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Abstract: For longstanding theoretical reasons, it is often asserted that the threshold shear stress for 

entrainment of sedimentary particles ( 2
* *t f tuτ ρ= , made dimensionless as 

( )2
* ( )f t p fA u gdρ ρ ρ= − ), has a universal relationship with the particle Reynolds number 

( * *Re /t tu d ν= ), where u*t is the threshold friction velocity, ρf is the fluid density, ρp is the density 

of the particles, d is the particle diameter, g is the gravitational acceleration and ν is the kinematic 

viscosity of the fluid. However, experimental plots of A(Re*t) for sediment entrainment in air and 

water show two major differences: (1) for large Re*t, the values of A in water are, in general, a few 

times larger than those in air, and (2) when Re*t <1, A increases more rapidly in air than in water as 

Re*t decreases. This paper derives a new, general theory for A, which incorporates the effects of 

fluid turbulence, particle cohesion and probabilistic aspects of grain entrainment.  It is found that 

difference (1) is explained by differences in the probability distribution of streamwise velocity 

fluctuations for typical situations in air and water, which follow from basic scaling laws for velocity 

variances in turbulent flow.  Difference (2) is explained by the different behaviours of interparticle 

cohesion forces in air and water. The resulting expression is shown to compare well with 

experimental data.  

Keywords: sediment; entrainment; threshold shear stress; threshold velocity; near-surface turbulent 

fluctuations.   



 2

1. Introduction 

The prediction of incipient motion of a particle lying in a bed of similar particles (i.e. the 

entrainment of sedimentary particles from the surface into the fluid when the fluid speed exceeds a 

certain threshold), is fundamental for understanding sediment transport by water and wind [Graf, 

1971; Quan and Wan, 1983; Nickling, 1988; Raupach and Lu, 2004]. Shields [1936] pioneered 

research into incipient motion in open channels by introducing the dimensionless threshold shear 

stress *  ( )t p fA g dτ ρ ρ= − , a measure of the ratio of the threshold hydrodynamic force on a 

surface particle to its weight (see Table 1 for definitions of symbols). Shields argued that A should 

be a unique function of the particle Reynolds number Re*t = u*t d/ν, as 

 *(Re )tA F= .          (1) 

For particle entrainment by air flow, Bagnold [1941] derived a similar theory considering the 

balance between the aerodynamic drag and the gravitational force. He found that at large Re*t, A is 

nearly a constant and u*t ∝ d1/2, which is essentially consistent with Shields' theory obtained in open 

channels. Across all particle sizes, Bagnold also assumed that A is a unique function of Re*t, again 

consistent with the proposals of Shields.  

Over the last 70 years, experimental research into incipient motion has in general supported the 

theories of Shields and Bagnold [White, 1970; Graf, 1971; Yalin, 1972; Mantz, 1977; Buffington 

and Montgomery, 1997; Zingg, 1953; Greeley and Iversen, 1985; Nickling, 1988]. Figure 1 shows 

data obtained in experiments in air [Cleaver and Yates, 1973; Fletcher, 1976a,b; Iversen and White, 

1982;] and in water [Graf, 1971; Yalin, 1972; White, 1970], plotted on a typical Shields' Α ~ Re*t 

diagram.  Three distinct regions can be identified:  

i) Re*t ≥ 10; a region where the flow is fully turbulent, and where Α attains a constant value of 

approximately 0.04 to 0.06 at Re*t  ≥  500 in water, and 0.01 to 0.03 in air (note that there are 

few data with Re*t  ≥ 200 for air flows); 

ii) Re*t < 1; a region where particle entrainment is mainly due to viscous laminar flow, where Α 

increases while Re*t decreases, at a rate which is steeper in air than in water; and 

iii) A transitional region, 1 ≤ Re*t ≤ 10, where the laminar sublayer partially covers the particles, 

but the outer turbulent flow is partially affected by the roughness of the grain bed. Within 

this region, Α reaches a minimum value of approximately 0.03 to 0.06 for water [Yalin and 

Karahan, 1979], but such minima are not obvious for air entrainment [Greeley and Iversen, 

1985]. 
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Figure 1 shows that data obtained from airflow and open channel flow do not collapse to a single Α 

~ Re*t relationship. The upturn of the Shields curve at Re*t < 1 in air flow is much sharper than for 

water flow. For Re*t ≥ 5, Α is about 3 to 4 times smaller in air than in water. 

 [[Insert Figure 1 here]] 

Several researchers have noted the different behaviour of A in air and in water, and that the 

expressions for A derived in one fluid cannot be directly applied to another [Bagnold, 1941; Graf, 

1971; Iversen and Pollack, 1987]. Bagnold [1941] suggested that the differences might be due to a 

difference in surface texture or bed packing conditions, or to observation errors. Iversen and 

Pollack [1987] attributed the difference to density ratio differences. By adding the impacting force 

of saltating particles to the force balance equation, they related A empirically to the particle-to-fluid 

density ratio. Although not directly targeting the different behaviour of A in air and in water, a 

recent study of incipient motion in air has also incorporated the effect of the particle-to-fluid density 

ratio [Cornelis and Gabriels, 2004]. Interestingly, although Cornelis and Gabriels [2004] and 

Iversen and Pollack [1987] both related A to the density ratio, and both utilized the same data of 

Iversen and White [1982], the expression of Iversen and Pollack [1987] suggests that A decreases 

with increasing particle-to-fluid density ratio while the expression of Cornelis and Gabriels [2004] 

suggests A increases with increasing density ratio. Making the situation more confusing, a 

comprehensive review of incipient motion in open channel flow concludes that there is no obvious 

dependence of A on particle density, therefore, on density ratio [Buffington and Montgomery 1997]. 

These contradictions suggest that the quantitative relationships between A and flow conditions, fluid 

properties and particle properties remain unclear. It is also not clear why, for a given fluid and 

under similar experimental conditions, randomly-varying values of A have often been obtained.   

Much research into incipient motion has been based on a force balance at the instant of particle 

entrainment [Bagnold, 1941; Phillips, 1980; Iversen and White, 1982], and/or analysis of 

dimensionless groups [Shields, 1936; Fletcher, 1976a,b]. With certain assumptions, the functional 

forms for the parameter A are predetermined and then fitted to experimental data, and in some cases, 

excessive parameter fitting is involved [Greeley and Iversen, 1985; Cornelis and Gabriels, 2004].  

These studies have provided a means of estimating threshold shear stress under idealized situations. 

Nevertheless, such a deterministic reductionism often results in partial explanations of the several 

processes involved in incipient motion. Apart from the inability to explain differences of A ~ Re*t 

relationships in air and water, there is a lack of agreement about the values of A and the physical 

causes of why, for Re*t ≤ 1, the estimates of A vary by an order of magnitude or more for a given 

Re*t. Emphasizing the effects of flow, Bagnold [1956] argued that A will not exceed 0.4, but values 
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of A greater than 10 have been found for d ≤ 10 µm [White, 1970; Cleaver and Yates, 1973; 

Fletcher, 1976a,b]. By assuming laminar sub-layer flow, Yalin [1972] derived Α = 0.1/Re*t. With 

similar assumptions for the flow regime and force balance, Ling [1995] suggested that A is inversely 

proportional to Re*t for rolling grains, and inversely proportional to 2
*Re t  for a threshold lift 

condition. Both studies implied that the increase in Α with decreasing Re*t is solely due to the 

transition in flow regime from turbulent to laminar flow.  

For particle entrainment in air flow, Iversen and White [1982] attributed the sharp upturn of A for 

Re*t < 1 to the effects of inter-particle cohesion forces. To account for the effect of cohesion, 

Greeley and Iversen [1985] suggested that A should be of the form  

1 *(Re ) ( )tA A F G d=          (2) 

where the dimensionless functions F(Re*t) and G(d) respectively represent the effects of 

aerodynamic and cohesion forces. Eq. (2) essentially implies that the upturn of A for Re*t < 1 is 

partially due to the flow condition (through the term F(Re*t)) and partially due to inter-particle 

cohesion (through the term G(d)). Though eq. (2) overcomes the shortcomings of the early 

expression of Bagnold [1941] and is effective in describing the behaviour of u*t for the entire 

particle size range, the expressions proposed by Greeley and Iversen [1985] involve the two 

empirical functions, F(Re*t) and G(d), and are difficult to relate to physical processes.    

While earlier theoretical analysis often focused on the effects of flow conditions by relating A to the 

particle Reynolds number Re*t, more recent empirical or semi-empirical studies have to some 

degree sought to remove the flow term F(Re*t) in eq. (2), or to replace it by a particle property. For 

instance, Marticorena and Bergametti [1995] simplified the expressions of Greeley and Iversen 

[1985] by expressing Re*t as a function of particle size only. Shao and Lu [2000] reanalyzed the 

wind tunnel data of Iversen and White [1982] and suggested that A =AN G(d),  where AN  is a 

constant of 0.013 and G(d) representing the effects of interparticle cohesion,. More recently, 

Cornelis and Gabriels [2004] expressed A as a function of the particle-to-fluid density ratio, particle 

diameter and interparticle cohesion. Their expression involves five empirical constants that were 

determined by fitting to the data of Iversen and White [1982] using non-linear regression. Such 

emphases on sedimentological controls are also abundant in the hydraulic literature. For example, in 

open channels with mixed bed material particle sizes, studies have commonly expressed A as an 

inverse empirical function of the ratio of particle size d to the underlying median bed particle size 

d50 [Komar and Li, 1988; Richards, 1990; Buffington and Montgomery, 1997]. 
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A clear advantage of using these semi-empirical expressions of A is their simplicity. If A is not 

expressed as a function of Re*t, iteration is avoided, since the friction velocity u*t  no longer appears 

on both sides of the expression for u*t. This is particularly appealing for large-scale spatially-

distributed applications [Marticorena and Bergametti, 1995]. However, the drawback of these 

expressions is their failure to account fully for the physical processes involved. As noted by Qian 

and Wan [1983], a variety of models could fit the experimental data well as long as the chosen 

expression has the right shape and contains at least two free parameters to describe the upturn of A 

for both large and small Re*t ranges. There is little basis for judging the superiority of an expression 

solely on goodness of statistical fit if the physical meaning of the fitted parameters is not clearly 

understood. A more general, physically-based approach to the threshold of entrainment is needed.   

Realizing that deterministic approaches can only estimate the average values of threshold shear 

stress but unable to predict the observed variations, some researchers have proposed that particle 

incipient motion is a stochastic process, i.e. there exists a range of threshold shear stresses for a 

given particle size [Grass, 1970; Gessler, 1971]. Field and laboratory observations in open channel 

flow confirm a variability of threshold shear stress attributable to a number of random factors 

including temporal fluctuation of near bed turbulence, the bed packing condition, and 

heterogeneities in grain size and shape, etc [Einstein, 1950; Grass, 1970]. In the hydraulic literature, 

recent research into incipient motion has focused on finding appropriate probability distributions for 

instantaneous flow velocity or shear stress [Cheng and Chiew, 1998; Wu and Lin, 2002], the effects 

of random bed roughness and picking conditions [Papanicolaou et al., 2001; 2002], or the 

combined probabilistic nature of turbulent fluctuation and bed grain geometry [Wu and Chou, 2003]. 

Nevertheless, incorporating statistical/stochastic concepts remains rare in the modeling of particle 

incipient motion during wind erosion.  

The objective of this paper is to derive a general expression for A, to explain the differences in A ~ 

Re*t  plots between air and water. We incorporate the effect of fluid turbulence by utilizing recent 

advances in understanding of turbulence over rough walls, especially the scaling of velocity 

fluctuations with bulk Reynolds number (using boundary layer height δ as the length scale rather 

than particle diameter d). We also consider the probabilistic aspects of grain entrainment by 

adopting a log-normal distribution for the near-bed instantaneous flow velocity.  The new 

expression also incorporates the influences of interparticle cohesion forces to account for the 

upturning of A for small values of Re*t. We use the new expression to analyze the effects of both the 

mean flow and turbulent fluctuations, and the physical causes of the different regions in the Shields 
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diagram, which are shown to depend on changes in the relative magnitude of the appropriate forces. 

Though no direct curve-fitting is used, our results compare well with available experimental data. 

2. Methods and The New Theory 

This paper considers a flat surface covered by uniformly-sized erodible particles. The x-axis lies in 

the plane of the bed surface, its direction parallel to the direction of flow, while the y-axis is 

perpendicular to the bed and directed upwards. The height origin (y = 0) is taken to be the 

aerodynamic height origin, defined as the level of effective drag or zero-plane displacement (Figure 

2). An overbar denotes a temporal average. A superscript + with a velocity variable (either its mean 

or fluctuation) denotes normalization by the friction velocity u*, as in *u u u+ = ;  a similar 

superscript with a length variable denotes normalization by the viscous length scale ν/u* , as in 

*y u y ν+ = . Also, subscripts a and w denote the air and water cases, respectively.  

[[Insert Figure 2 here]] 

2.1 Forces Involved in Particle Entrainment 

Analysis of the particle threshold condition begins by defining a force balance on a static grain 

sitting on the bed surface. A particle resting on the bed (Figure 2) is subjected to forces of drag DF , 

lift LF , specific weight GF  and a net cohesion force CF . We assume that CF  is approximately equal 

in magnitude to the cohesion force between two adjacent individual particles, but follows the 

direction of GF .  The forces other than CF  can be expressed as 

( ) 3

6G p fF gd= −π ρ ρ ,          (3) 

2

2
f

D D

Su
F C ∆=

ρ
,          (4) 

 
2

2
f

L L

Su
F C ∆=

ρ
,          (5) 

where u∆ = u  + u’ is a streamwise reference instantaneous velocity at the threshold of grain motion, 

and other symbols are defined in Table 1. The frontal area S is approximately equal to 20.2 dπ  for 

the packing geometry shown in Figure 2.  
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Choosing the reference height y∆ where u∆ is defined can be difficult. Wu and Lin [2002] and Wu 

and Chou [2003] effectively calculated y∆  by integrating both u  and u’ over the frontal area of the 

about-to-move particle exposed to the flow. Such an approach is difficult to justify in fluid 

mechanical terms, for several reasons. Firstly, one cannot define the instantaneous velocity at a 

solid surface as zero, because of the no slip condition. Secondly, at any height within the roughness 

elements, the velocity field is complex and three-dimensional because fluid has to find its way 

around the roughness elements. Thirdly, the drag on a surface-mounted roughness element does not 

satisfy a simple momentum integral constraint equivalent to the relationship for a wake of an 

obstacle in a free stream [Batchelor, 1967; Raupach, 1992], because of the absence of a free-stream 

velocity. Finally, an individual roughness element is exposed to a turbulent flow including not only 

a mean shear but also strong turbulence with contributions both from the large-scale boundary-layer 

and also the wakes of other roughness elements. 

To handle these complexities, it is usual to define u∆  as the velocity at a reference height y∆ ,  

horizontally-averaged over an area large enough to smooth out spatial fluctuations caused by the 

bed roughness (in practice a horizontal distance of order 10d).  This quantity is analogous to the free 

stream velocity for the drag coefficient of a body in a uniform flow.  In the case of incipient motion, 

the logical choice for y∆  is the mean height of the most exposed roughness elements, i.e. y∆ = βd, 

where β  is a constant. For instantaneous velocity, the likely choice for β  is between 0.5 and 1.0, 

since the most exposed elements rest some way above the mean position of all bed elements. The 

level of effective drag or zero-plane displacement (our height origin y = 0) is approximately 0.5d to 

0.7d above the bed substrate level [Jackson, 1981; Bridge and Bennett, 1992].  Cheng and Chiew 

[1998] suggested β  = 0.6 for the most stable bed packing situation where particles of identical size 

rest in an interstice formed by closely-packed bed surface particles.  In Section 3.1, the effects of β 

on the values of A will be discussed. 

The effects of cohesion forces on incipient motion and the dependence of cohesion forces on 

particle size are complex and poorly understood [Zimon, 1982; Shao and Lu, 2000; Cornelis and 

Gabriels, 2004]. Cohesion forces arise from both mutual attraction between solid particles, and 

interaction between the solid particles and those of the ambient fluid medium. The cohesion force is 

affected by the combination of molecular forces (including the van der Vaal's forces), Coulomb 

forces, electrostatic forces, capillary forces, and chemical bonding forces. Although these forces are 

functions of particle size d, their dependences on d are different, with molecular forces and 

electrostatic forces proportional to d, Coulomb forces proportional to 1/d2, the capillary force 
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proportional to d(1−dx−1), where x is the width of a microscopic water bridge in the contact zone of 

two particles [Zimon, 1982]. For instance, the cohesion forces between two identical spheres can be 

expressed as 

232
i

C
i

cF d
zπ

=  ,          (6) 

where ci is the cohesion coefficient and zi is the smallest separation between two spherical particles 

[Theodoor and Overbeek, 1985]. Eq. (6) indicates two possible relationships between FC and d: if zi 

is proportional to d, Eq  (6) gives FC proportional to 1/d (assuming no dependence of ci on d), while 

if zi is a constant, CF  is proportional to d. 

Observations in air have resulted in various relationships between CF  and d:  direct, inverse and 

exponential dependence of the cohesion force on d, or even complete independence over a certain 

range of d [Zimon, 1982]. In water, the dependence of cohesion forces on particle size is simpler 

and most experiments suggest that CF  is proportional to d [Corn, 1961; Zimon, 1982].  This is 

because in water, capillary and electrostatic forces do not apply as any charges on the particles will 

leak away and no capillary bridge develops within the particle contact zone [Theodoor and 

Overbeek, 1985].  This results in the cohesion force in a liquid medium being governed by 

molecular forces, which implies direct proportionality to d [Fuks, 1955]. Nevertheless, in the case 

of threshold conditions over a loosely-packed bed with a small removal probability of grains 

(approximately 2%), direct proportionality between CF  and d may hold in both water and air media 

as 

 C CF C d= ,          (7) 

where CC is a proportionality constant, according to Fuks [1955] and Zimon [1982]. 

At the instant of particle motion, the combined retarding force moments must just balance the 

combined hydrodynamic driving force moment. Such a condition is expressed as 

 D D L L G G C CF L F L F L F L+ = + ,        (8) 

where LD = dcosθ,  LL =dsinθ, LG = dsinθ and LC = dsinθ are the moment arms (about the pivot 

point P) of FD, FL, FG and FC (as shown in Figure 2). Following Wu and Lin [2003], the pivoting 

angle θ  ranges from 30° when the grain is at its most exposed, to 90° when it is embedded within 

the surface grain layer.  

Combining eqs. (3) to (5) and (7) with eq. (8), the threshold condition can be written as 
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 tu u∆ ≥ ,           (9)  

where  

3

2

( )2 6 11
6 ( )

p f fw C C
t

D D L L f p f w

gL d C Lu
C L C L S g L d

ρ ρ ρπ
ρ ρ ρ π

⎛ ⎞−
= +⎜ ⎟⎜ ⎟+ −⎝ ⎠

   (10) 

is the threshold velocity. Eq. (9) simply states that the instantaneous reference velocity u∆  must 

exceed tu  for particle detachment to occur. If we assume u∆ obeys a certain probability distribution, 

tu  is therefore defined by a point on the velocity probability distribution of u∆ at the reference 

height y from the bed where u∆ is defined, and the probability of particle detachment from the bed is 

p = Prob( tu u∆ ≥ ), as shown in Figure 3. The derivation of A based on a log-normal distribution of 

u∆ for a given probability removal rate p is given in Section 2.4.  

[[Insert Figure 3 here]] 

We turn now to the values of CD and CL. Compared with the well-studied situation of an isolated 

object in a free stream, where the drag coefficient is a function of Reynolds number (Re*  = u* d /ν) 

and is proportional to 1/ Re* for small Re*, the drag coefficient for a particle resting on a surface is 

more complex and less well understood [Fischer et al., 2002; Jiménez, 2004]. It has been found that 

the drag coefficient CD  ≈ 0.15 − 0.30 for a sphere resting on a surface [Tillman, 1944], but may be 

up to 1.25 for two-dimensional span-wise obstacles [Jiménez, 2004]. Chepil [1958] provided one of 

the most comprehensive data sets on the lift coefficient CL in air, and showed that the average ratio 

of lift to drag is nearly constant at 0.85 for a boundary layer friction Reynolds number of Reτ ≤ 

5000, where Reτ  = u* δ/ν and δ  is the height of the boundary layer. Mainly for channel flows, 

James [1990] proposed 

 * *

*

0.56 0.212ln Re Re 150
0.5 Re 150

L

D

C
C

− + <⎧
= ⎨ ≥⎩

.     (11) 

Eq. (11) suggests that CL could be negative at Re*  < 15.  Marsh et al. [2004] derived a similar 

expression to eq. (11) but with CL/CD  ≈ 0.2 for Re*  > 100. The data of Patnaik et al. [1994] for 

gravel-bed rivers showed CL/CD  ≈ 1, and an apparent decreasing trend of the lift-to-drag ratio with 

increasing Re*  in the range 4,000 to 60,000. However, this has limited relevance to this study, 

where we focus on Re*  in the range from 1 to 10,000. This is because aeolian transport involves a 

narrower range of particle sizes than in rivers, and in air, there is little reliable data on threshold 

velocities for Re*t  > 100.  Furthermore, the exact values for temporally-averaged drag and lift 
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coefficients are unknown at present, as they both depend upon flow conditions. Though the 

dependence of CD and CL on Re* is likely to have some effects on A, especially for small Re*, for 

simplicity, values of CD = 0.5 and CL = 0.3 are used in this study. According to Coleman [1967], for 

a 3D sphere and θ  = 30°, LD = 3 2d , and LL = LG = LC = d/2. These values are used here.  

2.2 Mean Velocity Profile over Rough Surfaces 

The classic theory of near-wall turbulent flow defines the universal logarithmic velocity profile for 

a smooth wall, 

 1 lnu y B
κ

+ += + ,         (12) 

where u  is the mean flow velocity at height y, κ is von Karman's constant (0.41), and B is an 

empirical constant with a value of 5.0 [Clauser, 1956; Panton, 2005]. The effect of roughness on 

the logarithmic velocity profile is a downward shift of eq. (12), corresponding to the increase in 

skin friction [Raupach et al., 1991]. The logarithmic law for a rough surface can then be written as 

 1 lnu y B u
κ

+ + += + − ∆ .        (13) 

There are three regimes in turbulent flow: smooth, transitionally-rough and fully-rough flow 

[Raupach et al., 1991]. Ligrani and Moffat [1986] suggested that these three flow regimes can be 

classified by sk + < 2.25 when the flow is smooth, and sk +   > 90 when it is fully rough, where 

*s sk u k+ = ν  is the roughness Reynolds number, and ks is the equivalent sand grain roughness.  

The roughness function u +∆  in eq. (13) has been measured experimentally by Nikuradse [1933] 

using sand roughness of different grain sizes, and in many other experiments over other kinds of 

rough surface; see Raupach et al. [1991] for review. For a uniform sand bed, ks is equal to the 

diameter of the particles. Ligrani and Moffat [1986] used Nikuradse's data to obtain 

 1 = ln 8.5su k Bξ
κ

+ +⎛ ⎞∆ + −⎜ ⎟
⎝ ⎠

,        (14) 

in which the interpolation function  

( )
( )

0 2.25

ln / 2.25
sin 2.25 90

2ln 90 / 2.25

1 90

s

s
s

s

k

k
k

k

π
ξ

+

+
+

+

⎧ <
⎪

⎡ ⎤⎪
⎢ ⎥= ≤ <⎨
⎢ ⎥⎪ ⎣ ⎦

⎪ ≥⎩

     (15) 
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increases from 0 to 1 through the transitionally-rough regime, 2.25 90sk +≤ < . Eq. (14) recovers the 

smooth wall log-law in the smooth regime, and suggests that, in the transitionally-rough regime, the 

roughness function u +∆  is near zero for sk +  below approximately 5.  

We note in passing that the rough wall law, eq. (13), is commonly represented as  

 
0

1 ln yu
zκ

+ ⎛ ⎞
= ⎜ ⎟

⎝ ⎠
,         (16) 

where z0 is the zero-velocity level of the logarithmic profile. The dimensionless quantities z0/ks, ξ 

and u +∆  carry equivalent information [Raupach et al., 1991]. Substituting eqs. (13) and (14) into 

eq. (16) and solving for z0, we have 

( )
( ) ( )

0 exp ln

exp 1 ln 1 8.5

s

s s

z k k B u

k k B

κ

ξ ξ κ κξ

+ +

+

⎡ ⎤= − − − ∆⎣ ⎦
⎡ ⎤= − + − −⎣ ⎦

.     (17)  

For fully rough flows, ξ = 1 (eq. (15)). Substituting it into eqs. (13) and (17) gives 

1 ln 8.5
s

yu
kκ

+ ⎛ ⎞
= +⎜ ⎟

⎝ ⎠
,         (18) 

and 

( )0 / exp 8.5 0.031sz k κ= − = ,        (19) 

respectively. Eqs. (18) and (19) are consistent with common assumptions in the hydraulics literature 

and the ‘z0 ~ d/30 rule’ that is commonly known to wind tunnel experimentalists (assuming d = ks 

for well sorted sand). In terms of threshold entrainment, all three flow regimes are relevant, 

depending on particle size and flow conditions. In this study, we shall compare the dimensionless 

shear stress A resulting from eqs. (13) and (14) with those derived from the fully-rough limit, eqs. 

(16) and (19).   

Some researchers argue that u +  depends not only on y+  but also on the flow Reynolds number 

[Barenblatt and Chorin, 1998]. However, in comparison to that of roughness, such effects are 

relatively minor in the inner part of the mean velocity profile [Panton, 2005] and are not fully 

understood when roughness elements are present [Bergstrom et al., 2001].  
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2.3 Reynolds-Number Dependence of Near-bed Turbulent Velocity  

Like the mean velocity profile, the turbulence in air and in water is governed by universal 

dimensionless scaling laws. However, a major distinction between turbulent airflow and turbulent 

river flow lies in the flow Reynolds number ( *Re uτ δ ν= , where δ is the boundary layer depth). 

Under the conditions of incipient motion, the difference is mainly due to the intrinsic length scale δ, 

as the difference in viscous length scale u*/ν of the two media is relatively small.  At the threshold 

condition, the boundary layer depth in a typical wind tunnel is of the order of 1 metre or more 

[Greeley and Iversen, 1985], whereas it is of the order of a few centimetres in laboratory flumes 

[Graf, 1971; Yalin, 1972]. The Reynolds number in the atmospheric boundary layer is about 100-

1000 times higher than that observed in natural rivers, whereas the sub-layer thickness remains 

nearly identical [Metzger and Klewicki, 2001]. We shall show that these differences are one of the 

reasons for the systematically smaller values of the dimensionless shear stress A observed in air 

relative to water (Figure 1).  

[[Insert Figure 4 here]] 

The turbulent velocity (here considered to be the standard deviation of the streamwise 

velocity, '2uσ = ) is a strong function of the Reynolds number [DeGraaff and Eaton, 2000; 

Metzger and Klewicki, 2001; Marusic and Kunkel, 2003]. As shown in Figure 4, there is a clear 

dependence of *uσ σ+ =  on the flow Reynolds number Reτ across all values of the inner variable 

y+. Marusic and Kunkel [2003] proposed a scaling formulation to account for the full range of 

turbulence intensity σ +  in relation to y+ and Reτ , based upon the attached eddy hypothesis and the 

idea that the attached eddy motions in the log region and beyond impose a forcing on the viscous 

buffer zone and sublayer: 

( ) ( )
( )

( ) ( )

3

2

1/ 21/ 2 222
1 22

2
* 0.9 0.5

1 2 3

0.16( ) ln1 1 30
ln 501 ( ) 1 ( )

( )

ln 1 150
Re

b

y y y
b y b y

u yB B B y y y
τ

α
σσ
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B B
B B
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−

=
−

, b1 = 0.008, b2 = 0.115, b3 = 1.6, B1 = 2.39, B2 = 1.03, and B3 = 

5.58. For 30 ≤ y+ ≤150, interpolation is needed. For simplicity, linear interpolation is used in this 

study. In essence, Eq. (20) describes the behaviour of σ +  shown in Figure 4, i.e. σ +  increases with 
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Reτ  and peaks at 15y+ ≈ for a given value of Reτ .  This maximum value of σ +  can also be 

expressed as a function of Reτ  

 ( )max 0.964 0.87 ln Reτσ + = + .       (21) 

The maxσ + ~ Reτ  relationship described by eq. (21) is plotted in Figure 5. Typical value ranges of Reτ  

for flumes, natural rivers, wind tunnels and atmospheric boundary layers are also shown. This 

shows that maxσ +  ≈ 2.5 for open channel flow (assuming d = 1 mm, δ = 0.015 m and u*t = 0.03 m s-1), 

and maxσ + ≈ 3.5  for air flow in a wind tunnel (assuming d = 1 mm, δ = 1.2 m and u*t = 0.5 m s-1). The 

former value of  maxσ +  is consistent with those commonly used in the hydraulic literature [Cheng 

and Chiew, 1998; Wu and Lin, 2002]. 

[[Insert Figure 5 here]] 

Though eqs. (20) and (21) were developed for smooth surfaces, recent studies show that roughness 

enhances the turbulence and the Reynolds shear stress over most of the boundary layer, and 

promotes isotropy as a result of mixing caused by the wakes generated by the roughness elements 

[Raupach et al. 1996; Krogstad and Antonia, 1999; Tachie et al., 2004]. However, for a sand 

surface, the increment of turbulence intensity is quite small for the streamwise component [Tachie 

at al., 2004], in contrast with surfaces of higher roughness such as vegetation. Therefore, eqs. (20) 

and (21) are used in our analysis.  

2.4 Entrainment Probability in a Log-Normal Distribution of Instantaneous Velocities 

The near-bed turbulence is intense and dominated by gust-like eddy motions with length scales 

determined by the characteristic length scale of the roughness, ks or d [Raupach et al. 1991, 1996]. 

These gusts cause the streamwise velocity to show significant departure from a normal velocity 

distribution [Morrison et al., 2004], with strong positive skewness near the bed.  It is reasonable to 

describe the highly positively skewed distribution for the instantaneous velocity u∆ as log-normal 

[Wu and Lin, 2002] (Figure 3). Thus, we assume that if υ∆  denotes the logarithm of u∆  (i.e. 

ln uυ∆ ∆= ), the probability density function ( )f ∆υ  obeys a normal distribution: 

 
( )2

2

1( ) exp
22

fυ
υυ

υ υ
υ

σπσ
∆ ∆

∆

⎡ ⎤−⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

       (22) 

where υ∆  and υσ  are the mean and standard deviation of υ∆ , respectively. 
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The probability of entrainment (p) can be expressed as 

 ( ) ( ) ( )Prob Prob 1 Probt t tp u u∆ ∆ ∆= ≥ = ≥ = − −∞ < <υ υ υ υ    (23) 

where lnt tuυ =  and tu  is the  threshold velocity determined by eq. (10). Physically, p can be 

interpreted as the fraction of the time over which the instantaneous reference velocity u∆ must 

exceed the threshold velocity ut  for detachment to occur. As will be shown later, p emerges as a 

critical parameter in estimating A.  Using an approximation for the error function [Cheng and Chiew, 

1998], we have 
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,      (24) 

so that 

 0.5 1ln
| 0.5 | 2 4 (1 )t

p
p p pυ

πυ υ σ∆
⎡ ⎤−= + ⎢ ⎥− −⎣ ⎦

,      (25) 

where 0 < p < 1. The mean υ∆ and variance 2
υσ  of υ∆ can be estimated by first-order approximation 

using a Taylor series expansion, and then related to the mean and variance of u∆, giving 

 ( ) ( )22

*ln 1 / ln 1 /u u u u uυ σ σ
+ ++

∆ ∆ ∆ ∆ ∆

⎛ ⎞⎡ ⎤= + = +⎜ ⎟⎢ ⎥ ⎜ ⎟⎣ ⎦ ⎝ ⎠
,    (26) 

 ( ) ( )222 ln 1 / ln 1 /u uυσ σ σ
++

∆ ∆
⎡ ⎤⎡ ⎤= + = +⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

.      (27) 

Combining eqs. (24), (26) and (27), we have 

( )
( )2

*
2

0.5 1exp ln 1 / ln
| 0.5 | 2 4 (1 )

1 /
t

u u pu u
p p p

u

πσ
σ

+
++∆

∆
++

∆

⎧ ⎫⎡ ⎤−⎪ ⎪⎡ ⎤= +⎨ ⎬⎢ ⎥⎢ ⎥− −⎣ ⎦ ⎣ ⎦⎪ ⎪⎩ ⎭+
. (28) 

Therefore, substituting eq. (10) into eq. (28) and solving for the threshold friction velocity u*t by 

setting u*  = u*t, we have 
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.  (29) 

Substituting eq. (29) into 2
* ( )f t p fA u gdρ ρ ρ= − , we have 

 1 2 ( )pA f F F G d= ,         (30) 

where 

 
2

3
w

p
D D L L
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C L C L S

π=
+

,        (31) 

 ( )2

1 1F u
+

∆= ,          (32) 
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πσ σ+ +
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, (33) 

and  

 2

61 1( ) 1
( )

C C

p f w

C LG d
g L dρ ρ π

= +
−

,       (34)  

All flow properties in eqs (28) to (34) are evaluated at the dimensionless reference height ( y+
∆ ). In 

particular, from eqs. (13) and (14), u
+

∆  is a function of y+
∆ and roughness Reynolds number sk + , and 

from  eq. (20), σ + is a function of y+
∆  and the flow Reynolds number Reτ . However, at the 

threshold of grain motion, both y+
∆   and  sk +  are directly proportional to the threshold particle 

Reynolds number *Re t . Hence eq. (30) replaces eqs. (1) and (2) with the more general formulation  

 1 * 2 *(Re ) (Re ,Re ) ( )p t tA f F F G dτ= .       (35) 

Eq. (35) states that the dimensionless threshold shear stress A is governed by four types of effect: 

i) particle packing geometry, represented by the parameter fp; 

ii) the mean velocity profile (first-order flow effects), represented by F1(Re*t); 

iii) interaction between the mean velocity profile, turbulent fluctuations and particle removal 

probability p (second-order flow effects), represented by F2(Re*t, Reτ); and 

iv) inter-particle cohesion, represented by G(d). 
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Ignoring the turbulent fluctuations (i.e. σ + = 0 and therefore F2 = 1) and inter-particle cohesion (i.e. 

CC  → 0 and therefore G(d) → 1), we have A ≅ fpF1.  In this case, F1 can be interpreted as a first-

order effect of the flow that depends solely on the mean velocity profile u
+

∆ , which, in turn, 

depends only on Re*t. For similar reasons, F2 can be viewed as a second-order effect of the flow as 

it depends on the turbulent fluctuation σ + . If we assume A1 =  fp (see eq. (2)), the main contribution 

of our new expression (35) is to introduce F2, and further specify F1 and G(d). Note that the particle 

packing parameter pf  depends on the drag and lift coefficients CD and CL, which both depend on 

the choice of reference height y and Re*t. Such dependences could be important in determining A 

and its variations. Certain aspects of the statistical effects of particle packing geometry have been 

discussed by Wu and Chou [2003] and Papanicolaou et al. [2002] and further research is needed to 

understand the effects of CD and CL in relation to Re*t. 

In this paper we focus on the effects of turbulent fluctuations on A. The statistical effect of the 

packing condition will not be considered, and pf  is treated as a constant, assuming a fixed packing 

geometry (Figure 2). Using parameter values defined in Section 2.1, we have pf ≈ 1 to 2. For 

simplicity, an average value of 1.5 is used throughout. In reality, F1 and F2 may also depend on 

particle packing conditions, but such effects are also excluded from this paper. 

Several expressions have been proposed for the effect of inter-particle cohesion in the past. In 

general, they share a form similar to  

1
3( ) 1

( ) n
p f

KG d
gdρ ρ −= +

−
,        (36) 

where K1 and n are parameters which need to be calibrated against data. With n = 1 and 1K  = 

6 C C

w

C L
Lπ

, eq. (36) reduces to eq. (34) and stands for the assumption of direct proportionality between 

the cohesion force FC  and particle size d. Values of the parameters n and 1K  from previous 

researchers are listed in Table 2. The resulting expressions for G(d) are plotted in Figure 6. This 

shows that inter-particle cohesion becomes negligible when d > 100 µm (in air). However, cohesion 

is important in determining the upward trend in A with decreasing *Re t , at *Re t < 1 (Figure 1).    

From Table 2 and Figure 6, it can be inferred that it is reasonable (given earlier work) to assume CF  

proportional to d, and that the most likely range of values for the cohesion coefficient CC  is 

between 10-6 and 10-4 N m-1. Though the parameter values listed in Table 2 were all calibrated using 
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the wind tunnel data of Iversen and White [1982], they are consistent with values of CC  found in 

adhesion studies. For instance, CC  was found to be of the order of 10-4 ~10-2  N m-1 in air [Corn, 

1961] and 10-6 ~10-4 N m-1 in water [Zimon, 1982]. Accordingly, the estimates provided in Table 2 

may represent the lower bounds of such effects in air. 

[[Insert Figure 6 here]] 

Zimon [1982] attributed the different relationships between FC  and particle size d, resulting in a 

range of values of FC  for a given d, to the probabilistic nature of particle removal. The variance of 

FC  is larger for smaller particles, and may also be larger in air relative to water. For instance, for 

particle sizes in the range 10 to 20 µm in air, FC  at a particle removal probability of 50% can be 102 

to 103 times larger than at a small removal probability (2% to 5%), while for particles smaller than 

10 µm, the difference can be as large as 105 [see Fig. 1.2 of Zimon, 1982]. Therefore, for small 

particles, the effect of the cohesion force on the entrainment threshold is not clear, as a large 

uncertainty and high variance in A are expected in both experimental data and theoretical estimates 

for particle size smaller than 10 µm.    

3 Results and Discussion 

In this section we focus on the first- and second-order flow-related effects, F1 and F2, mainly 

considering the range Re*t > 10 where G(d) → 1 (i.e. medium to larger particles). In Section 3.3, we 

compare our results with experimental data under a variety of different removal probabilities (p) 

and inter-particle cohesion parameter values ( CC ). For all calculations, kinematic viscosity ν  is set 

to 1.47 × 10-5 m2 s-1 in air and 1.0 × 10-6 m2 s-1 in water,  particle density ρp to 2650 kg m-3, and fluid 

density ρf  to 1 kg m-3 in air and 1000 kg m-3  in water. 

3.1. First-Order Effects - Effects of the Mean Velocity Profile   

Figure 7 shows contour plots of F1 in sk + ~ y+
∆

 space (dashed lines), with equations accounting for 

all three flow regimes (eqs. (13), (14) and (15)) in Figure 7a, and for the fully-rough regime only 

(eqs. (16) and (19)) in Figure 7b. In general, these diagrams show that contour lines of F1 are 

parallel to lines sk + = ζ y+
∆ , where ζ  is a constant.  F1 reaches a maximum value of round 0.2 at ζ  = 

30.  When ζ  < 30, F1 decreases with y+  but increases with the roughness Reynolds number sk + , 

whereas when ζ  > 30, F1 increases with y+  but decreases with sk + .  In the region where ζ  < 30, the 

opposite effects of sk + and y+
∆  on F1 (and therefore on the dimensionless shear stress A) are the main 
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reason that values of A are confined to a rather narrow range in both air and water. The region 

where ζ  > 30 may have little to do with threshold entrainment. These points should become 

increasingly clear later in this Section.  

[[Insert Figure 7 here]] 

The differences in F1 between Figures 7a (using all three flow regimes) and Figure 7b (using only 

the fully-rough regime) are most evident when 70sk + ≤ , where the flow is either smooth or 

transitionally rough. This is consistent with the findings of Ligrani and Moffat [1986] and Raupach 

et al. [1991].  In the smooth flow regime, values of F1 are larger if the flow is treated as smooth 

rather than as fully rough. However, in the transitionally-rough regime, values of F1 are smaller if 

the flow is treated as transitionally rough rather as fully rough. Therefore, A can be underestimated 

for small particles but overestimated for medium particles if fully-rough flow is assumed for all 

particle sizes. This implies that under/over-estimated values of A can arise as a result of the 

assumption of fully-rough flow, and explains why the experimental Shields' curve (Figure 1) dips in 

the vicinity of *Re t  ~ 10 to 30. This is most clearly seen in the data for water. Iversen et al. [1987] 

stated there is no indication of such a “dip” in A with *Re t  for their own and others' data in air. This 

may be because fully rough flow is assumed for all atmospheric boundary layer studies [Jiménez, 

2004], including the wind tunnel studies of Iversen and his colleagues.  

In terms of threshold entrainment, the ratio between the equivalent sand roughness ks and the 

particle diameter d, namely α = ks/d, has been discussed by Ling [1995], who indicated that α may 

be interpreted as a measure of the packing density of roughness elements. For threshold conditions, 

α = 0.3 to 4 [Ling, 1995, Cheng and Chiew, 1998], implying that *Res tk α+ = . Commonly used 

values of α are 1 for uniformly-sized particles and 2 for mixed particle sizes [Wu and Lin, 2002; Wu 

and Chou, 2003]. On the other hand, according to Section 2.1, y dβ= , implying *Re ty β+
∆ = , 

where β lies between 0.5 and 1. We then have sk yζ+ +
∆= , where ζ α β=  varies approximately 

between 0.15 and 4. Larger values of ζ  are possible for other types of packing geometry, as the 

packing geometry shown in Figure 2 represents the most exposed position for a sphere resting on a 

surface. Nevertheless, the contour lines outside of ζ  = 0.1 and ζ  = 10 may have little relevance for 

threshold entrainment.  

Some typical cases of threshold entrainment are shown in Figure 7. They are ζ = 0.5, 1, 2 and 4, 

respectively (solid lines). The upper bound of particle size common in gravelly fluvial systems is a 

grain size of about 100 mm [Graf, 1971; Buffington and Montgomery, 1997], whereas it is two 
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orders of magnitude smaller in aeolian systems [Bagnold, 1941; Greeley and Iversen, 1985]. Thus, 

the approximate upper bounds of sk +  and y+
∆  are of the order of 104 for fluvial systems (the lightly-

shaded area), and approximately 102 for aeolian systems (dark shading), respectively. This shows 

that, in air, threshold particle motion is likely to occur within the transitionally-rough and smooth 

regimes, rather than in the fully-rough regime. It also shows that, for ζ  = 0.5 ~ 4, the values of F1 

are mainly limited to 0.01 ~ 0.05. Multiplying these values by fp = 1.5 gives values of A as expected 

for fluvial entrainment [Graf, 1971; Qian and Wan, 1983; Buffington and Montgomery, 1997], but 

slightly larger than those obtained in wind tunnels [Bagnold, 1941; Iversen and White, 1982].  The 

physical cause of such differences will be investigated further in Section 3.2.  

In comparison to uniformly-sized beds, α  tends to become larger and β  tends to become smaller 

for mixed particle beds due to the hiding effect. As has been assumed previously by other 

researchers, for a given average bed particle size, ζ = 0.5 ~ 1 represents more uniformly-sized beds, 

and a larger ζ represents mixed-sized surfaces [Wu and Lin, 2002; Wu and Chou, 2003].  Figure 7 

provides a theoretical explanation for the observation that A for mixed particle sizes is often larger 

than that for uniformly sized particles [Shields, 1936; Buffington and Montgomery, 1997]. In 

addition, as particle sorting processes cause both α  and β  to vary spatially and temporally, they 

inevitably increase the variations of A [Church, 1978; Andrews, 1983]. This explains why the “dip” 

in A disappears in data obtained from mixed-sized river beds.  

3.2. Second-Order Effects - Effects of Boundary Layer Friction Reynolds Number Reτ 

The mean streamwise velocity is not the only factor affecting threshold entrainment. The turbulent 

velocity is also responsible for the initial dislodgement of sediment. Eq. (33) provides us the means 

to investigate the second-order effects on A due to turbulent fluctuations, through the effects of bulk 

Reynolds number and its relation to particle removal probability. In order to understand the general 

effect of turbulent fluctuations on A, and for simplicity, maxσ σ+ +=  is assumed at the height of the 

mean threshold velocity u∆  and is applied to all particle sizes. Eq. (21) is used to relate the 

maximum turbulent fluctuation maxσ +  to Reτ . 

[[Insert Figure 8 here]]  

Figure 8 shows contour plots of F2  in σ + ~ p space with F1 set to 0.01, 0.03 and 0.06 (left to right 

panels, respectively).  For all three cases, F2   increases with removal probability p. This shows that, 

for any given Reτ , F2 has values smaller than 1 for 0 < p < 0.3 and larger than 1 for 0.3 < p < 1. 

Thus, F2 acts to increase the variation of A. If we assume that A = fpF1 (as analyzed in Section 3.1) 
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represents the mean, multiplying this quantity by F2 reduces the actual value of A when 0 < p < 0.3 

but enlarges it when 0.3 < p < 1.  

Figure 8 also shows that F2 increases gradually with Reτ when 0 < p < 0.3, and that this increase is 

more noticeable for smaller values of F1 than for larger ones. Physically, we would expect this to 

happen as the larger the turbulent fluctuations, the easier the initial dislodgement of sediment, and 

therefore, the greater the amount of reduction in A in comparison to its mean. We argue that this 

represents another reason for smaller values of A in air than those obtained in water (Figure 1). 

According to Figure 5, at the threshold, we may assume that Reτ,w = 500 in flumes and Reτ,a = 

50000 in wind tunnels respectively. Figure 9 shows the estimated values of F2,w , F2,a and their ratio 

η = F2,w/F2,a in relation to p, with F1,w = F1,a = 0.01 and 0.04, respectively. The slope of the F2 ~ p 

relationship is larger in air than that is in water. The two F2 ~ p relationships intersect at 

approximately p = 0.2 ~ 0.3, and F2 in air is about half of its value in water for p = 0.01 ~ 0.05. The 

phenomenon that particle entrainment in air is easier for a smaller removal probability, but 

progressively harder for a larger removal probability for the same particle size entrained by water 

has also been found experimentally by Zimon [1982]. However, the explanation provided by Zimon 

[1982] was based upon the probabilistic nature of particle cohesion rather than statistical properties 

of near-wall turbulence, as argued here.  

[[Insert Figure 9 here]] 

Figure 1 suggests that the difference in A between air and water is actually larger than that predicted 

in Figure 9. This can be attributed to the following reasons. Firstly, it is because of different 

definitions of particle removal probability at the threshold. Particle removal probabilities at the 

threshold are never clearly defined under experimental conditions. For instance, those values of A 

lower than 0.04 were obtained by visual observations, in comparison to those obtained using 

bedload transport rates [Buffington and Montgomery, 1997].  Secondly, it is shown in Section 3.1 

that the average F1 may be larger in water than in air. In fact, data reported in Figure 1 are mostly 

averaged from different experiments with similar conditions. If we assume F1,w = 2F1,a, fp,w = fp,w 

and Ga(d) = Gw(d) = 1 (applicable for medium to large particles), then Aw would be approximately 3 

to 4 times larger than Aa at p = 0.02. Such a ratio is close to what is seen in Figure 1.  

Previous analyses in hydraulic literature treat the instantaneous pick-up velocity ut and its 

fluctuation σ  as linearly proportionality to the friction velocity u*, i.e. *t tu C u=  and *C uσσ = , 

where Ct and Cσ  are constants with values of approximately 5.5 and 2.0, respectively [Kironoto and 

Graf, 1994; Cheng and Chiew, 1998; Wu and Lin, 2002]. Also, fully-rough turbulent flow is 
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assumed with no allowance for variations in σ. A constant value of σ  fails to predict the 

systematically lower values of A at large Re*t observed in air, in comparison to those observed in 

open channel flow. In this study, σ  is allowed to vary with bulk Reynolds number as expressed by 

eqs. (20) and (21). Therefore, linking incipient motion to the scaling of turbulent fluctuation σ  is 

the key contribution of this study as this provides us with a fundamental basis to explain the 

systematically lower values of A in air than in water.     

The smaller values of A for smaller removal probabilities in air (and larger values for larger 

probabilities) suggest that the variance of threshold velocity is larger in air than it is in water. This 

may have profound implications for understanding wind erosion and aeolian transport. For instance, 

wind tunnel studies of Shao et al. [1993] found that dust emission is mainly due to saltation 

bombardment, and that dust emission arising from direct aerodynamic entrainment is generally 

small. On the other hand, direct field observations of Loosmore and Hunt [2000] found dust 

suspension can be initialized by turbulent eddies in surface winds well before the sandblasting 

mechanism. Similar observations were made by Roney and White [2004] at Owens Lake. Both 

Loosmore and Hunt [2000] and Roney and White [2004] found that the threshold velocity is smaller 

than the values estimated by the conventional “saltation thresholds”. From Figure 8 and 9, we 

suggest that the physical causes of the discrepancy are likely to be due to the different definitions of 

the threshold removal probability. While Shao et al. [1993] looked at sustained dust emission rates 

at an average p (at approximately 30% to 50%), the latter two studies focused on initial uplifting at 

p = 1 ~ 10%. 

Figures 7 and 8 also show that F1 may also affect F2. At smaller p, the effect of Reτ  on A becomes 

less evident when F1 becomes larger. Also, for a given p, F2  increases with F1 . Physically, this 

means that when A is larger, there is less reduction in its value by the second-order effect (i.e. when 

multiplying it by F2). Further experimental studies are needed to investigate these findings. In 

reality, the effects of Reτ  and Re*t are more complex than those presented in Figures 7 and 8. This is 

because A, Reτ  and Re*t are all related to threshold velocity u*t , which increases with particle size. 

In addition, boundary layer height δ may change with particle size. 

Direct field measurements by Roney and White [2004] at Owens Lake found that the dust 

suspension threshold varied between 50 and 75% of the values estimated from expressions derived 

from wind tunnel experiments. The general model proposed in this study provides the physical 

explanation for such an observation. Figure 10 shows three possible A ~ Re*t  relationships at 

boundary layer heights of δ = 0.01 m, 1 m, and 1000 m, respectively, all for p = 0.05. These curves 

were obtained, for an in-air situation, by substituting eqs. (13) and (20) in eqs. (32) and (33) with 
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y+
∆  = 0.6Re*t , sk +  = Re*t  and CC = 4 × 10-5 N m-1. The values of A were calculated through iteration 

over u*t for a given particle size d.  This shows that A decreases with δ and the decrement increases 

when Re*t increases, suggesting that, for the same values of Re*t, direct field measurement would 

result in smaller A in comparison to that in wind tunnel conditions. The physical implication is that, 

for a given particle size, the average threshold velocity for dislodging particles could be smaller in 

the atmospheric boundary layer compared with that observed in wind tunnels. Alternatively, a 

particle that remains still in a wind tunnel may move if it is in an atmospheric boundary layer at the 

same wind velocity.  

 [[Insert Figure 10 here]] 

3.3. Comparison with Experimental Data 

In this section, using an approach similar to that employed to derive Figure 10, we shall use eqs. (13) 

and (20) to estimate F1 and F2. A is then calculated through iteration over u*t for a given particle 

size d.  For all calculations below, we assume y+
∆  = 0.6Re*t. When comparing predictions with data 

from flume experiments, we assume sk +  = 3Re*t and δ  = 0.02 m, while sk +  = Re*t  and δ = 1.2 m for 

comparing with data from wind tunnels.   

Figure 11 shows predicted A ~ Re*t relationships for four values of  p in air and in water and three 

values of the  cohesion coefficient CC, respectively. For a given fluid, the variation of A in relation 

to Re*t can be explained by differences in the removal probability p when Re*t > 10, by inter-

particle cohesion when Re*t < 1, and by both of them when Re*t is in between. The Figure shows 

that, with a mean value of CC = 10-5  ~ 10-4 N m-1, the new expression agrees very well with 

experimental data for both air and water. The CC  values used in this study are smaller than those 

suggested previously [Shao and Lu, 2000; Cornelis and Gabriels, 2004], but this is because flow-

related effects play an increasingly important role in the new expression we propose. As discussed 

in Section 3.1 and shown in Figure 7, at smaller sk + and y+
∆

 (therefore smaller Re*t), F1 (therefore A) 

increases with Re*t. 

[[Insert Figure 11 here]] 

Previous researchers have suggested that the particle-to-fluid density ratio ( )p f fR = −ρ ρ ρ ρ  is an 

important parameter in determining A [Iversen et al., 1987; Cornelis and Gabriels, 2004]. Our new 

expression suggests that A also depends on both Re*t and Reτ , not just on Rρ . Therefore, in terms 

of the effects of flow on A, not only the density but also the flow viscosity is important. For a set of 
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fixed values of viscosity, particle size, and boundary layer height, our new expression suggests that 

A increases when Rρ  decreases, as was shown by the wind tunnel data of Iversen and White [1982]. 

However, it would no longer be these parameters also vary, according to our generalized model. 

The experimental simulations of McKenna Neuman [2003; 2004] confirm that A and sediment 

transport rates depend not only on fluid density (or Rρ ) but also on fluid viscosity. She showed both 

threshold velocity and mass transport rates of sedimentary particles vary with temperature (Selby et 

al., 1974) and humidity. For instance, it was found that the aerodynamic drag required to entrain 

sand size particles can be 30% lower under cold conditions in high latitude regions, as compared to 

hot deserts and mass transport rates increase while temperature decreases. McKenna Neuman [2004] 

suggested that temperature-dependent changes in air density and viscosity, and turbulence, are the 

major affecting factors. This example shows that caution is needed in applying previous analytical 

and semi-empirical models, and in assuming fixed parameter values, as both models and parameters 

may only be applicable to certain conditions.  

Both theoretical analysis and observation show a certain degree of variation in A.  We therefore 

argue that threshold entrainment should be viewed statistically rather than deterministically, as most 

governing processes are probabilistic in nature, including near-surface turbulent flow, packing 

geometry [Kirchner et al., 1990; Papanicolaou et al., 2002] and inter-particle cohesion. For 

instance, the most important process – rough wall turbulent motion – is fundamentally stochastic. 

The structure of near-bed turbulent flow is characterized by the spatial and temporal organization of 

coherent structures [Best, 1992], the links between outer and inner scales, the nature of 

intermittency and the role of anisotropy.  All these turbulence characteristics depend on and interact 

with the bed condition in a complex manner. In addition, for small values of Re*t, the interparticle 

cohesion forces are also statistical in nature, and the relationships between cohesion forces and 

particle size are very complex and not well understood (see Section 2.1).  For all these reasons, a 

deterministic resolution of incipient motion may not be possible. This message is particularly 

relevant to wind erosion studies where a deterministic view of incipient motion remains common, 

and data on incipient motion are too sparse to separate the variety of physical processes involved. 

4 Conclusions 

In this study, we have proposed a new, general expression for the dimensionless threshold shear 

stress A which is applicable to both aeolian and fluvial particle entrainment. It allows us to study the 

effects of mean flow, turbulent fluctuation, and inter-particle cohesion on incipient motion 

separately. It suggests that the dimensionless threshold shear stress A is indeed related to Re*t, as 
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earlier researchers proposed, and should also depend on flow Reynolds number Reτ, which is 

proposed for the first time. Therefore, A depends on the flow condition and it should be a function 

of the viscosity (a flow property) as well as being a function of the density ratio and particle size.  

We have shown that the differences in the probability distribution of streamwise velocity 

fluctuations for typical situations in air and water are the main reason for the larger values of A in 

water than in air (Figure 1). This is because the turbulent fluctuations are not only related to the 

near-bed flow structure (i.e. Re*t,), as expected, but also depend on the bulk flow characteristics (i.e. 

Reτ).  As velocity variance increases with the bulk flow Reynolds number Reτ , and typical values 

of  Reτ   in air are several orders larger than those in water under the conditions of incipient motion, 

so the values of A are smaller in air than in water. The upturn of A for small Re*t is partly due to the 

flow conditions and partly due to inter-particle cohesion. Therefore, incorporating descriptions of 

the flow condition into threshold entrainment is indispensable for all particle sizes. 

At large Re*t, the narrow range of values of A in relation to *Re t  results from the opposite effects of 

the roughness Reynolds number sk +  and the dimensionless reference height y+
∆ , both of which are 

proportional to the particle Reynolds number *Re t . Although the mean values of A may be within a 

narrow range, certain systematic variations exist. These variations are due to differences in particle 

packing density, which is incorporated in the first-order effect F1; and to the different removal 

probability (p) used in different experiments, and the bulk Reynolds number, which are 

incorporated in the second-order effect F2. In reality, these effects are likely to act interactively on A 

and are reflected in a combined but rather random manner in experimental studies.  
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Table 1. Main symbols (omitting symbols used only once) 

 
Symbol Definition First use 
A dimensionless threshold shear stress, ( )2

* ( )f t p fA u gd= −ρ ρ ρ  Eq (1) 

A1 reference value of A Eq (2) 
B empirical constant in logarithmic law over a smooth wall 

(B = 5.0) 
Eq (12) 

ci cohesion coefficient Eq (6) 
CD, CL drag, lift coefficients (computations assume CD = 0.5, CL = 0.3) Eqs (4), (5) 
d particle diameter Eq (1) 
FD, FL, 
FG, FC 

forces on particle from drag, lift, specific weight and cohesion Eqs (3) to (5) 

F(Re*t) dimensionless function quantifying dependence of A on 
gravitational and aerodynamic forces 

Eq (2) 

fp component of F associated with packing geometry (computations 
assume fp = 1.5) 

Eq (31) 

F1 component of F associated with first-order flow effects Eq (32) 
F2 component of F associated with second-order flow effects Eq (33) 
G(d) dimensionless function quantifying dependence of A on cohesion 

forces 
Eq (2) 

g gravitational acceleration Eq (1) 
ks Nikuradse sand-grain roughness Eq (14) 
K1 dimensional parameter for cohesion force Eq (36) 
LD, LL, 
LG, LC 

moment arms for forces FD, FL, FG, FC  (LD = dcosθ,  LL =dsinθ, 
LG = dsinθ and LC = dsinθ) 

Eq (8) 

n exponent specifying cohesion force Eq (36) 
p probability of entrainment Eq (23) 
Reτ flow Reynolds number, *Re uτ δ ν=  Sec 2.3 
Re*t particle Reynolds number at threshold, * *Re /t tu d ν=  Eq (1) 
S horizontal area of particle exposed to the flow (computations 

assume S = 0.2πd2) 
Eqs (4), (5) 

u streamwise velocity (dimensionless form: *u u u+ = ) Sec 2 

u∆ reference velocity (at height y∆) for defining FD and FL Eqs (4), (5) 
ut threshold velocity (at height y∆) Eq (10) 
u*t threshold friction velocity Eq (1) 

, t∆υ υ  ln uυ∆ ∆= ,  lnt tu=υ  Eq (22) 
y height above level of effective drag (y = 0) Sec 2 
y+ dimensionless height, *y u y ν+ =  Sec 2 

y∆ height at which velocity u∆ is defined Eqs (4), (5) 
y+

∆  dimensionless reference height at which velocity u∆ is defined Sec 2 

z0 roughness length Eq (16) 
zi smallest separation between two spherical particles in Eq. (6) Eq (6) 
β constant relating reference height y∆ to d Sec 2.1 
δ boundary-layer depth Sec 2.3 

u +∆  velocity-increment form of roughness function Eq (13) 
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κ von Karman constant (κ  = 0.41) Eq (12) 
ν kinematic viscosity of the fluid. Eq (1) 
ξ Interpolation function for roughness in transition regime Eq (15) 
ρf, ρp fluid density, particle density Eq (1) 
θ pivoting angle (see Figure 2; computations assume θ = 30o) Eq (8) 
σ standard deviation of streamwise velocity (dimensionless form: 

*u+ =σ σ ) 
Eq (20) 

τ*t threshold shear stress, 2
* *t f tuτ ρ=  Eq (1) 
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Table 2. Parameter values for eq. (36) and implied values of the cohesion parameter CC . 

K1 CC n Researchers 

6 × 10-7   N m-0.5  3.1 × 10-7 N m-0.5 1.5 Greeley and Iversen [1985] 

0.055* 0.029 1 Iversen et al. [1987] 

1.65 × 10-4  to  5.0 × 10-4   N m-1 8.6 × 10-5  to  2.6 × 10-4   N m-1 1 Shao and Lu [2000] 

1.69 × 10-4  to 1.77 × 10-4  N m-1 8.8 × 10-5  to 9.3 × 10-5  N m-1 1 Cornelis and Gabriels [2004] 

7× 10-6  N m-1.3 3.7× 10-6  N m-1.3 1.3 Cornelis and Gabriels [2004] 

* Note that the unit of K1 was not specified in Iversen et al. [1987]. 
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Figure Captions 

Figure 1. Dimensionless threshold shear stress Α as a function of particle Reynolds number Re*t. 

The diagram shows that data obtained in water flow follow a different trend compared with those 

obtained in air stream. Data were extracted from the literature indicated in the legend. 

Figure 2. Schematic of an erodible particle resting on other similar particles. Forces acting on the 

shaded particle include the aero/hydro-dynamic drag, FD, the aero/hydro-dynamic lift FL, the 

gravitational force, FG, and the net cohesive force, FC. The vertical distribution of stream-wise 

mean velocity u is also shown.   

Figure 3.  Schematic diagram of probability of entrainment p equal to probability of exceedance 

Prob(u∆ ≥ ut), where u∆ and ut are the instantaneous reference velocity and the threshold velocity, 

respectively. 

Figure 4. Normalized stream-wise turbulence intensities σ + as a function of normalized vertical 

height  y+ and boundary layer friction Reynolds number Reτ . The lines are calculated using eq. (20).  

Figure 5.  Peak values of σ +  from Figure 4 as a function of Reτ . Typical ranges of Reτ   for flumes, 

natural rivers, wind tunnels and atmospheric boundary layers are also shown. 

Figure 6.  Previously published relationships of G(d) as a function of particle size d.  

Figure 7.  Contour plots of F1 in y+  ~ sk + space. In (a) eqs. (13) to (15) were used for the calculation; 

in (b) eq. (16) with z0/ks = 0.031 was used for the calculation. Note that  y+ is replaced by y+
∆  for the 

threshold condition of grain motion. See text for details. 

Figure 8. Contour plot of F2 in Reτ  ~ p space. From left to right, the panels are for F1 = 0.01, 0.03, 

and 0.06, respectively. 

Figure 9.  Left panels: F2 as a function of p for the cases of air and water for F1 = 0.01 (upper panel) 

and F1 = 0.04 (lower panel). Right panels: the ratio of F2  in water and air for the same F1 values as 

on the left. 

Figure 10. Computed A ~ Re*t relationship in air for three different values of boundary layer height 

δ. 

Figure 11. Comparison between computed A ~ Re*t relationships in air and water. Dots shown are 

experimental data as in Figure 1, complemented by other data obtained from flume experiments 

[Buffington and Montgomery, 1997]. 
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