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Highlights 17 

• UV optical absorbance by DOM can be explained by two end-member components (A 18 

& B). 19 

• We analysed a data set of c. 1700 samples to derive the spectrum of each 20 

component. 21 

• Fractions of A and B can be obtained from optical absorbance at two wavelengths. 22 

• The results permit DOC concentration to be estimated accurately and without bias. 23 

• The fractional contributions provide information on DOM quality. 24 
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ABSTRACT  28 

We present a model that considers UV-absorbing dissolved organic matter (DOM) to consist 29 

of two components (A and B), each with a distinct and constant spectrum.   Component A 30 

absorbs UV light strongly, and is therefore presumed to possess aromatic chromophores and 31 

hydrophobic character, whereas B absorbs weakly and can be assumed hydrophilic.  We 32 

parameterised the model with dissolved organic carbon concentrations, [DOC], and 33 

corresponding UV spectra for c. 1700 filtered surface water samples from North America 34 

and the United Kingdom, by optimising extinction coefficients for A and B, together with a 35 

small constant concentration of non-absorbing DOM (0.80 mg DOC L-1).  Good unbiased 36 

predictions of [DOC] from absorbance data at 270 and 350 nm were obtained (r2=0.98), the 37 

sum of squared residuals in [DOC] being reduced by 66% compared to a regression model 38 

fitted to absorbance at 270 nm alone.  The parameterised model can use measured optical 39 

absorbance values at any pair of suitable wavelengths to calculate both [DOC] and the 40 

relative amounts of A and B in a water sample, i.e. measures of quantity and quality.  Blind 41 

prediction of [DOC] was satisfactory for 9 of 11 independent data sets (181 of 213 42 

individual samples). 43 

  44 

45 
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1. Introduction 46 

Dissolved organic matter (DOM), comprising the partial decomposition products of plant and 47 

other biological materials, is ubiquitous in surface, soil and ground waters (Perdue and 48 

Gjessing, 1990; Kullberg et al., 1993; Hessen and Tranvik, 1998).  It has numerous 49 

ecological and geochemical functions, including light absorption, pH buffering, interactions 50 

with metals and organic contaminants, adsorption to surfaces and photochemical activity.  It 51 

plays a role in the terrestrial and aquatic carbon cycles, so that monitoring its 52 

concentrations and fluxes can aid in understanding the effects of land use change, 53 

acidification reversal and climatic warming (Pastor et al., 2003; Worrall et al., 2004; 54 

Monteith et al., 2007;).  Because differences in source material, rate and extent of 55 

decomposition, and fractionation processes, are likely to generate substantial variability in 56 

DOM concentrations and properties, monitoring studies often require measurements not 57 

only of concentration, but also one or more indicators of quality.  Currently this is most 58 

often performed by measuring the concentration of dissolved organic carbon - [DOC] - 59 

together with spectroscopic properties. 60 

The main techniques for measuring [DOC] are persulphate oxidation or high temperature 61 

combustion methods (Menzel and Vaccaro, 1964; Chen et al., 2002), including either the 62 

removal or measurement of inorganic carbon.  Both methods are fairly time-consuming and 63 

costly, and require the transfer of samples to a laboratory.  Qualitative information about 64 

DOM is commonly sought from UV-visible absorption and fluorescence spectroscopy.  For 65 

example specific UV absorbance (SUVA), measured at 254 or 280 nm, is a measure of 66 

aromaticity (Chin et al., 1994; Weishaar et al., 2003), absorbance slopes and slope ratios 67 

provide information about DOM sources and properties (Helms et al., 2008; Loiselle et al., 68 

2009).  Fluorescence spectra are widely and increasingly used to compare DOM in time and 69 

space (Cabaniss and Shuman, 1987; Coble et al., 1990; Chen et al., 2003; Cory and 70 

McKnight, 2005).  71 

Since DOM varies in spectroscopic properties, it follows that, in general, measurement of 72 

absorbance at a single wavelength cannot give accurate estimates of [DOC] (Tipping et al., 73 

2009).  However within an individual environmental system (stream, lakewater) it is often 74 

the case that temporal variability is sufficiently small for absorbance to provide a useful 75 

estimate of DOC concentration (Mattson et al., 1974; Lewis and Canfield, 1977; Grieve, 76 

1984; Moore, 1987) Furthermore, data for more than one wavelength have been utilised in 77 

several studies to improve conversions from absorbance to concentration (Downing et al., 78 
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2009; Fichot and Benner, 2011).  A variant on this approach calibrates a multi-wavelength 79 

detector against a DOM standard formulated in the laboratory (Sandford et al., 2010).   80 

In the multiple wavelength methods (Mattson et al., 1974; Downing et al., 2009), empirical 81 

approaches were taken to extract [DOC] from the spectra.  However, Tipping et al. (2009) 82 

showed in a preliminary study that a formal two-component (A and B) model could account 83 

for absorbance data at two wavelengths (254 and 340 nm), and thereby provide accurate 84 

estimates of [DOC].  Using a modest dataset of 48 samples from unpolluted surface- and 85 

ground-waters, extinction coefficients for the two components were optimised and an 86 

excellent model fit was obtained, with r2=0.997 and root-mean-squared deviation (rmsd) of 87 

0.7 mg L-1 in [DOC].  The much greater absorption of UV light by component A indicates 88 

greater aromaticity and hydrophobicity (Thacker et al., 2005, 2008), so that knowing its 89 

fractional amount provides a simple measure of DOM quality. 90 

However, deviations from model predictions were evident in samples from waters draining 91 

urban and industrial areas, and it was speculated that these arose from the presence of 92 

anthropogenic non-UV-absorbing DOM.   93 

The aim of the present study was to test and parameterise the two-component approach 94 

more thoroughly, by making new parallel measurements of [DOC] and optical absorbance 95 

on UK surface waters, and combining the results with data already obtained for sites in 96 

Canada (Koprivnjak et al., 2010) and the USA (Miller and McKnight, 2010).  The UK 97 

sampling was designed to cover a wide range of water types, in an attempt to maximise 98 

variability in DOM.  We also tested the parameterised model on independent data sets. 99 

100 
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2. Methods 101 

In all, 427 samples were collected from UK sites, mainly from the North of England, but also 102 

from East Anglia and Scotland.  Most samples were from streams or rivers, but one 103 

sampling site was a eutrophic lake.  About one-third were repeat samples from 6 sites, and 104 

the rest were single samples from different waters.  The land-use types in the drainage 105 

areas included upland and lowland peats, arable farmland, intensive pasture, urban and 106 

industrial areas, coniferous and broadleaved forest.  Samples for analyses of [DOC], 107 

absorbance, conductivity and iron were collected in acid-washed polyethylene sampling 108 

vessels of 500 cm3 capacity.  A separate sample was collected in a 100 cm3 Pyrex bottle, 109 

fully filled, for pH determination.  The reported results refer to measurements made within 5 110 

days (usually two days) of collection.  To test for stability, in some cases a second 500 cm3 111 

sample was taken and stored in a refrigerator (5oC) before analysis.   112 

The UK samples were passed through GF/F glass-fibre filters with a nominal size cut-off of 113 

0.7 µm.  Filtered samples were analysed for conductivity (Jenway 4510 instrument) and 114 

total iron using ferrozine (Lofts et al., 2008), and for [DOC] by combustion to CO2 using a 115 

Shimadzu TOC-VCPH instrument, after acidification and purging with nitrogen to remove 116 

dissolved inorganic carbon (DIC).  The instrument was calibrated with phthalic acid solutions 117 

(0 - 40 mg C L-1).  Suwannee River Fulvic Acid (SRFA) and sodium bicarbonate solutions 118 

were used for quality control, the latter to check that the acidification-purge procedure 119 

completely eliminated DIC.  Measurements were made in triplicate, with random ordering 120 

within each batch.    121 

Absorption spectra in the UV-visible wavelength range (200-900 nm) were recorded first for 122 

unfiltered surface water samples (without settling of particulates), and then for the same 123 

samples after filtration.  Measurements were also made on blanks and Suwannee River 124 

Fulvic Acid as a quality control.  An Agilent 8453 diode array instrument was used, with 10 125 

mm quartz cuvettes, which were washed with 18.2 mΩ water and then rinsed with sample 126 

before each measurement.  All samples were allowed to reach room temperature before 127 

recording spectra, to avoid condensation on the cuvette.  Spectra were recorded in triplicate 128 

in random order with quality standards at regular intervals.  Sample pH was measured with 129 

a glass electrode using a Radiometer instrument.  The pH electrodes and the conductivity 130 

meter were calibrated at the start of each set of samples, the spectrophotometer calibration 131 

was checked monthly.  To obtain absorbance values in the UV range for modelling, we 132 

routinely subtracted the value of A700 from the measured values.   133 
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In Colorado, 116 samples were collected from May-September 2006 from oligotrophic alpine 134 

and subalpine stream and lake sites in the Green Lakes Valley and adjacent Como Creek 135 

watershed. The Green Lakes Valley is part of the Niwot Ridge Long-term Ecological Research 136 

(NWTLTER) site and is not influenced by direct human impacts. The system is characterized 137 

by a pulse of DOC during snowmelt in late May or early June, followed by a gradual return 138 

to lower concentrations during baseflow (Miller & McKnight, 2010).  Samples were filtered 139 

with GF/F glassfibre filters of 0.7-μm nominal pore size (Whatman, c/o GE Healthcare Bio-140 

Sciences Corporation, Piscataway, NJ, USA), DOC was measured by high temperature 141 

catalytic oxidation with a Shimadzu 5050A TOC Analyzer (Columbia, MD, USA), and 142 

absorption spectra were measured on an Agilent 8453 UV-visible spectroscopy system 143 

(Santa Clara, CA, USA). 144 

Trent University collected stream and lake samples from a forested region of the 145 

Precambrian Shield in Ontario from November 2007 to October 2008. The lakes are 146 

oligotrophic to mesotrophic and are all headwater lakes, with one exception.  Wetlands, 147 

primarily Sphagnum-conifer swamps or beaver ponds, comprise from 0 to 25% of the 148 

catchment areas.  All streams were sampled near the mouth and all lakes at the outflow.  149 

Samples were filtered with Millipore 0.45-μm membrane filters, and analysed for DOC 150 

(Shimadzu TOC-VPH, Columbia, MD, USA) and optical absorbance (Cary 59 UV/Vis 151 

spectrophotometer, Varian, Palo Alto, CA, USA).  We assume that the different filters used 152 

at Trent University and in the other two laboratories produce negligible differences in both 153 

[DOC] and UV spectra.  154 

155 
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3. Modelling 156 

In our previous work (Tipping et al., 2009), we described a two-component model of DOM, 157 

which accounted for optical absorbance in terms of the linear sum of two components (A 158 

and B) each with its own fixed absorbance spectrum.  We adopt the same approach here, 159 

with one modification, which is the inclusion of a third component (C) that does not absorb 160 

light and is present at the same concentration in all water samples.  Thus, the DOC 161 

concentration in a given sample is given by 162 

[DOC] = [DOCAB] + [DOCC]     (1) 163 

where DOCAB refers to the light-absorbing components.  Therefore  164 

 (2) 165 

where Aλ is the absorbance of the sample at wavelength λ (nm) in the UV range, and EAB,λ is 166 

the extinction coefficient (absorbance cm-1 [DOCAB]-1) of the light-absorbing DOM.  If the 167 

DOM comprises two components, the extinction coefficient is given by; 168 

EAB,λ  = fA EA,λ + fB EB,λ      169 

      = fA EA,λ + (1 – fA) EB,λ    (3) 170 

where fA and fB are the fractions of components A and B that comprise the light-absorbing 171 

DOM (fA + fB = 1), and EA,λ and EB,λ are the extinction coefficients at wavelength λ.  172 

Equation (3) can be written for two different wavelengths, λ1 and λ2, and then a ratio R 173 

defined by; 174 

     (4) 175 

The value of R can thus be obtained simply from the measured absorbances at the two 176 

wavelengths.  Its combination with the extinction coefficients of components A and B yields; 177 

      (5) 178 

Therefore, if the values of EA,λ1 EA,λ2, EB,λ1 and EB,λ2 are known, fA can be calculated and then 179 

substituted back into equation (3) to obtain EAB at either of the two wavelengths.  Then if 180 

[DOCC] is known, [DOC] can be obtained from equation (2). 181 

 
[DOC] =          + [DOCC]

EAB,λ

Aλ 

 
R =          =      

EAB,λ2 

EAB,λ1 fA EA,λ1 + (1 - fA) EB,λ1

fA EA,λ2 + (1 - fA) EB,λ2 
= 

Aλ1 

Aλ2 

 
fA =    

EB,λ1 - R EB,λ2

R (EA,λ2 - EB,λ2) + (EB,λ1 – EA,λ1) 
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For a chosen pair of wavelengths, measurements of [DOC], Aλ1 and Aλ2 for sufficient 182 

samples allow estimation of the model parameters, i.e. the four extinction coefficients EA,λ1 183 

EA,λ2, EB,λ1 and EB,λ2, together with [DOCC].  This is done by adopting an initial trial 184 

parameter set, calculating [DOC] for each sample and then computing the sum of squared 185 

residuals between measured and calculated [DOC].  Improvement of the parameter values 186 

(we used Microsoft Excel Solver to do this) then leads to their optimisation by minimising 187 

the sum of squared residuals. 188 

In principle, any pair of wavelengths could be used, but practicalities impose some 189 

restrictions.  While specific UV absorbance (SUVA) at 254 nm is widely employed in DOM 190 

research, this wavelength has two disadvantages.  Firstly there is possible interference due 191 

to nitrate in systems with high levels (Edwards et al., 2001; Thomas and Burgess, 2007).  192 

Secondly, when [DOC] is high (> 50 mg L-1), the absorbance may be too high for reliable 193 

determination.  Therefore we favour 270 nm as λ1.  Wavelength 2 (λ2) needs to be as 194 

different from λ1 as possible, while still permitting measurable absorbance values even on 195 

dilute samples, and we chose 350 nm.  We propose these wavelengths for routine general 196 

use, and employed them in the main analysis presented here.  However, application of the 197 

model is not restricted to absorbance values at 270 and 350 nm; we also fitted results for 198 

other wavelengths in order to be able to analyse published data (See Sections 4.1 and 4.5). 199 

 200 

201 
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4. Results 202 

The 1698 samples studied cover wide ranges of [DOC], pH and conductivity (Table 1), and 203 

originate from many different source environments, as described in Methods.  Samples 204 

stored for one week before processing gave indistinguishable results from those analysed 205 

immediately, but there were decreases of c. 5% in both [DOC] and optical absorbance in 206 

samples stored for periods between 50 and 120 days. 207 

We previously justified the use of a two-component model on the basis of a plot presented 208 

by Thacker et al. (2008) showing that for 23 concentrated DOM samples the ratio (E340/E254) 209 

varied monotonically with E340, i.e. the values fell approximately on a single curve.  The 210 

same behaviour was evident in the present data (Figure S1).  Simple modelling with three 211 

components confirms that, if these were to occur randomly and have sufficiently different 212 

UV spectra, monotonic behaviour would not be observed (Figure S2).  The wide observed 213 

range in E350 (Figure S2) confirms the high degree of variability in the UV absorption 214 

properties of DOM. 215 

4.1. Parameterisation 216 

The five model parameters (EA,λ1, EA,λ2, EB,λ1, EB,λ2 and [DOCC]) could be optimised to fit the 217 

whole data set with good precision (rmsd = 1.2 mg L-1, r2 = 0.979), but as was found 218 

previously (Tipping et al., 2009), a unique combination of parameters does not exist, i.e. an 219 

infinite number of parameter sets can be found that provide identical results.  It is even 220 

possible for some of the extinction coefficients to have negative values, and for values of fA 221 

to be negative or greater than unity, all of which are physically meaningless.  Therefore we 222 

introduced a constraint, based on evidence from Thacker et al. (2001) who showed that 223 

some physico-chemical properties of different samples of isolated DOM are strongly 224 

correlated with their extinction coefficients.  In particular, the fractions of the total DOM 225 

sorbing to XAD8 resin or to alumina were positively, and approximately linearly, related to 226 

E340.  Although in neither case is precise extrapolation to 100% sorption possible, the plots 227 

given by Thacker et al. (2008) indicate that the limiting value of E340 is between 25 and 35 L 228 

g-1 cm-1.  We interpreted this to approximate the extinction coefficient of DOM fraction A, 229 

which has greater aromaticity, and therefore higher optical absorbance, hydrophobicity and 230 

propensity to sorb to surfaces.  Since the extinction coefficients at 340 nm and 350 nm 231 

cannot differ greatly, we assigned a value of 30 L g-1 cm-1 to EA,λ2.  However, a unique 232 

parameter set was still not obtained, and therefore a further constraint was imposed, based 233 

on the finding that EB,λ2 always took on low values (< 10 L g-1 cm-1), suggesting that simply 234 
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setting EB,λ2 to zero would be justifiable.  This means that our idealised component B 235 

absorbs UV light at wavelengths < 350 nm, but is assumed to be fully transparent at higher 236 

wavelengths.  Refitting with these constraints did not affect either rmsd or r2.  The resulting 237 

parameter set is unique, still gives the best fit, and provides a physically realistic picture.  238 

Other constraints could be applied but they would differ only slightly from those we have 239 

employed, and would produce the same results.  Setting EB,λ2 to zero is only for 240 

convenience, and equally good results would be obtained were it set to some low positive 241 

value. 242 

Inspection of the derived values of fA showed that for 18 of the 1698 samples (0.11% of the 243 

total) the ratio of measured to calculated [DOC] was <0.5 or >1.5, and these were treated 244 

as outliers (we presume the discrepancies reflect analytical errors).  After their removal, the 245 

fit was slightly improved (rmsd = 1.1, r2 = 0.989).  The final model parameters are given in 246 

Table 2, which also lists extinction coefficients at other wavelengths, used in the analysis of 247 

independent data (Section 4.5).  The measured and modelled [DOC] values are compared in 248 

Figure 1.  Figure 2 shows the full UV spectra of components A and B, derived by applying 249 

the parameterised model to observed spectra in the range 250-400 nm. 250 

Residuals between modelled and measured [DOC] tend to increase with [DOC], while the 251 

relative difference tends to decline (Figure 1).  Use of the model to estimate [DOC] will give 252 

95% confidence limits of ± 0.9 mg L-1 for 0 < [DOC] < 5 mg L-1, ± 2 mg L-1 for 5 < [DOC] 253 

< 20 mg L-1, and ± 4 mg L-1 for 20 < [DOC] < 80 mg L-1.  For the UK data set, the 254 

corresponding 95% confidence limits for ranges of [DOC] determined by combustion were ± 255 

0.2, ± 0.4 and ± 2 mg L-1 respectively.  Note however, that the errors in the spectroscopic 256 

method must result partially from inevitable differences in analytical results among the 257 

three contributing laboratories. 258 

4.2. Comparison with single wavelength approaches 259 

The results obtained with the model are superior to the global use of absorbance at a single 260 

wavelength to estimate [DOC].  Fitting the whole data set for 270nm gave r2 = 0.964, and 261 

for 350 nm the agreement was worse, with r2 = 0.932. Moreover, as shown by Figure S3, 262 

there are biases, with problems at low concentrations, especially shown up by the log-log 263 

plot.  If the single wavelength relationships are used to construct predictive models, i.e. the 264 

regression equations are used to predict [DOC] simply from absorbance at one wavelength, 265 

the rmsd is 1.9 mg L-1 for 270 nm and 2.6 mg L-1 for 340 nm (the value for the two-266 

component model is 1.1 mg L-1).  These values mean that the two-component model using 267 
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both 270 and 350 nm reduces the sum of squared deviations between observed and 268 

predicted [DOC] values by 66 and 82% respectively for the two wavelengths.  If the single 269 

wavelength regression at 270 nm were used to estimate [DOC], 95% confidence limits 270 

would be ± 1.2 mg L-1 for 0 < [DOC] < 5 mg L-1, ± 3.5 mg L-1 for 5 < [DOC] < 20 mg L-1, 271 

and ± 6.6 mg L-1 for 20 < [DOC] < 80 mg L-1. 272 

We also compared the results obtained using the two-component model with those obtained 273 

with single-wavelength modelling for individual UK sites that had been sampled repeatedly.  274 

For each site, a linear regression analysis was performed for [DOC] vs A270, and the 275 

regression parameters were used to predict [DOC].  The results of these site-specific 276 

calibrations were compared with the modelled values of [DOC] obtained from the global fits 277 

of both the single wavelength and two-component models (which included the data for the 278 

sites in question, but overwhelmingly more data for other sites).  As shown in Table 3, even 279 

when the single wavelength model is calibrated to an individual site, the two-component 280 

global model (i.e. without site-specific calibration) gave higher values of r2 in five of the six 281 

cases, with no overall difference in rmsd.  Overall the single wavelength global model gave 282 

appreciably poorer results, although when the DOM characteristics are similar to the global 283 

average, and relatively unvarying, which was found for the River Gowan (Table 3), good 284 

results are of course obtained. 285 

4.3. DOM quality 286 

By mathematically fractionating DOM into components A and B, i.e. deriving the value of fA 287 

for each sample, the model provides a simple measure of quality; the greater the proportion 288 

of component A, the more light-absorbing and hydrophobic is the material.  To display the 289 

results, we plotted fA against [DOC], although in principle there is no reason to expect any 290 

relationships because fA depends upon ratios of absorbance to [DOC] not [DOC] itself.  291 

Indeed, for the UK samples, no relationships were evident (Figure 3), and the broad range 292 

of fA therefore reveals considerable natural variability in DOM quality, when steps have been 293 

taken to sample disparate waters.  The Canadian data set, although larger, refers to 294 

samples from more similar surface waters, and the values of fA tend to increase with [DOC].  295 

Samples from the Colorado data set with [DOC] > 2 mg L-1 had fA values of around 0.3, 296 

while for more dilute samples, fA fell in the range 0.1 to 1.0.  297 

Another widely-used simple measure of DOM quality is SUVA254 which also provides a 298 

measure of aromaticity and hydrophobicity (Chin et al., 1994; Weishaar et al., 2003).  As 299 

might be expected, fA and SUVA254 are correlated.  For UK samples with [DOC] > 3 mg L-1 300 
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(results for lower concentrations were excluded because of noise in the data associated with 301 

taking ratios of low values), linear regression gave r2 = 0.66 (Figure S4).  A closer 302 

relationship between fA and SUVA254 is not found because values of fA are derived after 303 

factoring out the non-UV-absorbing component C, which would otherwise contribute to the 304 

calculation of SUVA254.  Fraction B also contributes to SUVA254.  Note that if absorbance at 305 

254 nm is known, the model-derived [DOC] can be used to estimate SUVA.  306 

4.4. Aspects of practical application 307 

In our preliminary study (Tipping et al., 2009) we reported that [DOC] in surface water 308 

samples from areas of industry and high human populations was underestimated by the 309 

model (fitted to results from relatively unpolluted sites).  During the present research, we 310 

discovered that the measured [DOC] values for the non-conforming sites had been 311 

overestimated, due to inadequate sparging of acidified samples, and the consequent 312 

presence and inadvertent determination of DIC.  This artefact has been reported in the 313 

literature (Findlay et al., 2010).  To obtain the results reported here, we took care to ensure 314 

that all DIC was removed before the DOC analysis, and found that water samples from the 315 

locations that had previously appeared anomalous now fully conformed to the model.      316 

For the UK samples, we examined possible dependences of model output on pH and Fe, 317 

both of which have been shown to influence spectra (Bloom and Leenheer, 1989; Maloney 318 

et al., 2005).  The ratio of calculated to measured [DOC] showed a slight pH dependence, 319 

falling by 0.018 per pH unit (p < 0.001).  There was no trend with total Fe concentration. 320 

For filtered samples, the subtraction of the absorbance at 700 nm when processing the UK 321 

data was intended to account for instrumental drift (cf. Hernes et al., 2008), but in practice 322 

the correction had negligible effects.  For unfiltered samples, the subtraction was explored 323 

as a possible means of correcting for minor turbidity, none of these samples being 324 

noticeably cloudy.  The model was fitted to both the filtered and unfiltered UK samples, 325 

maintaining the constraints on EA2 and EB2 at 30 and 0 L g-1 cm-1.  For the filtered samples 326 

we obtained EA1 = 69.3 and EB1 = 15.4 L g-1 cm-1, while for unfiltered samples the values 327 

were 67.7 and 20.7 L g-1 cm-1.  The values of [DOCC] were 0.80 (filtered) and 1.23 328 

(unfiltered) mg L-1.  Values of r2 were 0.989 (filtered) and 0.986 (unfiltered), and rmsd was 329 

1.1 mg L-1 for the filtered samples and 1.4 mg L-1 for the unfiltered samples 330 

4.5. Testing on independent data 331 



  14

We tested the parameterised model by using it to predict [DOC] in water samples analysed 332 

in 11 independent studies (213 data points) from a range of locations, for which appropriate 333 

[DOC] and UV absorbance data were available.  In most cases, absorbance data were not 334 

available at our favoured wavelengths (270 and 350 nm), and so we modified the model 335 

parameters using the spectra of Figure 2.  As summarised in Table 4, we obtained 336 

satisfactory agreement between predicted and observed [DOC] in 9 cases (181 data points).  337 

For these data, 92% of the predictions fell within the 95% confidence limits presented 338 

above, which can be considered satisfactory performance given that both the modelled and 339 

directly-measured [DOC] values will have been subject to errors in each of the laboratories 340 

that produced the independent results.  Furthermore, linear and logarithmic plots of 341 

predicted vs observed [DOC] (Figure S5) show no overall bias.   342 

In two cases (32 data points) agreements were unsatisfactory.  Data for Lake Pitkjärv in 343 

Estonia (Selberg et al., 2011) gave an overall ratio of predicted to observed [DOC] 344 

reasonably close to unity, but a high scatter in the results.  For shallow lakes of the Yangzte 345 

basin (Zhang et al., 2005), the model appreciably underestimated [DOC], by an average 346 

factor of 2.1.  The DOM in these lakes absorbs UV light extremely weakly, with an average 347 

extinction coefficient at 280 nm of only 6.5 L g-1 cm-1, about half of the values estimated by 348 

Gondar et al. (2008) for autochthonous DOM produced in a UK eutrophic lake and in Lake 349 

Fryxell, Antarctica (Aiken et al., 1996).   350 

We also used the parameterised model to predict our own data, separated according to their 351 

laboratories of origin.   The UK and Canada data gave ratios close to unity and values of 352 

rmsd close to the overall average for all the satisfactory data sets.  The Colorado data set 353 

gave an average ratio of 1.19, but the smallest rmsd, reflecting the generally low [DOC] for 354 

the Colorado samples, and consequently greater “noise” and more outliers.  Nonetheless, 355 

these data make an important contribution to the parameterisation by defining low 356 

concentration conditions. 357 

Selected independent data sets were used to test further the applicability of single 358 

wavelength predictive models.  Following the approach described in Section 4.2, the Table 4 359 

data sets for the California agricultural stream, Congo River, North Wales streams, Scottish 360 

& Welsh upland lakes, UK groundwaters and Yukon River (i.e. the larger collections for 361 

which the two-component model predictions were reasonably good) were each fitted to 362 

single wavelength models, using both the shorter and longer wavelength in each case 363 

(Table S1).  For the shorter wavelength (254 nm in all cases) the site-specific optimised 364 

single wavelength model gave better fits (as judged by the rmsd in [DOC]) than the 365 
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globally-parameterised two-component model in four of the six cases, while the opposite 366 

was the case for fits at the longer wavelengths (340 or 350 nm).  Thus blind predictions 367 

with the two-component model are at least as good as the optimised fitted values.  When all 368 

the data were combined and fitted to a single wavelength (254 nm) model, the rmsd in 369 

[DOC] was 1.25 mg L-1, greater than the value of 1.01 mg L-1 obtained with two-component 370 

blind predictions, and the r2 value was lower (0.93 vs 0.96).  As found for the UK sites 371 

referred to in Table 3, the parameter values for the single wavelength models varied 372 

appreciably among the data sets (Table S1).  Furthermore, the single wavelength model for 373 

the combined data showed bias with overestimation of [DOC] at low and high 374 

concentrations, and underestimation at intermediate concentrations, whereas the two-375 

component blind predictions fell centrally within the data. 376 

377 
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5.  Discussion 378 

The results suggest that [DOC] and DOM quality in freshwaters can usefully be estimated 379 

simultaneously simply from optical absorbance data at two suitable wavelengths.  The 380 

estimation of [DOC] by this approach is markedly superior to the use of a single 381 

wavelength, since the model is able to take into account variations in DOM extinction 382 

coefficients among samples.  This is shown by the ranges of parameter values obtained 383 

when single wavelength models are derived for individual locations or collections of similar 384 

sites (Tables 3 and S1).  Such variation means that, although good fits can often be 385 

obtained under restricted circumstances, a general single-wavelength model will always be 386 

imprecise.  The use of data at two wavelengths takes advantage of the wavelength variation 387 

of the extinction coefficient range, thereby providing more accurate estimates of [DOC]. 388 

Equally important, the two-component model predictions are unbiased (Figure 1), in 389 

contrast to single wavelength fits (Sections 4.2 and 4.5, Figures 1 and S3).  Even if the 390 

single wavelength model is calibrated to a specific site, the two-component approach, 391 

globally parameterised, gives results that are generally just as good (Tables 3 and S1, 392 

Sections 4.2 and 4.5).  An important finding of the present work is that the previous 393 

apparent discrepancies for some UK waters strongly impacted by human activities (Tipping 394 

et al., 2009) were artefacts caused by incomplete removal of DIC during analysis.  Although 395 

we deliberately sampled a wide range of water types in the UK work, it could still be argued 396 

that the data used for parameterisation refer to a somewhat limited range of environments, 397 

restricted to mid-latitudes of the northern hemisphere.  However, the satisfactory testing on 398 

independent data sets (Table 4) covering a variety of sites from the tropics to the Arctic 399 

suggests wide applicability.     400 

Our primary aim in this paper was to explore the performance of the two-component model, 401 

rather than to find the most precise and accurate means of predicting [DOC] from 402 

spectroscopic data.  But we can mention comparative tests using the logarithmic multiple 403 

regression model of Fichot and Benner (2011), which they used to predict [DOC] in coastal 404 

seawater from absorbance values at 275 and 295 nm.  We  fitted their equation to data 405 

from the UK (i.e. the data set with the highest variability in DOM sources), and obtained r2 406 

= 0.944.  When used to predict linear [DOC] values, the r2 was 0.946 and the rmsd 1.9 mg 407 

L-1, i.e. a poorer fit than provided by the two-component model (r2 = 0.979;  rmsd 1.2 mg 408 

L-1).  Moreover, the fitted Fichot-Benner model gave biased predictions, with 409 

underestimation at low and high [DOC] and overestimation at intermediate values.  410 

Therefore the two-component model can be considered superior, at least when applied to 411 

wide-ranging freshwater data.  This is perhaps not surprising, given that Fichot and Benner 412 
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(2011) found it necessary to calibrate their model separately for different locations and also 413 

for different ranges of [DOC].  Of course, other multiple regression models involving 414 

absorbance values at different wavelengths might yield better results, and this is certainly 415 

worth exploring.   416 

The two-component model accounts very well for the UV-absorbing components of DOM, 417 

which often dominate, but the analysis requires the assumption that there is a constant 418 

concentration of non-absorbing DOM, component C, with [DOCC] = 0.80 mg L-1.  By 419 

definition, this is not accessible to spectroscopic study, and the value of 0.80 mg DOC L-1 420 

must be considered an overall average.  It is likely that some of the deviations between 421 

measured and modelled [DOC] are due to variations in [DOCC].  In further systematic 422 

studies, efforts might be made to estimate how [DOCC] depends upon site characteristics for 423 

example.   424 

As explained in Section 4.3, the inclusion of [DOCC] in the model is one reason for the only 425 

approximate relationship between fA and SUVA (Figure S4), since the calculation of SUVA 426 

would include [DOCC] as part of the total DOC.  Thus while both fA and SUVA reflect DOM 427 

aromaticity and hydrophobicity they are not directly related.  Both can be regarded as 428 

empirical indices of hydrophobicity, derived from spectroscopic data, and they might be 429 

used in combination for interpretative purposes, along with other spectroscopic indicators 430 

such as spectral slopes and absorbance ratios (Zhang et al., 2005; Helms et al., 2008; 431 

Hernes et al., 2008; Spencer et al., 2009; Spencer et al., 2010; Fichot and Benner, 2011).    432 

The wide range of fA found for the UK samples (Figure 3) can be attributed to the 433 

deliberately wide range of water types chosen for sampling.  For example, low fA values 434 

were obtained for samples from a eutrophic lake during summer, dominated by 435 

autochthonous DOM, while peat drainage gave high values of fA.  Although the Canadian 436 

data set is more than twice the size of the UK one, the sampled water bodies were less 437 

variable, being mainly in boreal forested areas, within which systematic underlying control 438 

processes on DOC quality and quantity may cause fA to be correlated with [DOC] (Figure 3), 439 

and explain why high fA values are not found.  The wide range of fA values in the Colorado 440 

data set represents the high spatial and temporal variability in the chemical quality of the 441 

DOM in the alpine and subalpine watersheds.  Average fA values found for the independent 442 

data (Table 4) vary, the highest values being found for the sites in Wales and the southern 443 

USA, the lowest for groundwaters and the two Australian reservoirs.  Obvious next steps to 444 

improve understanding of variations in fA (and other spectroscopic variables) are more 445 

systematic studies on freshwaters with respect to land-use, soil and vegetation type, water 446 
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residence time etc, and application of the model to coastal seawater data (cf. Fichot and 447 

Benner, 2011). 448 

We do not propose the two-component model as a replacement of conventional 449 

determinations of [DOC], but it could find significant applications in biogeochemical survey 450 

and monitoring work, and in screening the quality of supply water destined for treatment 451 

(Rosario-Ortiz et al., 2007).  Combined with conventional analyses for quality control, it 452 

offers the possibility to increase greatly the number of samples analysed, while multi-453 

wavelength monitoring would yield simultaneous derivation of DOM quality indicators 454 

through fA, derived SUVA, and other spectroscopic indicators mentioned above.  455 

Furthermore, the approach might permit in situ monitoring of [DOC] and DOM quality in real 456 

time, if practical difficulties such as turbidity effects and sensor fouling can be overcome.  457 

Our results for the UK samples suggest that corrections using long-wavelength 458 

absorbance/scattering values might be feasible at least for waters of relatively low turbidity.  459 

The model might be improved by taking into account the minor pH dependence of estimated 460 

[DOC].  There is also a need to standardise the gathering of matched [DOC] and 461 

spectroscopic data, to minimise analytical differences among contributing laboratories.  462 

The apparent two-component behaviour demonstrated here extends the observations made 463 

in work on the functional properties of DOM (Thacker et al., 2008; Gondar et al., 2008) in 464 

which variations in UV absorption and hydrophobicity were accounted for using mixing 465 

models with two end-members.  Given the accepted high degree of complexity of DOM 466 

(Leenheer and Croué, 2003), this clearly cannot mean that there are actually only two 467 

discrete chemical compounds in DOM, but there might possibly be two sufficiently similar 468 

collections of molecules for two-component behaviour to emerge.  Another possibility is a 469 

regular continuum of DOM spectra, since models with any number of components could 470 

equally well fit the data presented here, provided the extinction coefficients vary linearly 471 

between those of the end-members (see Figure S2).  To understand how the two-472 

component situation could come about, we need to know about the UV spectroscopic 473 

properties of DOM as initially formed (e.g. from terrestrial plant litter, via soil organic matter 474 

turnover, or from freshwater algae), and how the processes of fractionation (e.g. sorption 475 

by mineral soils) and modification (e.g. photolysis in lake waters) affect those spectra.  476 

Interpretation may depend upon how the UV spectra of DOM come about, either from the 477 

linear superposition of the spectra of many different chromophores (Bloom and Leenheer, 478 

1989; Korshin et al., 1997), or, as proposed by DelVecchio & Blough (2004), from 479 

“intramolecular charge-transfer interactions between hydroxy-aromatic donors and quinoid 480 

acceptors formed by the partial oxidation of lignin precursors”.  In a more general sense, 481 
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the two-component behaviour of DOM UV spectra may help to constrain models of DOM 482 

production, transport and modification in soil-water systems.     483 

484 
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6. Conclusions 485 

The UV optical absorbance spectra of a large number of freshwater samples varying in origin 486 

could be resolved into contributions from two components.  Thus, the spectra appear to be 487 

simple combinations of the strongly-absorbing component A, and the weakly-absorbing 488 

component B, the former showing relatively more absorbance at longer wavelengths.  The 489 

different spectral shapes of A and B permit their resolution in a given sample, simply from 490 

measurements of absorbance at two suitable wavelengths (e.g. 270 and 350 nm).  Knowing 491 

the fraction of each component and their individual extinction coefficients (L g-1 cm-1), and 492 

assuming a constant small (0.80 mg DOC L-1) background level of non-absorbing DOM, then 493 

allows [DOC] to be calculated.  The fraction of one or the other of A and B is an indicator of 494 

DOM quality; thus, the greater is fraction A, the more light-absorbing and hydrophobic is 495 

the DOM.  The results offer the prospect of rapid and inexpensive determination of [DOC] 496 

and DOM quality, including in situ field monitoring.  They also raise questions about the 497 

origins of DOM spectra. 498 

499 
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	Table 1.  Summary of sample chemistries. 654 

 UK Canada US All 

No. of samples 427 1154 117 1698 
DOC (mg L-1) 0.9 - 54.6 1.2 - 74.5 0.6 - 10.1 0.6 - 74.5 

pH 3.0 - 8.5 3.4 - 7.4 5.9 - 7.4 3.0 - 8.5 
Conductivity(µS cm-1) 17 - 1959 8 - 316 7 - 98 7 - 1959 

 655 

 656 

657 
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Table 2.  Summary of model parameters.  The extinction coefficients (E) have units of L g-1 658 

cm-1, [DOCC] is in mg L-1. 659 

 660 
 Component A Component B 

E270nm 77.1 21.3 

E350nm 69.3 15.4 

E254nm 63.9 12.0 

E280nm 61.1 10.6 

E285nm 47.6 4.7 

E310nm 34.1 0.7 

E340nm 30.0 0.0 

E355nm 27.9 0.0 

[DOCC] 0.80 

 661 

662 
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Table 3.  Comparison of predictions of [DOC] (mg L-1) using single wavelength (270 nm) 663 

and two-component models.  For site-specific single wavelength fitting, linear regression 664 

(slope m, intercept c) was used to relate [DOC] to Abs270 at each site, then the relationship 665 

was used to back-calculate [DOC].  The single wavelength global predictions were made 666 

using the linear regression fits of all 1698 data points.  Numbers of samples are indicated by 667 

n. 668 

 669 

two‐component

Site n mean
[DOC] 

m c r 2 rmsd r 2 rmsd r 2 rmsd

River Conder 28 5.9 20.3 1.6 0.94 0.6 0.94 0.8 0.97 0.6
Cottage Hill Syke 23 29.3 18.5 3.8 0.70 2.9 0.70 4.9 0.88 3.0
Esthwaite Water 12 3.7 12.1 2.6 0.40 0.3 0.40 0.4 0.58 0.3
River Gowan 25 3.4 21.7 1.3 0.94 0.4 0.94 0.5 0.94 0.4
Rough Sike 30 14.5 19.0 0.8 0.96 1.3 0.96 4.0 0.99 1.5
Troutbeck 24 12.2 17.8 2.0 0.95 1.3 0.95 3.3 0.98 1.0

global prediction
single wavelength models

site‐specific fit global prediction

 670 

 671 
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Table 4.  Comparison of [DOC] predicted with the parameterised model and determined by conventional analysis.  672 

Sample location and type na [DOC] range 
mg L-1 

λ1 
nm 

λ2 
nm 

mean  
ratiob 

rmsd 
mg L-1 

fAc 

mean 
ref. 

Australian reservoirs 2 3.2 - 11.6 270 350 1.00 0.71 0.18 Liu et al., 2010 
California agricultural stream 29 2.1 - 7.1 254 350 0.96 0.70 0.34 Hernes et al., 2008 
California urban stream 4 4.4 - 10.6 254 310 0.79 1.37 0.33 Izbicki et al., 2007 
Congo River 28 5.2 - 9.0 254 350 0.91 0.69 0.38 Spencer et al., 2010 
North Wales streamsd 30 1.1 - 28.0 254 340 1.14 1.64 0.41 Evans et al., 2007 
Scottish & Welsh upland lakes 31 0.6 - 8.1 254 340 1.14 0.57 0.51 Yang et al., 2009 
SE USA riversi 6 1.8 – 9.8 270 340 1.00 0.53 0.42 Koprivnjak, 2007 
UK groundwaters 12 1.1 - 11.0 254 340 0.96 0.82 0.19 Tipping et al., 2009 
Yukon River 39 2.6 - 17.0 254 350 0.95 1.22 0.31 Spencer et al., 2009 
All the above 181 0.6 - 28.0 - - 1.01 1.01 0.37 - 
         
Lake Pitkjärv, Estoniae 10 16.5 - 45.6 254 285 1.10 3.93 0.44 Selberg et al., 2011 
Yangtze River lakes 22 2.7 - 10.1 280 355 0.47 3.27 0.17 Zhang et al., 2005 
         
UK dataf 426 0.9 - 54.6 270 350 1.03 1.37 0.50 this study 
Canada datag 1148 1.2 - 74.5 270 350 0.99 0.98 0.39 this study 
Colorado datah 106 0.6 - 10.1 270 350 1.11 0.25 0.36 this study 

a no. of data points b [DOC]pred/ DOC]obs c for [DOC]obs > 2 mg L-1 Outliers omitted: d1, e3, f1, g6, h11 673 
i includes two data points determined on samples concentrated by reverse osmosis 674 

 675 
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Figure captions  676 

Figure 1.  Modelled vs observed [DOC] after full optimisation (filtered samples); (a) all data 677 

except for 18 omitted outliers (see text); (b) data for [DOC] ≤ 10 mg L-1; (c) data plotted 678 

logarithmically, with one point omitted because the calculated [DOC] was < 0.  Solid lines 679 

indicate 1:1 correspondence.   680 

 681 

Figure 2.   UV spectra of DOM components A and B.  The extinction coefficients and 682 

wavelengths derived from the parameterisation are indicated. 683 

 684 

Figure 3.  Variation of fA with log [DOC]; (a) United Kingdom data, (b) Ontario data, (c) 685 

Colorado data.  Only values for [DOC] > 1.5 mg L-1 are plotted, because of the high degree 686 

of uncertainty at lower concentrations.  Three UK values with calculated fA > 1 are omitted. 687 

688 
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