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13 Agricultural intensification is a leading cause of global biodiversity loss, especially 
14 for threatened and near‐threatened species. One widely implemented response is 
15 ‘Wildlife‐friendly  farming’,  involving  the  close  integration  of  conservation  and 
16 extensive farming practices within agricultural landscapes. However, the putative 
17 benefits from this controversial policy are currently either unknown or thought 
18 unlikely to extend to rare and declining species. Here we show that new, evidence‐ 
19 based approaches to habitat creation on intensively managed farmland in England 
20 can achieve large increases in plant, bee and bird species. In particular, we found 
21 that  habitat  enhancement  methods  designed  to  provide  the  requirements  of 
22 sensitive target biota consistently increased the richness and abundance of both 
23 rare and common species, with 10‐fold to >100‐fold more rare species per sample 
24 area than generalised conventional conservation measures. Furthermore, targeting 
25 landscapes of high species richness amplified beneficial effects on the least mobile 
26 taxa: plants and  bees.  Our  results provide the  first  unequivocal support for  a 
27 national wildlife‐friendly farming policy, and suggest that this approach should be 
28 implemented much more extensively to address global biodiversity loss. However, 
29 to  be  effective  these  conservation  measures  must  be  evidence‐based,  and 
30 developed using sound knowledge of the ecological requirements of key species. 
31 

32 Keywords: agri‐environment schemes; habitat restoration; eco‐agriculture; 
33 ecosystem services 
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36 1.   INTRODUCTION 
37 

38 Rapid population growth is driving an unprecedented demand for food production 
39 across the globe, resulting in wide scale habitat loss, catastrophic declines in 
40 biodiversity and potential disruption of ecosystem services (Chivian & Bernstein 
41 2008). Thus the need to balance biodiversity conservation and agricultural 
42 production has never been more pressing (Godfray et al. 2010). Wildlife‐friendly 
43 farming, by reducing the intensity of agricultural management and implementing 
44 conservation actions in farmed landscapes (Scherr & McNeely 2008), directly 
45 addresses the headline Convention on Biological Diversity 2020 target of sustainable 
46 agricultural management (Normile 2010). There has been a strong drive for wildlife‐ 
47 friendly farming across various parts of the world (Rands 2010), notably in Europe 
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48 through agri‐environment schemes (AES) incorporated into the Common Agricultural 
49 Policy (CAP). Although AES pay farmers €2.5 billion annually (EU 2011) to manage 
50 their land to promote particular habitats and species, current evidence suggests they 
51 are failing to halt declines in farmland biodiversity (Kleijn et al. 2011), and provide 
52 few benefits for rare and declining species (Kleijn et al. 2006; Davey et al. 2010). 
53 Indeed a recent report by the European Court of Auditors concluded that AES are not 
54 designed and monitored so as to deliver tangible environmental benefits (EU 2011). 
55 In light of these severe criticisms, AES urgently need to be refined to make them 
56 more effective and better targeted, in particular to meet the requirements of rare 
57 species (EU 2011). To address this we quantified the effectiveness of the English 
58 ‘Entry Level Stewardship Scheme’ (ELS)(Natural England 2010), a whole‐farm AES 
59 designed to deliver environmental protection and enhancement over large areas 
60 (annual budget = €202 million, coverage 5.6 million ha = 60% of utilisable farmland). 
61 It comprises over 60 management prescriptions either to enhance or to create 
62 wildlife habitat on farmland. Most of these have broad environmental aims and are 
63 simple and cheap to implement (‘general’ prescriptions). In contrast, a small number 
64 of prescriptions are closely tailored to the ecological requirements of target taxa 
65 largely based on research programmes funded by the UK Government and 
66 Conservation Agencies (‘evidence‐based’ prescriptions). We compared the 
67 effectiveness of general with evidence‐based habitat creation methods in promoting 
68 diversity and abundance of plants and bees, using national monitoring; and of birds, 
69 using multi‐site experiments. In addition, large‐scale processes may impose a further 
70 constraint on AES effectiveness: if the surrounding landscape has low biodiversity 
71 then the AES habitats may be colonised poorly (Whittingham 2007). This simple 
72 hypothesis has not been tested formally across different taxa so we investigated the 
73 relationship between the richness of rare species in the surrounding landscape and 
74 that found on the sample of evidence‐based habitat patches. 
75 

76 

77 

78 2.   MATERIAL AND METHODS 
79 

80 For plants, bees and birds we took a common approach of comparing an 
81 intensively managed cereal crop (control) to agri‐environment management 
82 prescriptions with either broad environmental objectives (general option) or those 
83 based on the ecological requirements of the target taxa (evidence‐based). Details of 
84 each prescription varied depending on the taxa. For plants we compared cropped 
85 ‘conservation headlands’ (general) with non‐crop, annually‐cultivated field margins 
86 (evidence‐based). Conservation headlands are strips of cereal crop managed with 
87 restricted pesticide inputs in order to improve the survival of broad‐leaved plants 
88 and beneficial insects (Dover 1997). An example of each option and control was 
89 selected at random from thirty nine 20×20 km squares across lowland England (see 
90 electronic supplementary material figure S1, n= 117 sites). Plant diversity and 

91 abundance was recorded from thirty 0.25 m2 quadrats within a 100×6 m sampling 
92 zone at each site (Walker et al. 2007). For bumblebees we contrasted the crop to a 
93 widespread general option that provides nesting habitat and limited pollen and 
94 nectar resources (an uncropped field margin sown with grasses, Pywell et al. 2006) 
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and an evidence‐based approach (margin sown with pollen‐ and nectar‐rich plants; 
Carvell et al. 2007). An example of each measure was selected from thirty eight 
10×10 km squares (supplementary material figure S1, n= 114 sites). On each option 
bumblebee species were counted along a randomly located 100×6 m transect in July 
and August (Pywell et al. 2006). For farmland birds we analysed three datasets 
derived from experiments at eight farms (site details in supplementary material, 
figure S1), comparing the crop with uncropped field margins sown with grasses 
(general) and the evidence‐based approach of sowing patches with between 4‐7 
seed‐bearing crop species. We recorded bird utilisation during the winter using timed 
counts followed by flushing the birds from each patch. 

Species were classified as rare or common based on a range of rarity criteria 
(supplementary material). Treatment effects on rare and common plants and 
bumblebees were tested using analysis of variance with post‐hoc Tukey’s pairwise 
comparisons. The farmland bird studies involved different experiments so we used a 
meta‐analysis approach to calculate the weighted mean effect size (Hedge’s d) for all 
pairwise comparisons of the evidence‐based, general and control treatments. Finally, 
we used poisson regression to investigate the relationship between the species 
richness of rare species in the surrounding landscape (10×10 km) and on the local 
evidence‐based habitats. 
 
 
 

3.   RESULTS 

 
Species richness of both common and rare taxa was consistently higher on the 
evidence‐based options compared to the general options and control for all three 
taxa (figure 1 and table S1 supplementary material). Indeed, the evidence‐based 
options had between 10‐fold and over >100‐fold more rare species on average per 
sampling unit than either the control or general options. In contrast, the general 
options were remarkably unsuccessful, leading to only small increases in the 
diversity of common plants and bees, and having no effect on birds or on rare 
species of any taxon. Identical patterns were seen in data on abundance for each 
taxa (supplementary material, figure S2). Moreover, the number of rare plant and 
rare bee species both showed positive landscape‐local relationships, but there was 
no such relationship for farmland birds in winter (figure 2). 
 
 
 

4.   DISCUSSION 

 
The relative lack of success of the general options may explain the poor performance 
of agri‐environment schemes reported in other studies (Kleijn et al. 2011), 
particularly for rarer species (Kleijn et al. 2006). The evidence‐based options reflect 
the value of research into the mechanisms by which agricultural intensification has 
led to declines in farmland taxa (Newton 2004; Carvell et al. 2007). Thus: uncropped, 
annually cultivated field margins provide herbicide‐free, uncompetitive conditions 
for rare arable plants; pollen‐ and nectar‐providing plants supplement declining food 
resources for bumblebees; and plants producing high yields of oil‐rich, small seeds 
provide invaluable, high energy winter food resources for farmland birds. 
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These results also suggest that landscape factors can influence the outcome of 
AES prescriptions, but this depends on the mobility of the taxa considered. The 
relationship was strongest for the least mobile taxon; dispersal of rare arable plants 
is generally very limited such that seed movement even between adjacent fields is 
uncommon (Bischoff 2005). Bumblebees, which showed a weaker effect of 
landscape species richness, have greater mobility and forage at scales of more than 1 
km (Osborne et al. 2008). Spatial targeting of resources appeared unimportant for 
the most mobile taxon, farmland birds, which will forage over several kilometres 
whilst searching for scarce resources in winter (Siriwardena et al. 2006). However, 
spatial targeting may be more important for birds during their breeding season when 
they effectively become central place foragers over limited areas (Whittingham 
2007). 
Finally, both general and evidence‐based conservation measures might provide 
wider environmental benefits not considered by this study, such as the protection of 
water and soil resources from the impacts of agriculture. The potential to deliver 
such multiple benefits is an additional measure of performance that requires further 
investigation. 

In conclusion, evidence‐based habitat enhancements represent a much more 
effective means of reconciling the need for increased food production with the 
conservation of biodiversity than the widely applied general measures, especially if 
they can be spatially targeted to areas of high diversity. However, general 
prescriptions in the English ELS account for over 630,000 ha (99%) of created habitat 
compared with just 8,100 ha (1%) of evidence‐based habitat (Natural England 2009). 
If the conservation potential of this voluntary scheme, and AES in general, is to be 
maximised there is a need to have clear biodiversity targets and to design 
enhancement activities using scientific evidence. Such problems are not confined to 
AES. While there is much conservation activity taking place worldwide, the scientific 
evidence behind management decisions is being increasingly scrutinised (Pullin & 
Knight 2009). Indeed, the conclusion that current efforts to stem biodiversity losses 
are inadequate (Butchart et al. 2010) might partly be due to the use of inappropriate 
conservation actions. 

 
Data collection was funded by UK Department of the Environment, Food and Rural 
Affairs, Natural England Syngenta, Unilever and Jordans Cereals. We thank Mark 
Stevenson, Andy Cooke and Mike Green for their support. We are grateful to the 
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British Trust for Ornithology for species distribution data. 
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Figure legends 

 
Figure 1. The number (±SE) of rare and common a) plant and b) bumblebee species, 
and c) Hedge’s d (±95% confidence intervals) comparing bird species number, 
recorded on general and evidence‐based habitats with a cereal crop control. Species 
richness of common and rare plants was highest on evidence‐based habitats and 
similar between general and control habitats (common, F2,76=112.39, P<0.001; rare, 
F2,76=17.16, P<0.001). The same pattern was seen for species richness of common 

and rare bumblebees, except that common bees were also more diverse on general 
than control habitats (common: F2,73=75.38, P<0.001; rare:   F2,73=6.70, P<0.01). 
Common and rare bird numbers were higher (signified by d>0) in the evidence‐based 
habitat compared with both the general habitat and the control, and the latter two 
treatments had similar numbers (d was not significantly different to 0). 
Figure 2.  Poisson regressions of rare species richness recorded on evidence‐based 
habitats against richness of rare species in the surrounding 10×10 km square for a) 
plants, b) bumblebees, and c) birds. The fitted relationship is shown for cases with a 
slope significantly >0 (i.e. plants and bumblebees). Dashed lines indicate 95% 

confidence intervals. The Χ2 and significance of the slope are given, along with the 

Χ2/df ratio of the full model. A value <2 for this ratio indicates good model fit. A jitter 
has been applied to the points for clarity. Data for rare species comprised post‐1970 
occurrence records held by the UK Biological Records Centre. 
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Fig. 1. Final draft - replacement figure sent to Biology Letters 22/05/2012 
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