log-transformed counterparts, suggesting that the latter are the better overall choice. 461 

 462 

<Figure 6> 463 

 464 

 465 

 466 

 467 

Case study one:  application of method in donor-rich environment 468 

 469 

The Hore at Upper Hore Flume (54097) gauges a very wet, small and natural catchment, 470 

situated in the upper Severn basin in the Welsh uplands and belonging to the Plynlimon 471 

group of research catchments (Marc & Robinson 2007). Due to the density of instrumentation 472 
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maintained in this area, other catchments of similar topography and flow regime can be 473 

selected as donors from within this group, namely the downstream Hore at Hore Flume 474 

(54092) as a primary donor and the neighbouring Tanllwyth catchment at Tanllwyth Flume 475 

(54090) as the secondary donor, both reflecting high correlations with the target of 0.994 and 476 

0.990 respectively. 477 

A 13-day long gap exists in the recent 2008 data of this station (Fig. 7). It is 478 

reasonable to conclude that this period of record could be readily amenable to an infilling 479 

attempt, given the availability of good donors and the fact that, based on recorded rainfall 480 

patterns, nearby gauging stations and catchment response, the missing flows are likely to be 481 

mid-range. The best-performing single and dual donor techniques of the equipercentile 482 

approach (Equi) and multiple regression based on log-transformed and seasonally grouped 483 

flows (MR LS), as judged by the results of this study, were therefore applied to generate 484 

estimates of flow to infill the gap (Fig. 7). Both techniques yield estimated series which are 485 

similar to the available observed flows around the time of the gap. While this paper 486 

deliberately excludes infilling techniques that are dependent on data other than river flows, 487 

other hydrometeorological observations such as rainfall records may provide a useful 488 

verification of results. In the case of this small responsive catchment, rainfall data from a 489 

closely located gauge suggest that the estimated flow pattern reflects rainfall recorded 490 

throughout the gap. This example therefore illustrates how the simple infilling techniques 491 

presented by this study, coupled with local donor station data, can successfully generate infill 492 

estimates that can be adopted with some degree of confidence in order to improve the 493 

completeness and utility of a flow record. 494 

 495 

<Figure 7> 496 

 497 
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Case study two: application in a donor-poor environment  498 

 499 

The Crimple at Burn Bridge (27051) is a small catchment in northern England that forms part 500 

of the UK benchmark network of natural catchments, often used within climate change 501 

detection studies (for example: Hannaford & Marsh 2006). Consequently, it is of particular 502 

importance that its record be as complete as possible, to allow the calculation of long-term 503 

trends and summary statistics. While the record is complete post-1982, infilling a gap during 504 

the earlier part of the record in 1975 poses a challenge due to the difficulty in identifying 505 

suitable donor stations, with the records of many nearby stations either commencing after 506 

1975 or being subject to heavy reservoir influences (Fig. 8). Problems such as these are 507 

widespread in the UK, where the degree of artificial influence on many flow regimes is such 508 

that practitioners will often be faced with the question of whether catchments with varying 509 

factors affecting runoff can usefully provide information transferable to neighbouring 510 

catchments under certain flow conditions.  511 

 512 

<Figure 8> 513 

 514 

Data infilling techniques were applied using various combinations of the potential 515 

donors and coupled with knowledge of any differing influences on the flow regimes to assess 516 

suitability. Estimates derived via the equipercentile technique using a donor from a 517 

neighbouring catchment, the Nidd at Birstwith (27053; Fig. 8) are shown in Fig. 9. While the 518 

upper catchment is influenced by reservoir storage control, the Nidd is subject to the same 519 

meteorological controls at the target station and the degree of regulation is such that much of 520 

the natural flow pattern is maintained. Consequently records from the station may have donor 521 

utility under certain flow conditions. Results show that the estimated time series captures the 522 
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general variability of the target flows and, as expected, during some winter periods of the 523 

record provide an analogue of observed flows. However, around the time of the target record 524 

gap there are many notable discrepancies, timing shifts and consistent over-estimation in the 525 

estimated series due to the differing controls on flow. In this case the infilled data would not 526 

be considered representative of flow behaviour during the missing sequence. 527 

This example thus illustrates the importance of donor selection and knowledge of the 528 

factors affecting flow regimes and shows that even a technique which generally performs 529 

well cannot be expected to provide reliable infill estimates in cases where appropriate donors 530 

are limited. Such issues highlight some of the dangers associated with any fully automated 531 

application of the data-infilling techniques and show that manual appraisal of derived 532 

estimates are an imperative step in determining whether infilled data can be adopted.  533 

 534 

<Figure 9> 535 

 536 

Other considerations for data infilling 537 

This study has provided an evaluation of existing techniques in terms of their performance in 538 

estimating observed flows and their versatility in application, and has also outlined some of 539 

the practical issues in applying the techniques. There are undoubtedly additional practical 540 

issues to consider and future work will focus on application of the techniques under specific 541 

hydrometric situations to assist in the development of operational guidance for practitioners. 542 

For example, the current study applies methods to simulate whole time series but, in practice, 543 

depending on the cause of the missing data, the period either side of a gap in the target series 544 

may also guide estimation.  Use of infilling techniques may also result in discontinuities 545 

between the infilled data and observed data either side of the gap; any future guidance must 546 

consider how this could be addressed. By focusing on whole time series’, this study has not 547 
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addressed the practical question of gap duration or the location of gaps in the flow regime 548 

(although consideration was given to applying methods to separate magbitude classes within 549 

the flow regime).  Future work will seek to address guidelines for gap-duration or location, 550 

e.g. specifying maximum gap length appropriate for infilling.  In this context, other time 551 

series characteristics which were not assessed in this study – such as the capacity of infilling 552 

methods to reproduce autocorrelation structure and long-term persistence (e.g. Koutsoyiannis, 553 

2002) – may be especially important as gap length increases, and should be considered in 554 

future studies. Time lag between target and donor flows was not addressed as it was not 555 

important for this daily dataset, due to the relative size and rapid runoff of most UK 556 

catchments, but may be an important component of any future guidance. 557 

Within the UK, the findings of this study will support the development of general 558 

infilling guidelines appropriate to a wide range of flow regimes, while also presenting 559 

practitioners with a selection of targeted infilling techniques, with local hydrological 560 

conditions and the hydrometric experience of the measuring agencies guiding the ultimate 561 

choice of method and its application.  There are undoubtedly many instances where an infill 562 

would not be appropriate, especially when suitable donor stations cannot be found due to 563 

network sparseness, heavy artificial influences or hydrometric inadequacies. Even if a good 564 

donor is available, other factors could limit the applicability of these methods. Infilling 565 

during flood periods is likely to be subject to huge uncertainties but, arguably, these 566 

circumstances may be when recovering missing data would be of greatest importance.  From 567 

the standpoint of flood frequency analysis, some form of estimate would be preferable to 568 

having no knowledge of event magnitude. However the methods used in this study are 569 

unlikely to be as useful as traditional methods for estimating peak flow using reconstructed 570 

levels and hydraulic theory (e.g. Herschy, 2009), hydraulic models or rainfall-runoff 571 

methods.   572 
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Finally, whilst statistical data transfer techniques are an important tool to aid the 573 

infilling of missing or erroneous observational records, it is important to recognise that the 574 

resulting infilled data only provides an estimate of river flow during the period in question, 575 

and should be identified using metadata flags and comments to guide users.  576 

 577 

Concluding Remarks 578 

 579 

Complete river flow records are vitally important to water resources management but 580 

obtaining such series can be very difficult, given the many means by which gaps can arise in 581 

observed data. Simple infilling techniques with the potential to derive reliable estimates for a 582 

broad range of flow regimes could therefore find wide utility in an operational setting where 583 

more complex catchment modelling is not practical. Systematic appraisals of techniques, 584 

such as the one presented in this paper, are an important step in promoting a consistent 585 

methodology for minimising record gaps. 586 

This study is distinctive in its assessment of multiple techniques – fifteen in total, all 587 

relying upon single or dual donor station data transfer – according to their ability to generate 588 

estimated flow series for a broad sample of 26 representative UK gauging stations. Findings 589 

demonstrate the alliance of superior technique performance with a strong correlation between 590 

target and donor flows (linked to relative donor station location) and the improvement in 591 

performance associated with applying techniques to more homogeneous datasets. The aim of 592 

the study has not been to isolate a single optimal technique, but to instead explore the range 593 

of applicability and general performance of each of the techniques. Key findings suggest that, 594 

overall, the equipercentile and dual donor techniques have demonstrated their potential to 595 

derive more accurate infill estimates, whilst catchment area scaling has been conspicuous 596 

through its poorer performance. 597 
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Outside the sphere of operational hydrometry, adopting a uniform, repeatable 598 

approach towards infilling gaps in river flow data promises many possible advantages to 599 

scientists and practitioners both within the UK and internationally. Nevertheless, it must be 600 

emphasised that, despite the aptitude of simple infilling techniques to generate reasonable 601 

flow estimates, as illustrated by the examples presented within this study, maximising the 602 

quality and completeness of observed river flow data should be the first and foremost 603 

priority. 604 
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Table 1. Summary of common infilling techniques. 
 

Method Summary References 
Manual 

inference 
Estimates are derived through visual comparison with 

donor flows. Accuracy should be fairly assured for 
short gaps with no rainfall or longer gaps during 

stable recessions, but other conditions maylead to 
increased difficulty and subjectivity in determining 

estimates. 

Rees (2008) 

Serial 
interpolation 
techniques 

These include linear, polynomial or spline 
interpolation and are likely to only be successful 

throughout stable periods. 

Rees (2008) 

Scaling factors Donor flows are multiplied by a scaling factor, such 
as the ratio of the target and donor catchment areas or 

a weighting based upon the distance between the 
target and donor. 

Kottegoda & Elgy 
(1977); Hughes & 
Smakhtin (1996); 

Wallis et al. (1991) 
Equipercentile 

technique 
The donor and target flow percentile values are 

assumed equal for any given day. Gaps are infilled by 
calculating the donor flow percentile values and using 
the existing target flow data to derive the target flows 

equivalent to these percentile values. 

Hughes & Smakhtin 
(1996); Rees (2008); 
Smakhtin & Masse 

(2000) 

Linear 
regression 

A regression equation between the target and at least 
one donor is derived, commonly via the least squares 

method, and used to calculate absent target flows. 
Flows may first be transformed, for example, 

logarithmically. 

Hirsch (1979, 1982); 
Raman et al. (1995) 

Hydrological 
modelling 

This varies from black-box modelling, whereby the 
model inputs are related to the outputs without 
considering the processes involved, to the more 

complex process-based models and use of artificial 
neural networks. 

Beven (2001); Ilunga 
& Stephenson 

(2005); Khalil et al. 
(2001) 
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Table 2. Infilling techniques tested by this study. In order to account for any flow records 
containing zero flows, the log-transformation took the form of ln(flow+1). For seasonal flow 
groupings, December – February flows were grouped for Winter, March – May for Spring, 
June – August for Summer and September – November for Autumn. Techniques were 
applied to datasets comprising days when observed flows existed for both the target and 
primary donor (single donor techniques) or all three stations (dual donor techniques). 
 
Acronym Name Details 

LR Linear regression Least-squares linear regression between target and primary 
donor flows. 

LR Seas Linear regression 
seasonal As above but using seasonally grouped flows. 

LR Log Linear regression log Least-squares linear regression between log-transformed 
target and primary donor flows. 

LR LS Linear regression log 
seasonal As above but using seasonally grouped flows. 

M1 MOVE.1 MOVE.1 regression between target and primary donor 
flows (Hirsch 1982). 

M1 Log MOVE.1 log As above but using log-transformed flows. 

Equi Equipercentile Equipercentile technique applied using primary donor flow 
percentile values. 

CA Catchment area 
scaling 

Catchment area scaling applied using target and primary 
donor catchment areas. 

LTM Long-term mean 
scaling 

Long-term mean scaling applied using target and primary 
donor long-term mean flow values. 

LTM Seas Long-term mean 
scaling seasonal As above but using seasonal groupings of flows. 

MR Multiple regression Least-squares linear regression between flows of target 
and both donors. 

MR Seas Multiple regression 
seasonal As above but using seasonally grouped flows. 

MR Log Multiple regression 
log 

Least-squares linear regression between log-transformed 
flows of target and both donors. 

MR LS Multiple regression 
log seasonal As above but using seasonally grouped flows. 

W.Equi Weighted 
equipercentile 

Equipercentile technique applied using each of the donors 
and averaging the resulting estimates for each date. 
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Table 3. Target station details, in ascending order of NRFA ID, and their corresponding 
primary and secondary donor stations. 
 
Target 
station 
NRFA 

ID 

River (location) Catchment 
area (km2) BFI 

Mean 
flow 

(m3s-1) 

Period of 
record 

(used by 
study) 

Primary 
donor 

NRFA ID 

Secondary 
donor 

NRFA ID 

7001 Findhorn (Shenachie) 415.6 0.36 13.96 1960-2008 7002 7004 
15003 Tay (Caputh) 3210.0 0.64 140.27 1947-2008 15007 15006 

21026 Tima Water 
(Deephope) 31.0 0.26 1.37 1973-2008 21017 21007 

25003 Trout Beck (Moor 
House) 11.4 0.14 0.56 1957-2008 23009 76014 

27071 Swale (Crakehill) 1363.0 0.46 20.73 1955-2008 27007 27034 
28031 Manifold (Ilam) 148.5 0.54 3.52 1968-2008 28008 28046 

29002 Great Eau (Claythorpe 
Mill) 77.4 0.89 0.68 1962-2007 29003 29001 

33006 Wissey (Northwold) 274.5 0.82 1.83 1956-2007 33007 33019 
33039 Bedford Ouse (Roxton) 1660.0 0.57 11.59 1972-2008 33037 33015 
35003 Alde (Farnham) 63.9 0.37 0.31 1961-2008 35002 35013 

38014 Salmon Brook 
(Edmonton) 20.5 0.29 0.16 1956-2008 38022 38021 

38030 Beane (Hartham) 175.1 0.75 0.57 1979-2008 38004 33033 
39101 Aldbourne (Ramsbury) 53.1 0.97 0.22 1982-2008 39077 39037 
41023 Lavant (Graylingwell) 87.2 0.81 0.30 1970-2008 41015 42008 
41029 Bull (Lealands) 40.8 0.38 0.45 1978-2008 41016 41003 
43017 West Avon (Upavon) 84.6 0.71 0.69 1971-2008 53013 53002 
46003 Dart (Austins Bridge) 247.6 0.52 11.20 1958-2008 46005 46008 

54029 Teme (Knightsford 
Bridge) 1480.0 0.54 17.71 1970-2008 54008 55014 

55029 Monnow (Grosmont) 354.0 0.5 5.97 1948-2008 56012 55013 

63004 Ystwyth (Pont 
Llolwyn) 169.6 0.4 2.00 1984-2008 55008 63001 

69017 Goyt (Marple Bridge) 183.0 0.53 3.75 1969-2008 69007 69015 
74001 Duddon (Duddon Hall) 85.7 0.3 4.82 1968-2008 74007 74008 
76003 Eamont (Udford) 396.2 0.52 15.51 1973-2008 76004 76015 
85004 Luss Water (Luss) 35.3 0.28 2.63 1976-2008 86001 85003 
93001 Carron (New Kelso) 137.8 0.26 10.85 1979-2008 4005 4006 
96002 Naver (Apigill) 477.0 0.42 16.01 1977-2008 2002 3002 
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Table 4. Comparison of NSE values derived from comparing estimated and observed series 
for targets 38014 and 33006, with datasets varied to exclude certain periods of record, in 
order to remove known inhomogeneities in the time series (for fuller explanation see text). 
 
 

Infilling 
technique 

NSE 
Target 38014 Target 33006 

Full 
datasets 

Homogenised 
datasets Change Full 

datasets 
Homogenised 

datasets Change 

LR 0.813 0.869 +0.055 0.745 0.834 +0.089 
LR Seas 0.857 0.912 +0.055 0.782 0.859 +0.077 
LR Log 0.777 0.852 +0.075 0.733 0.826 +0.093 
LR LS 0.819 0.895 +0.076 0.777 0.852 +0.076 

M1 0.804 0.864 +0.060 0.726 0.827 +0.101 
M1 Log 0.796 0.861 +0.065 0.694 0.808 +0.115 

Equi 0.809 0.865 +0.056 0.719 0.829 +0.110 
CA 0.760 0.846 +0.085 0.730 0.821 +0.091 

LTM 0.774 0.825 +0.050 0.739 0.816 +0.077 
LTM Seas 0.822 0.873 +0.051 0.775 0.853 +0.078 

MR 0.955 0.965 +0.010 0.933 0.933 +0.001 
MR Seas 0.959 0.968 +0.009 0.935 0.937 +0.002 
MR Log 0.948 0.957 +0.009 0.932 0.930 -0.002 
MR LS 0.952 0.961 +0.009 0.935 0.934 -0.001 
W.Equi 0.955 0.963 +0.009 0.924 0.929 +0.005 
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Figure 1. Target gauging station locations, depicted by catchment area and labelled according 
to NRFA station ID. 
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Figure 2. Box and whisker plots of (a) NSE and (b) PBIAS values derived from comparing 
estimated and observed target series, grouped according to technique. Whiskers extend to the 
most extreme values which are no more than 1.5 multiplied by the interquartile range away 
from the box. 
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Figure 3. Bar charts of NSE values derived from comparing estimated and observed target 
series. 
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Figure 4. Relative performance of different techniques as judged using Wilcoxon significance 
testing. Values at the intersection of technique A (y-axis) and technique B (x-axis) indicate 
the percentage more (positive values) or less (negative values) of stations for which technique 
A produced estimated flow series with significantly lower means of residuals (between the 
estimated and observed series) compared to those for estimates produced by technique B (at 
the 5% level). Colour-coded from black for 100% less cases to white for 100% more cases. 
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Figure 5. Observed flows (solid black) for target 76003 during (a) a lower flow and (b) a 
higher flow period, with estimated series of dashed (dotted) lines corresponding to regression 
techniques under non-(log-)transformed flows. 
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Figure 6. Box and whisker plots of NSE values derived from comparing estimated and 
observed target series classified according to primary donor flow magnitudes, grouped 
according to technique. Whiskers extend to the most extreme values which are no more than 
1.5 multiplied by the interquartile range away from the box. 
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Figure 7. Observed and estimated (under two different techniques) flow series for the Hore at 
Upper Hore Flume (54097), based upon donors of the Hore at Hore Flume (54092) and the 
Tanllwyth at Tanllwyth Flume (54090). Rainfall data from the Automatic Weather Station 
located within the Plynlimon group of research catchments at Carreg Wen is shown for 
verification purposes. 
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Figure 8. Locations of target station 27051 (the Crimple at Burn Bridge) and nearby potential 
donors. The period of river flow record held on the NRFA is shown in brackets for each 
gauging station.  
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Figure 9. Observed and estimated (under the equipercentile technique) flow series for the 
Crimple at Burn Bridge (27051), based upon a donor of the Nidd at Birstwith (27053).  
Rainfall data from the Met Office raingauge at Ten Acres Reservoir (National Raingauge 
58487). 
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