nerc.ac.uk

Fracture mapping with electrical core images

Lovell, M.; Jackson, P.; Flint, R.; Harvey, P.K.. 2005 Fracture mapping with electrical core images. In: Harvey, P.K., (ed.) Petrophysical properties of crystalline rocks. London, UK, Geological Society of London, 107-115. (Geological Society Special Publication, 240).

Full text not available from this repository. (Request a copy)

Abstract/Summary

Naturally fractured reservoirs often contain a range of different fracture types and networks; fractures that are relatively permeable and relatively impermeable, unconnected and connected to the part of the fracture network that carries fluid flow, and naturally occurring or drilling induced. Consequently, in terms of their fluid connectivity, fractures may be open or closed, while individual fractures may be isolated or well connected. We have adapted our approach to imaging sedimentary fabric in the laboratory, where we related electrical core images to properties such as porosity, permeability, grain size and cementation, to enable electrical imaging of fractures in core. Our approach uses similar principles to those employed in down-hole electrical imaging. The results demonstrate an ability to image conductive fractures in fully saturated low-porosity water-bearing core: these fractures being electrically connected from the flat measurement surface through to the outer surface of the core. Published results for numerical modelling of down-hole electrical imaging tools show the electrical response is related to fracture depth and fracture aperture. Our experimental results on fractured core in the laboratory support these numerical observations, increased current flowing into the fracture as the aperture increases. The finite size of the electrode, however, means that this technique cannot distinguish between a single fracture and smaller groups of fractures intersecting the electrode.

Item Type: Publication - Book Section
Programmes: BGS Programmes > Electrical Tomography
Date made live: 14 May 2012 13:10 +0 (UTC)
URI: https://nora.nerc.ac.uk/id/eprint/18043

Actions (login required)

View Item View Item

Document Downloads

Downloads for past 30 days

Downloads per month over past year

More statistics for this item...