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Abstract 

The use of optimised resistivity tomography surveys to acquire field data imposes 

extra constraints on the design strategy beyond maximising the quality of the resulting 

tomographic image. In this paper, methods are presented to 1) minimise electrode 

polarisation effects; 2) make efficient use of parallel measurement channels; and 3) 

incorporate data noise estimates in the optimisation process. 1) A simulated annealing 

algorithm is used to rearrange the optimised measurement sequences to minimise 

polarisation errors. The method is developed using random survey designs, and is 

demonstrated to be effective for use with single and multi-channel optimised surveys. 

2) An optimisation algorithm is developed to design surveys by successive addition of 

multi-channel groups of measurements rather than individual electrode 

configurations. The multi-channel surveys are shown to produce results nearly as 

close to optimal as equivalent single channel surveys, while reducing data collection 

times by an order of magnitude. 3) Random errors in the data are accounted for by 

weighting the electrode configurations in the optimisation process according to a 

simple error model incorporating background and voltage-dependent noise. The use 

of data weighting produces optimised surveys that are more robust in the presence of 

noise, while maintaining as much of the image resolution of the noise-free designs as 

possible. All the new methods described in this paper are demonstrated using both 

synthetic and real data, the latter having been measured on an active landslide using a 

permanently installed geoelectrical monitoring system. 

 

Keywords: Inverse theory; Tomography; Numerical approximations and analysis; 

Electrical properties 



 4 

1 Introduction 

Automatic multi-electrode multi-channel Electrical Resistivity Tomography 

(ERT) instruments have enabled rapid and flexible collection of data for electrical 

imaging of the near surface. The availability of such systems has stimulated recent 

research into optimal survey design algorithms for ERT (see Wilkinson et al. 2006a; 

Coles and Morgan 2009; Maurer et al. 2010 for a general overview and specific 

references). When compared to standard survey designs, such as the dipole-dipole or 

Wenner-Schlumberger arrays, these algorithms substantially improve the resolution of 

ERT images while still using the same number of measurements (Stummer et al. 

2004; Wilkinson et al. 2006b; Loke et al. 2010a; 2010b). Several different approaches 

have been proposed to maximise resistivity image resolution including: reconstructing 

comprehensive data sets from a linearly independent complete subset (Lehmann 1995; 

Zhe et al. 2007; Blome et al. 2011); maximising a sum of the Jacobian sensitivity 

matrix elements (Furman et al. 2004; 2007); maximising a sum of the model 

resolution matrix elements (Stummer et al. 2004; Wilkinson et al. 2006a; Loke et al. 

2010a; 2010b); minimising an average measure of the point spread function (Loke et 

al. 2010b); and maximising the determinant of the normal matrix (Coles and Morgan 

2009). Of these, the methods based on the model resolution matrix have probably 

been the focus of the most research effort. But regardless of the optimisation method, 

generally very little attention has been paid to the additional design constraints that 

arise when applying optimised surveys in the field. These constraints are: the 

avoidance of electrode polarisation effects; the efficient use of multiple measurement 

channels; the presence of noise in the data; and the desirability of making reciprocal 

measurements to assess noise levels. The notable exception is Blome et al. (2011) 
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who present a practical method for recording a low-noise complete pole-bipole 

dataset with a multi-channel system 

In this paper we address three of these practical restrictions. We present a 

method to rearrange the order in which the optimised data are measured so that 

electrode polarisation effects are avoided. We also extend the “Compare R” (CR) 

method of Wilkinson et al. (2006a) to make full use of multiple measurement 

channels, thereby designing near-optimal datasets that can be collected much more 

quickly than those generated with the existing algorithm. Lastly, we modify the core 

of the CR algorithm to incorporate error estimates, producing survey designs that are 

more robust in the presence of random noise. We test the new algorithms using both 

synthetic data and real measurements made using a permanently installed time-lapse 

resistivity monitoring system on an active landslide. While this work specifically 

focuses on adapting the CR method, the approaches that we have used are generic and 

should be applicable to any of the aforementioned optimal survey design algorithms. 

2 The “Compare R” method 

The optimisation strategy used in this paper makes use of the model resolution 

matrix R, which quantifies the degree to which each model cell in the resistivity 

image can be resolved by the measured data. For the linearised least-squares inversion 

method, the relationship between the measured data and the model cell resistivities is 

given by  

 1

TT )( −−=∆+ ii CrdGrCGG , (1) 

where the Jacobian matrix G comprises the logarithmic sensitivities of the 

measurements to changes in the model cell resistivities, the constraint matrix C 

contains the damping factors and roughness filters, d is the data discrepancy vector, 
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ri-1 is the vector of logarithms of the model resistivities from the previous iteration, 

and ∆ri is the change in model parameters for this iteration. The model resolution 

matrix (Menke 1989) for this formulation is given by  

 GGCGGR T1T )( −+= . (2) 

The leading diagonal elements of R give an estimate of the resolution of the 

individual model cells, which we call the “model resolution” and denote R. The model 

resolution takes values 0 ≤ R ≤ 1 (Wilkinson et al. 2006a), where 0 is unresolved and 

1 is perfectly resolved. The model resolution is maximal throughout the image space 

for the comprehensive measurement set, which comprises all possible unique four-

electrode measurements. To improve the stability of the inversion in the presence of 

noise, the comprehensive set is reduced by removing the Wenner-γ type 

measurements and all others with geometric factors greater than a prescribed limit 

(Wilkinson et al. 2006a). 

The CR method attempts to find a survey design that maximises the average 

model resolution for a given number of measurements much smaller than the size of 

the comprehensive set. For practicality, it uses a locally-optimal successive design 

algorithm rather than a global optimisation method. In this approach, introduced by 

Stummer et al. (2004) and improved by Wilkinson et al. (2006a), all possible 

measurements are ranked in order of the estimated improvement which they would 

make to the model resolution of a baseline measurement set. Several highly ranked 

measurements are then included in the set, the model resolution is recalculated, and 

the process is iterated until the survey contains the desired number of measurements. 

The estimates of the model resolution changes depend on scaled sums of sensitivities, 

which can be calculated efficiently since their computational cost scales linearly with 

the number of model cells. Wilkinson et al. (2006a) demonstrated that significantly 
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greater model resolutions could be achieved by calculating the change in the model 

resolution, ∆R, exactly. While calculating R scales with the cube of the number of 

cells, calculating ∆R scales as its square if the Sherman-Morrison Rank-1 update is 

used. This approach is therefore still practical to use for optimal survey design in 

2.5D. By reimplementing the original CR algorithm to take advantage of modern 

cache architecture and parallel processing capabilities, Loke et al. (2010a; 2010b) 

demonstrated that using this method was feasible for up to 60 electrodes. We have 

since found that, on a 64-bit platform with sufficient memory, optimisation of any 

realistic (i.e. up to a few hundred electrodes) 2.5D survey should be possible. A 

version of the parallelised CR algorithm is used throughout this paper, and was 

implemented using the GotoBLAS2 accelerated Basic Linear Algebra Subroutines 

libraries (Goto & van de Geijn 2008). 

In the original formulation of the CR method, the configurations are ranked in 

terms of ∑ =

∆m

j jR

jR

1 )(

)(

b

b , where Rb is the resolution of the base set and m is the number of 

model cells. The highest ranking configuration (with sensitivity vector g1) is added to 

the base set at each iteration. The next highest ranked configuration, g2, is only added 

if it has a suitable degree of orthogonality to the first, which is assessed by checking 

that |g1 · g2| / (|g1| |g2|) is less than a given linear dependence limit (lim). In the original 

CR method, the best model resolution was found to be given by lim = 0.97. This 

process is repeated until a certain number of configurations have been added (here we 

used 9% of the size of measurement set at the start of the iteration), after which R is 

recalculated and the next iteration is begun. The optimisation performance of this 

method is shown in Figure 1 for a linear array of 32 electrodes, with a base set 

comprising 159 configurations (dipole-dipole with a = unit electrode spacing and n = 

1a → 6a) and the final set containing 575 configurations. The plots show the average 



 8 

relative model resolution ∑ =
=

m

j jR

jR

m
S

1 )(

)(1

c
, where R is the resolution of the optimised 

set and Rc is the resolution of the comprehensive set. The blue curve shows the 

performance of the original CR method, and the dashed black curve shows the 

resolution achieved by the brute force approach of adding only a single configuration 

at each step, which gives the best possible performance for this type of local 

optimisation procedure. Since we published the original CR method, we have found 

that a slightly modified ranking function ∑ =

∆m

j jR

jR

1 )(

)(

c

b  produces better results, as shown 

by the red curve in Figure 1. We have also found that using a variable linear 

dependence limit improves the optimisation performance further. The green curve 

shows the results obtained by setting lim = S at the start of each iteration. This 

imposes a stricter limit when the size of the array is small causing more advantageous 

configurations to be selected, but as the array grows, and the best configurations have 

already been added, the limit is relaxed. The combination of these two improvements 

brings the performance of the CR method very close to the single-step results, while 

maintaining its speed advantage (the single step results took 14 minutes to calculate 

on an eight-core Intel Xeon X7560 processor, while the three CR methods each took 

32 seconds). 

Figure 2 compares the results produced by the new CR method against a 

standard dipole-dipole survey configuration. Both consist of 575 measurements, for 

the dipole-dipole survey the dipole length was a = 1 → 4 electrode spacings and the 

dipole spacing was n = 1a → 10a, while the optimised survey was as described above 

for Figure 1. The electrode spacing was 4.75 m and in both cases the maximum 

permitted geometric factor was Kmax = 39 396 m (equivalent to a = 9.5 m, n = 10a). 

For simplicity, the constraint matrix was chosen to represent a simple damped 

(Levenberg-Marquardt) least-squares problem, C = λI (Loke et al. 2010b found no 
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significant differences between using damping or smoothness constraints). The 

damping factor λ = 0.001 was chosen so that the model resolution was small 

(R ≈ 0.05) at the base of the image (in general higher damping factors reduce the 

model resolution; see Loke et al. 2010a for a detailed discussion). The model 

resolution distribution across the imaging region for the comprehensive set is shown 

in Figure 2a. The distribution of the relative model resolution Rr (the model resolution 

normalised by the comprehensive set model resolution) is shown for the dipole-dipole 

survey (Figure 2c) and the optimised survey (Figure 2e). The dipole-dipole average 

model resolution is S = 0.629, but the optimised model resolution is significantly 

greater at S = 0.717 for the same number of measurements. Comparing Figure 2e and 

c shows that the optimised survey produces high relative resolution values throughout 

the model space, compared to the dipole-dipole survey where the model resolution 

decreases rapidly towards the sides, corners and base of the image.  

We tested the dipole-dipole and optimised surveys against a synthetic model 

comprising four resistive prisms of ρ = 100 Ωm buried at different depths in a 

background of ρ = 10 Ωm (Figure 2b). The data were calculated using the Res2DMod 

program with a finite-difference forward modelling algorithm. They were inverted 

with the associated Res2DInv software using the same model cell discretisation and 

an L1-norm (blocky) model constraint (Loke et al. 2003). Res2DInv used a finite-

element method to avoid having the same combination of discretisation and modelling 

algorithm in the forward and inversion processes. Qualitatively, the optimised 

inverted image resembles the forward model more closely than the dipole-dipole 

image. The shapes of the prisms are more accurately recovered (especially that of the 

deepest prism), and their resistivity contrasts are also closer to the forward model 

(especially for the right-hand prism). For a more quantitative comparison, we 
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calculated the Pearson correlation coefficient P and the structural similarity 

coefficient Σ (Wang & Sheikh 2004) between the forward and inverted models. The 

Pearson coefficient gives a simple measure of image correlation, whereas the 

structural similarity coefficient emphasises similarity in structure and contrast. They 

both give more reliable measures of image similarity than the root-mean-squared 

difference metric (for details see Wang & Sheikh 2004). Both give the value 0 when 

comparing the target image to a random image with the same mean and variance, and 

1 if the comparison image is identical to the target. For the dipole-dipole image, P = 

0.825 and Σ = 0.785, but both coefficients are greater for the optimised image which 

gives P = 0.837 and Σ = 0.794. 

3 Application to field data 

When inverting a comprehensive measurement set, there can be significant 

sensitivity to resistivity variations beyond the ends of the line of electrodes (Maurer 

and Friedel 2006). Therefore an inversion of a comprehensive set must incorporate 

these “outer-space” regions in the model. Since the optimised sets are designed to 

approach the sensitivity of the comprehensive set, their inversions must also account 

for variations in the resistivity in the outer-space regions. For the synthetic data tests 

shown in Figure 2 the outer-space was homogeneous, but this will not generally be 

the case for field data. The extents of the outer-space regions with significant model 

resolution are shown in Figure 3 for the dipole-dipole and comprehensive sets 

considered above. The dipole-dipole survey has negligible model resolution in the 

outer-space (Figure 3a), but Figure 3b shows that significant model resolution values 

occur up to four electrode spacings (19 m) beyond each end of the line for the 



 11 

optimised survey. Therefore for testing with field data this region is incorporated into 

the inversion models. 

The field data sets used in this paper were acquired from an active landslide 

site near Malton, North Yorkshire, UK (Chambers et al. 2011). The site is being 

monitored using an automated time-lapse electrical resistivity tomography (ALERT) 

system (Wilkinson et al. 2010) to study the hydraulics of landslide processes. The 

ALERT instrument uses wireless telemetry to communicate with an office based PC 

that runs control software and a database management system. The control software is 

used to schedule data acquisition, while the database management system stores, 

processes and inverts the remotely streamed ERT data. The capability that this 

provides for flexible and remotely configurable data acquisition is ideal for testing 

optimised survey designs without needing to manually revisit the site. 

The research site is located on a south facing valley side with a slope of 

approximately 14°. The bedrock geology, from the base to the top of the slope, 

comprises the Lias Group Redcar Mudstone Formation (RMF), Staithes Sandstone 

and Cleveland Ironstone Formation (SSF), and Whitby Mudstone Formation (WMF), 

which are overlain at the top of the hill by the Dogger Sandstone Formation. The 

bedrock is relatively flat lying with a gentle dip of a few degrees to the north, and the 

strata are broadly conformable (British Geological Survey 1983). Slope failure at the 

site is occurring in the weathered WMF, which is highly prone to landsliding. The 

landslide is characterized by shallow rotational failures at the top of the slope that 

feed into larger-scale slowly moving lobes of slumped material, which extend 

approximately 150 m down the slope. The data were collected from one of five 

permanently installed parallel linear electrode arrays running approximately south to 

north from the base to the top of the hill, each comprising 32 electrodes with along-
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line spacings of 4.75 m and inter-line spacings of 9.5 m. The objective of the 

installation is to visualise and monitor resistivity changes associated with hydraulic 

precursors to slope failure using time-lapse 3D ERT. The 3D data comprise along-line 

configurations as well transverse and diagonal cross-line measurements (it is worth 

noting that there is no evidence of significant anisotropy in the 3D data). However, 

the structure of the subsurface is such that it is valid to invert the along-line data from 

individual arrays in 2.5D (Wilkinson et al., 2010) and hence the site is suitable for 

testing optimised 2.5D survey designs. The selected linear array was chosen to 

intersect the edge of an active lobe, although it should be noted that the landslide did 

not move during the acquisition of the data presented in this paper. 

The data sets were measured in normal and reciprocal arrangements (Parasnis 

1988) for both the dipole-dipole and optimised surveys. For each configuration, the 

apparent resistivity value was taken to be the mean of the normal and reciprocal 

measurements. The difference between the measurements was used to calculate the 

standard error in the mean for each configuration, which we refer to as the reciprocal 

error. Figure 4 shows the distributions of reciprocal errors and inverted images for the 

dipole-dipole and optimised surveys. All data were inverted using a model that 

incorporated an extra 19 m outer-space region at each end, although only the region of 

the model between the end electrodes is shown. The reciprocal error distribution for 

the dipole-dipole set is shown in Figure 4a. It peaks at just below 0.1%, and the 

maximum error is <3%. The inversion used an L2-norm (smoothness) model 

constraint and converged after four iterations to an RMS misfit of 1.1%. The inverted 

image is shown in Figure 4c, and its resistivity structure and variations are consistent 

with the expected stratigraphic sequence (this is discussed in detail at the end of the 

section 4).  
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By contrast, the data for the optimised set exhibited some very large reciprocal 

errors (in certain cases over 100%, see Figure 4b). These caused the model to 

converge to a very high RMS misfit of 39.4%; the resulting image is shown in Figure 

4d. The cause of the significantly larger data errors in the optimised survey was found 

to be electrode polarisation, caused by the use of electrodes to measure potential that 

had previously been used to pass current (Dahlin 2000; Merriam 2005). 

4 Minimising polarisation effects 

If standard metallic electrodes are used to inject the current for a resistivity 

measurement, then charges will build up at the metal/earth interfaces. Any potential 

differences subsequently measured using either or both of these electrodes will be 

affected by this polarisation as it decays. While non-polarising electrodes can be used 

to avoid these effects, they are more expensive and difficult to emplace than metal 

stake electrodes. To permit the use of metallic electrodes, resistivity meters use 

alternating positive-negative pulse sequences to minimise polarisation errors. This is 

generally very effective when the decay of the polarisation is approximately linear 

(Dahlin 2000). But errors will still occur if the duration of the measurement window 

is similar to the characteristic time-scale of the decay, typically between a few 

seconds and tens of seconds (Dahlin 2000; Merriam 2005).  

Ideally the measurements should be arranged so that during the collection of 

the data set no electrode is used to measure potential after previously transmitting 

current. This is easily achieved for a dipole-dipole survey, but for a general survey it 

is likely that no such arrangement will exist. In that case, it is sufficient to arrange the 

measurements such that enough time will elapse after a given electrode has 

transmitted current to let any strongly non-linear polarisation decay occur before the 
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same electrode is used to measure potential. Dahlin (2000) showed how this can be 

achieved for a regular structured measurement sequence like a Wenner-based survey. 

But for a general survey comprising a mixture of the fundamental four-electrode 

configuration types there will probably be no such natural ordering to exploit. 

Despite the ongoing research effort into experimental design for ERT, very 

little attention has been paid to electrode polarisation. Although Stummer et al. (2002) 

noted that optimised measurement sequences should be designed to avoid polarisation 

effects, to our knowledge this was not actually implemented in their design algorithms 

or in any other subsequent work on the subject. The problem was noted again by Loke 

et al. (2010a), who tackled the problem by sorting the four-electrode configurations, 

which have the form C1, C2, P1, P2,  into ascending electrode order, with P1 varying 

most rapidly, then P2, then C1, then C2. After sorting, sections of the configuration list 

with common C1 and C2 electrodes were reversed if any electrode used to measure 

potentials in that section had been used to pass current within the previous 1, 2 or 3 

configurations. While this tended to work well, it is nevertheless easy to envisage 

cases where it would fail. Also it was designed for single-channel operation and 

although conceptually easy to extend to multi-channel, the likelihood of multi-channel 

measurement sets causing it to fail would be much greater. 

Here we describe the use of a global minimisation method to rearrange 

measurement configurations to reduce electrode polarisation effects. The reordering 

algorithm is generic, suitable for single or multi-channel data collection, and should 

be applicable to resistivity measurement surveys designed by any algorithm. We 

assume that a measurement “command” with M channels will involve two electrodes 

transmitting current and M + 1 electrodes measuring M potential differences, which is 

the method of multi-channel acquisition implemented by the ALERT instrument. The 
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ith such command will be denoted Ci1, Ci2, Pi1, Pi2, …, Pi(M+1). To reorder the 

command sequence we calculate a cost function for its arrangement c = Σi(1/di), 

where di = j-i and the jth command is the first subsequent command containing a 

potential electrode that was used as a current electrode in the ith command (i.e. di is 

the smallest positive integer for which {Pj1, Pj2, …, Pj(M+1)} ∩ {Ci1, Ci2} ≠ Ø). For 

example, if electrodes 4 and 6 are used to transmit current in command i, and 

subsequently electrode 4 is used as a potential electrode in command (i+3), then 

di = 3. In the case that both current electrodes in command i are not subsequently used 

to measure potential, we set 1/di = 0. By reordering the commands to minimise c, we 

aim to maximise the time between any electrode passing current and then 

subsequently being used to measure potential. 

We used a sequence of n = 64 randomly generated 10-channel commands to 

test the reordering algorithms. The cost of this original command sequence was 48.92, 

and the distribution of C-P separations d is shown by the grey histogram in Figure 5b. 

To illustrate the challenges of minimising the cost function, we initially generated 

64 000 random rearrangements of the commands (10 000 iterations, and 64 

rearrangements per iteration). The blue curve in Figure 5a shows the minimum cost 

found by random reordering as a function of the iteration number. After 10 000 

iterations, the minimum cost achieved was 35.32, and the distribution of d was as 

shown by the blue histogram in Figure 5b. For comparison, the Loke et al. (2010a) 

method produced a cost of 39.23, confirming that it is not well suited to rearranging 

general multi-channel command sequences. 

The optimal reordering of the measurement commands is a combinatorial 

minimisation problem similar to the well-known “Travelling Salesman” problem. An 

efficient reordering method in this case is to either move or reverse a randomly 
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selected portion of the sequence (Press et al. 1992). Using these more efficient 

permutations in place of randomly rearranging the entire sequence produced a much 

reduced minimum cost of 12.19, illustrated by the red curve in Figure 5a and red 

histogram in Figure 5b. To generate new test sequences, we always permuted the 

sequence with the minimum cost encountered so far. This gave a rapid improvement 

in the cost function at the expense of finding a local minimum, which is analogous to 

rapidly cooling, or quenching, a molten metal. Better results are possible using 

“simulated annealing”, which is a global minimisation method more analogous to 

slow cooling, which leads to a lower energy state. 

To use the simulated annealing method we employed the same combination of 

reversals and moves, but assigned a “temperature” T to the system that was slowly 

reduced at each iteration. The initial temperature T0 was taken to be the standard 

deviation of the costs of n randomly rearranged sequences. Each new test sequence 

(of cost ct) then replaced the currently held sequence (of cost c0) with probability 

p = exp(-(ct-c0)/T). Doing so always accepts permutations with lower costs, but will 

also sometimes accept those that produce higher costs. This allows the algorithm to 

escape from local minima, but with progressively lower probability as the temperature 

is reduced. We found that T = T0(1-q/Q)5 produced reliable results, where q is the 

iteration number and Q is the total number of iterations. The minimum cost found by 

this method for the random 64 command sequence was 9.36, shown by the green 

curve and histogram (Figure 5a and b respectively), and took 3.8 seconds for 10 000 

iterations. Note that since the algorithm performs n sequence permutations per 

iteration, and the time taken to calculate the cost function scales linearly with n, the 

overall time taken for a sequence with n commands scales as n2. 
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To find the best combination of reversals and moves, we conducted 10 trials 

using only reversals for 14 different maximum permutation lengths (shown as blue 

squares in Figure 6). We also did the same using only moves (shown as red circles). 

The results showed that moving a section of the command sequence to a new location 

in the list was more efficient than reversing a section of the sequence. We then tested 

a combination of moves and reversals, with a given probability of reversing a section 

(black crosses in Figure 6). Within error, this produced equally low costs for 0 ≤ prev 

<≈ 0.4. We arbitrarily chose prev = 0.1 for the results shown in this paper, in 

combination with a maximum permutation length of 7 for reversals and 1 for moves 

(N.B. the stated length of a reversed/moved section excludes/includes the first 

command respectively). 

The optimised survey with 575 single channel commands discussed in section 

3 had an initial cost of 86.39 and a d value distribution shown by the grey histogram 

in Figure 7. We found that Q = 500 iterations of the simulated annealing procedure 

were sufficient to reduce the cost to 0.62 with d values shown by the black histogram 

in a time of 8.5 seconds. For comparison, the Loke et al. (2010a) reordering method, 

which works well for single channel survey designs, produced a cost of 2.94. In the 

reordered survey, there was a minimum of 82 commands before any current electrode 

was subsequently used to measure potential, a separation in time equivalent to 

approximately 11 minutes. The beneficial effects of reordering the survey are shown 

in Figure 8a, which compares the distributions of reciprocal errors for the original and 

reordered optimised surveys. After reordering, the distribution peaks at just above 

0.1%, and the maximum error is <3%, compared to over 100% in the errors from the 

original sequence data. While the optimised survey data still has slightly larger 

reciprocal errors than the dipole-dipole survey (Figure 4a), these are due to the 
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optimisation procedure tending to select configurations with higher average geometric 

factors (Loke et al. 2010a) rather than being caused by any residual polarisation. The 

inversion of the data from the reordered optimised survey converged after four 

iterations to an RMS misfit of 1.2%. The inverted image is shown in Figure 8b and it 

compares much more closely to the dipole-dipole image (Figure 8c) than the original 

optimised image does (Figure 4d), both in terms of resistivity structure and RMS 

misfit. 

Both the optimised and dipole–dipole images exhibit resistivity variations 

consistent with the expected stratigraphic sequence (Figure 8b and c respectively). 

The boundary between the Whitby and the Staithes formations (WMF and SSF) has 

been inferred from the resistivity images and is clearly defined in each case. There is 

also a clear indication in both resistivity images of slipped WMF material overriding 

the more competent SSF. The lower boundary between the SSF and the Redcar 

formation (RMF) has been positioned to be consistent with an auger hole log on an 

adjacent electrode line (Loke et al. 2010a). It is clear from Figure 8c that the dipole-

dipole image has not captured the SSF/RMF boundary very accurately, whereas it is 

much more clearly resolved in the optimised survey image (Figure 8b). Within the 

WMF there are higher surface resistivities in the vicinity of the main scarp that are 

most likely due to increased localised fracturing. These features also seem more 

clearly defined in the optimised image. These findings are consistent with the 

distributions of Rr (Figure 2c and e), which suggest that the optimised survey should 

produce better resolution than the dipole-dipole survey at depth and towards the edges 

of the images. In general, careful examination of Figure 8 reveals that the contrast of 

equivalent features is slightly greater throughout the model space in the optimised 
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image than in the dipole-dipole image, supporting the findings of section 3 for the 

synthetic models. 

5 Multi-channel optimal survey design 

So far the optimisation strategy we have studied has produced output suitable 

for single channel (SC) measurements. Modern resistivity instruments tend to have 

multi-channel (MC) capability where several potential differences can be measured 

for each current dipole. The benefits of MC operation are clear, with M channels data 

acquisition can be accelerated by a factor of up to M with suitably designed surveys.  

While some standard electrode configurations (e.g. dipole-dipole) are naturally well-

suited to MC operation, optimal survey algorithms must explicitly account for the MC 

capability of the instrument. Here we present a simple modification of the CR 

algorithm which should also be applicable to other optimisation methods. 

We considered the type of multi-channel operation employed by the ALERT 

instrument and others (e.g. the AGI SuperSting), although the method would be easy 

to adapt to other multi-channel implementations. A given multi-channel command has 

the form C1, C2, P1, P2, …, PM+1, which denotes simultaneous measurement of 

C1, C2, P1, P2; C1, C2, P2, P3; … ; C1, C2, PM, PM+1. The multi-channel CR (MCCR) 

optimisation method has the same basis as the original single channel CR algorithm: 

configurations are ranked by ∑ =

∆m

j jR

jR

1 )(

)(

c

b  and are tested for linear dependence. But in 

addition, a set number of MC commands are filled with measurement configurations 

according to the following procedure: 

1. Recalculate ∆R for all unused configurations and sort them in order of descending 

rank, as for the SC method. 

2. Find the next incomplete or empty MC command. 
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3. If the command is incomplete rather than empty proceed to step 4, otherwise 

begin the command with the highest-ranked configuration. 

4. Find the highest ranked unused configuration that simultaneously: a) satisfies the 

linear dependence criterion; b) uses the same pair of current electrodes as used in 

the command; c) has one potential electrode in common with either the first or last 

potential electrode of the command; d) has its other potential electrode not already 

in use in the command. 

5. Add this configuration to the command and repeat step 4 until either the command 

is fully populated or the end of the ranked list is reached. 

6. Repeat the procedure from step 1 until all commands are fully populated. 

In the single channel CR algorithm, the only criterion on subsequently selected 

commands is the linear dependence test. But in the MCCR algorithm, three additional 

requirements (4b-d) must also be satisfied. In practice we found that combining these 

requirements with a variable linear dependence limit (equal to S) caused the 

optimisation performance to decrease significantly in comparison with the single 

channel results. The strict initial limit on linear dependence coupled with the 

additional requirements was causing the algorithm to select configurations that did not 

contribute greatly to increasing the average model resolution. Therefore in the MCCR 

algorithm we have reverted to the best performing fixed linear dependence 

limit lim = 0.97, which initially allows the algorithm more freedom to choose from 

configurations that fit into the commands. 

Typically the number of iterations required by MCCR is equal to or slightly 

greater than the number of commands. This makes the algorithm slower than the 

single channel CR algorithm (e.g. in the previous SC example 15 iterations of the CR 

algorithm were used, whereas 50-100 MCCR iterations might be typical for a 32-
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electrode array). However, the MCCR method produces survey designs that are nearly 

as close to optimal as the CR algorithm, with the benefit of exhibiting an order-of-

magnitude more rapid data acquisition in the field. 

The performance of the MCCR algorithm is demonstrated in Figure 9. We 

compared the original CR results (Figure 2e and f) with MCCR for two situations, one 

with the minimum number of commands (58) to accommodate the same number of 

configurations as the dipole-dipole survey, and one with the same number of 

commands (98) as the dipole-dipole survey. The first case took 132 s to produce the 

58-command survey with 580 configurations. This yielded an average resolution of 

S = 0.699 (Figure 9a) and an inverted image which is qualitatively and quantitatively 

very similar to that produced by the single-channel survey, having P = 0.836 and 

Σ = 0.794 (Figure 9b). This survey design contains approximately the same number of 

measurements as the dipole-dipole survey, but it can be collected in 60% of the time 

while producing a superior image (with S = 0.629, P = 0.825, Σ = 0.785; c.f. Figure 2c 

and d). In the second case, the MCCR algorithm took 251 s to produce the 98-

command survey. This gave S = 0.751 (Figure 9c), and an inverted image with 

P = 0.845 and Σ = 0.809 (Figure 9d). This survey contains 980 measurements, but it 

can be collected in the same time as the dipole-dipole survey and produces a superior 

image than either the dipole-dipole or the 58-command survey. The actual times taken 

to measure the data with the various arrays were: 13 minutes for the dipole-dipole 

survey; 78 minutes for the SC survey; 8 minutes for the 58-command MCCR survey; 

and 13 minutes for the 98-command MCCR survey. 

To use the MCCR surveys in the field, we rearranged the order of the 

commands using the simulated annealing approach described in section 4. The 

distribution of C-P separations before and after reordering are shown in Figure 10a 
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and b for the 58-command and 98-command surveys respectively. In each case 

Q = 500 iterations were used as with the single channel survey. This took 0.16 s for 

the 58-command survey, reducing the cost function from 24.08 to 3.13 and increasing 

the minimum C-P separation from 1 command to 6 commands (Figure 10a). For the 

98-command survey reordering took 0.42 s, reducing the cost function from 49.51 to 

6.40 and increasing the minimum C-P separation from 1 command to 5 commands 

(Figure 10b). For comparison, the sorting and reversal method of Loke et al. (2010a) 

produced cost function values of 8.81 for the 58-command survey and 23.88 for the 

98-command survey, and in both cases several C-P separations of 1 command 

remained after reordering. 

The effects of rearranging the commands to avoid polarisation effects are 

demonstrated in Figure 11. The data were collected for both surveys in their original 

orderings and their rearranged orderings. In addition, reciprocal data were collected 

for each survey in single channel mode (note that these single channel reciprocal 

surveys were arranged to avoid polarisation effects in the same manner as described 

in section 4; the issue of producing multi-channel reciprocal surveys will be discussed 

in the conclusion). The results of the 58-command survey in its original ordering are 

shown in Figure 11a and c (reciprocal error distribution and inverted image 

respectively). As with the original single channel survey the data are strongly affected 

by electrode polarisation, leading to many large reciprocal errors and poor 

convergence of the inverted data (RMS misfit = 26.2%). By contrast the reordered 58-

command survey has a reciprocal error distribution (Figure 11b) very similar to that 

of the reordered single channel survey (Figure 8a), and also produces a similar 

inverted image (Figure 11d) with the same RMS misfit = 1.2%. A detailed 

comparison of this image with the reordered single channel image (Figure 8b) reveals 
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that the contrast of the features in the multi-channel case is very slightly lower than in 

the single channel case, as would be expected since the average model resolution is 

lower for the 58-command survey than for the single channel survey. However, the 

improvements over the dipole-dipole image are very similar (see discussion of Figure 

8). 

The results for the 98-command survey are very similar; before reordering 

many of the reciprocal errors are high (Figure 11e) and the inverted image is poor 

(Figure 11g) with a large RMS misfit = 24.2%. After reordering, the reciprocal errors 

(Figure 11f), inverted image (Figure 11h) and RMS misfit (1.3%) are similar to the 

reordered single channel data. In this case comparison with the single channel image 

suggests that the feature contrasts are marginally higher, which is consistent with the 

higher average model resolution. Again all the previously observed improvements 

over the dipole-dipole image are present. 

6 Incorporating data noise estimates 

Once the errors caused by electrode polarisation had been minimised, the 

remaining levels of noise in the data were very low (the majority of the recorded 

reciprocal errors were <1%). This was due partly to imposing a maximum geometric 

factor on the configurations used in the survey design scheme (Kmax), partly to the 

isolated rural location of the site, and partly to the low contact resistances (typically 

below a few hundred ohms) when the data were collected in December 2010. While a 

limiting Kmax has been used successfully to reduce noise in real data in previous 

studies (Stummer et al. 2004; Loke et al. 2010a), a more sophisticated approach is to 

weight the data according to the error distribution (Blome et al. 2011). The expression 

for the linearised model resolution in eq. (2) then becomes 
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where Wd is the square-root of the a priori data covariance matrix (Miller & Routh 

2007). We assume that the data are uncorrelated and contaminated by Gaussian noise 

with a voltage dependent standard deviation (Friedel et al. 2003). Since the subsurface 

resistivity distribution is assumed to be homogeneous at the design stage, the noise 

profile can be described by  
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where ρa is the apparent resistivity, ε is a constant background relative error level, K is 

the geometric factor and Kc is a characteristic geometric factor above which the data 

are predominantly random. Transforming to logarithmic data, l = ln ρa, the noise 

profile becomes  
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In the standard formulation of the inverse problem, the ith diagonal entry of Wd is 

then simply 1/δli, where i labels the data. 

To illustrate the effects of incorporating the noise distribution, we used the 

forward model shown in Figure 2b to generate synthetic data contaminated by noise 

as per eq. (4) with ε = 0.015 and Kc = 3.1×105 m. These parameters were 

characteristic of the errors in dipole-dipole monitoring data recorded at the landslide 

site in September 2010 when noise levels were significantly elevated due to higher 

contact resistances caused by the preceding dry summer. To compare the results of the 

dipole-dipole survey, the original CR survey and a new data-weighted CR survey, it 

was necessary to ensure that the same level of regularisation was applied (Blome et 

al. 2011). To this end, we scaled the data weighting by ln(1 + εmod) so that, for data 
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with noise levels greater than a specified cut-off (εmod), the diagonal entries of Wd 

became ln(1 + εmod) / δli. The cut-off level was chosen to represent the level of 

modelling errors in the inversion (due to e.g. the finite discretisation of the differential 

equations and the approximation of the boundary conditions), and was set to 

εmod = 0.01. Any data with noise levels below εmod can be considered to be effectively 

equally precise with respect to the inversion and their corresponding diagonal entries 

of Wd are set to 1 (this does not occur in this synthetic example, but is relevant in the 

following field data example). 

Using this data weighting, we recalculated the relative model resolution 

distributions for the dipole-dipole and original CR surveys (shown in Figure 12a and 

c). The resolution values are reduced in comparison with the equivalent noise-free 

plots shown in Figure 2c and e. This effect is more pronounced at greater depth, 

which is due to the decrease in data weighting with increasing geometric factor. The 

average resolution values decreased from S = 0.629 to S = 0.512 for the dipole-dipole 

survey and from S = 0.717 to S = 0.548 for the CR survey. We also ran the CR 

algorithm using the scaled data weighting to produce a data-weighted CR (DWCR) 

survey, which produced the relative model resolution plot shown in Figure 12e with 

an average resolution S = 0.617, greater than either the dipole-dipole or CR surveys. 

The DWCR survey contained configurations with significantly lower geometric 

factors than the other surveys (see Table 1) and therefore its resulting data had lower 

levels of noise. 

Using the same noise profile, ten different noise-contaminated data sets were 

produced for each survey design. Representative inversions of a noisy data set for 

each survey are shown in Figure 12b (dipole-dipole), Figure 12d (CR) and Figure 12f 

(DWCR). It is clear that the dipole-dipole and CR survey images have been adversely 
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affected by the addition of noise, which has given rise to small scale artefacts and has 

impaired the recovery of the geometry and resistivity contrast of the blocks in 

comparison to the noise-free images, especially at depth. The average image quality 

measures for the noisy dipole-dipole data across the ten data sets have decreased to 

P = 0.760 ± 0.007, Σ = 0.727 ± 0.008 compared with P = 0.825, Σ = 0.785 for the 

noise-free image. Similarly the noisy CR images had P = 0.761 ± 0.011, 

Σ = 0.722 ± 0.011 compared with previous values of P = 0.837, Σ = 0.794. By 

contrast, the DWCR images are much less affected by the added noise. While the 

resistivity contrasts of the deeper blocks are not as quite as well recovered as in the 

noise-free cases, the images have few noticeable artefacts and the geometries of the 

blocks are more accurately recovered. The image quality measures are also 

significantly greater than for the noisy dipole-dipole or CR images (P = 0.811 ± 

0.003, Σ = 0.767 ± 0.002). Lastly, the average RMS misfit error for the DWCR data 

was only 1.5%, compared to 2.7% for the dipole-dipole and 4.0% for the CR data. 

Generally, while all the noise-contaminated images are reduced in quality compared 

to Figure 2, the degradation has been minimised for the DWCR survey by 

incorporating the data-weighting into the survey design algorithm. 

We also applied the DWCR algorithm to real data gathered at the landslide 

site in May 2011. At this time contact resistances were still low, with the exception of 

one electrode whose contact resistance rapidly increased during data collection. Data 

were initially obtained for the dipole-dipole and CR survey designs, and the noise 

levels were assessed from the reciprocal error estimates. These were fitted to a model 

noise distribution with ε = 0.0015 and Kc = 1.6×106 m, which was used to design a 

DWCR survey as was done for the synthetic data above. The range of geometric 

factors and data weights for each survey are given in Table 2. 
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The model resolution distributions for the real dipole-dipole, CR and DWCR 

surveys are shown in Figure 13a-c. As with the synthetic data example, the model 

resolutions for the dipole-dipole and CR surveys (S = 0.618 and S = 0.683 

respectively) were reduced in comparison with the noise-free examples. The model 

resolution for the DWCR survey was greater at S = 0.711. During data collection with 

these surveys we noted that the reciprocal errors of measurements involving the 

electrode at 123.5 m were increasing rapidly and that this was distorting the noise 

distributions. The electrode was found to have developed a high contact resistance, 

and any measurements involving it were removed from the data. This was taken into 

account when processing the reciprocal errors and when fitting the ε and 

Kc parameters to the noise distribution. The reciprocal error distributions, with the 

high contact resistance electrode excluded, are shown in Figure 13d-f for the three 

surveys. They demonstrate that the dipole-dipole data have the lowest overall noise 

levels and that the CR data have the highest, with the DWCR noise levels in between. 

This is consistent with the distributions of geometric factors in Table 2. The 

characteristics of the inverted images are consistent with the dipole-dipole and CR 

images obtained from the December 2010 data (Figure 8); the dipole-dipole image 

(Figure 13g) has failed to resolve the SSF/RMF boundary, but it is more clearly 

apparent in the CR and DWCR images (Figure 13h and i). Also, the resistivity 

contrasts in the CR and DWCR images are also somewhat greater than those in the 

dipole-dipole image. Since the overall noise levels are low, there are no obvious 

noise-induced artefacts in the CR image as there were in the synthetic example, and 

hence the CR and DWCR images are extremely similar. In this case, the quantifiable 

improvement resulting from using the data-weighted survey design is that the RMS 

misfit error between the inverted and measured data is reduced from 1.1% for the CR 
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survey to 0.9% (the same as for the dipole-dipole survey). These results demonstrate 

that, with both the synthetic and real data, using data weighting has enabled the 

optimisation algorithms to produce surveys which maintain image resolution in the 

presence of noise while reducing data errors and inversion misfit levels.  

7 Conclusions 

Synthetic model studies, in this work and others, have shown that optimal 

survey design algorithms for resistivity imaging produce significantly better image 

resolution than standard surveys. But if such surveys are to be applied practically in 

the field, considerations other than just maximising the predicted image resolution 

must be taken into account. In this paper we have addressed the problems of avoiding 

electrode polarisation effects, making efficient use of parallel measurement channels, 

and making optimal measurements in noisy environments. We demonstrated our 

methods using synthetic and real data from survey designs generated by the “Compare 

R” algorithm, although the solutions we have presented should be easily adaptable to 

other optimal design methods. 

To eliminate electrode polarisation effects, we implemented a general method 

to reorder arbitrary resistivity imaging arrays. Using a random array as a test case, we 

designed a simulated annealing scheme to maximise the separation in time between 

electrodes being used to transmit current and measure potential, hence minimising 

electrode polarisation. Our results showed that polarisation errors can be effectively 

eliminated from real data measured using optimised surveys in either single- or multi-

channel acquisition modes.  

We implemented multi-channel optimisation by adapting the original 

algorithm to design surveys sequentially by multi-channel commands instead of by 
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single channel electrode configurations. This introduces additional constraints to the 

design process: all configurations in a given command share the same pair of current 

electrodes; adjacent configurations share a common potential electrode; and no 

potential electrode can occur more than once in a given command. The resulting 

model resolution distributions and inverted images were nearly as close to optimal as 

those produced by the single channel surveys. Critically the acquisition of real data 

using these arrays is an order-of-magnitude faster than in single channel operation, 

making the multi-channel survey designs better suited to monitoring dynamic 

subsurface processes on rapid timescales. 

To account for the effects of noise on image resolution, we weighted the data 

using a simple noise model consisting of a constant background noise level and a term 

dependent on the geometric factor of the measurement. This caused the optimisation 

algorithm to preferentially select measurement configurations with lower geometric 

factors, and hence higher return voltages and lower susceptibility to noise. Results 

from synthetic and real data showed that, in the presence of noise, this resulted in 

better image resolution and improved agreement between the measured and inverted 

data.  

When using data weighting, it is important to have an accurate model of the 

noise profile; too much damping reduces the contrast in the image while too little 

gives rise to artefacts (Labrecque et al. 1996), both situations that at least partially 

negate the demonstrated advantages of using optimised surveys. We made the 

simplifying assumption of a homogeneous half-space resistivity to model the 

distribution of noise, thereby allowing us to express the noise as a function of 

geometric factor rather than voltage. Using a more accurate resistivity distribution 

when calculating the model resolution has been shown to have little effect on the 
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performance of the type of optimisation algorithms discussed in this paper (Stummer 

et al. 2004). However, prior knowledge of the resistivity distribution could be used to 

calculate the expected voltages for given measurement configurations and hence 

weight them more accurately in the optimisation. This could further improve results 

for some of the field examples given in this paper, where the near-surface resistivities 

vary by an order-of-magnitude. 

Another consideration, which we have not addressed in this paper, is how to 

design a multi-channel survey whose reciprocal configurations can also be measured 

efficiently in multi-channel operation. One of the advantages of the dipole-dipole 

survey is that its reciprocal measurements can be organised to make as efficient use of 

multiple acquisition channels as the normal measurements. In this study we had to 

gather all corresponding reciprocal data for our optimised multi-channel field 

examples in single-channel mode. Reciprocal measurement pairs are particularly 

useful for assessing noise distributions, transient data errors and problematic 

electrodes. Unlike repeat measurements, they can also identify systematic errors such 

as electrode polarisation (Labrecque et al. 1996). While noise distribution models 

could be determined by measuring the potential across a given bipole for a range of 

injection currents, care would have to be taken to obtain data over a variety of 

positions and depths of investigation. Problematic electrodes might be identified by 

contact resistance measurements, and polarisation effects can be minimised using the 

techniques described in this paper. But even in combination, these alternative methods 

do not have the desirable property of measuring the levels of both random and 

systematic noise in the actual data used in the inversion. Therefore a substantial 

challenge for future work to address is the efficient multi-channel measurement of 

forward and reciprocal data in optimised ERT survey design. 
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Finally, in this paper we have been predominantly interested in designing 

surveys for general use (e.g. when little or no prior information is available). Hence 

we used a homogeneous half-space model for calculating the sensitivities and noise 

models, and aimed to maximise the relative model resolution evenly across the image 

space. In future work we will study optimisation for time-lapse monitoring, which 

will incorporate prior estimates of the subsurface resistivity distribution, more 

accurate noise models, and will focus the optimisation on regions of the subsurface 

where significant changes are occurring. 
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Table 1. Geometric factors (K) and data weights for synthetic data using a noise model with ε = 0.015, 
Kc = 3.1×105 m. 

 

K Dipole-dipole CR DWCR 
position K (m) Weight K (m) Weight K (m) Weight 

Min 90 0.66 45 0.66 45 0.66 
Quartile 1 716 0.58 895 0.56 851 0.57 
Median 3134 0.40 5014 0.32 1680 0.49 
Quartile 3 9401 0.22 24661 0.11 2403 0.44 
Max 39396 0.07 39396 0.07 5014 0.32 

 
 
 
Table 2. Geometric factors (K) and data weights for real data using a noise model with ε = 0.0015, 

Kc = 1.6×106 m. 

 

K Dipole-dipole CR DWCR 
position K (m) Weight K (m) Weight K (m) Weight 

Min 90 1.00 45 1.00 60 1.00 
Quartile 1 716 1.00 895 1.00 895 1.00 
Median 3134 1.00 5014 1.00 3581 1.00 
Quartile 3 9401 1.00 24661 0.59 11482 1.00 
Max 39396 0.39 39396 0.39 15343 0.90 
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Figure 1. Optimisation performance in terms of average relative model resolution S for three variants 

of the CR algorithm compared with the single step algorithm. 
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Figure 2. a) Model resolution distribution R for the comprehensive measurement set. b) Forward 

model used to generate synthetic data. c) Relative model resolution Rr for the dipole-dipole 
survey. d) Inverted resistivity image from dipole-dipole data. e) Relative model resolution 
Rr for the CR survey. f) Inverted resistivity image from CR data. Also shown are average 
resolution values S and correlation and structural similarity coefficients (P and Σ). 

 



 40 

 
 

Figure 3. Model resolution distributions for a) the dipole-dipole survey and b) the CR survey. The 
dashed lines indicate the ends of the linear electrode array. The “outer-space” regions 
extend by four electrode spacings beyond the dashed lines.  
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Figure 4. Distributions of reciprocal errors for a) the dipole-dipole survey and b) the CR survey 
before rearrangement to avoid polarisation effects. The resulting resistivity images and 
RMS misfit errors are shown in c) and d) respectively. 
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Figure 5. a) Costs of rearranging a random survey as a function of iteration for three minimisation 
strategies. b) Resulting distributions of C-P separations. 
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Figure 6. Minimum cost function values achieved using reversals (blue squares), moves (red circles) 
and in combination (black crosses). The error bars show the standard error in the means. 
Note that the length of a reversed/moved section excludes/includes the first command 
respectively. 
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Figure 7. Distribution of C-P separations for the CR survey, before and after rearrangement using 

simulated annealing. 
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Figure 8. a) Distributions of reciprocal errors for the CR survey before (grey) and after (black) 
rearrangement to avoid polarisation effects. The resistivity image from the reordered CR 
survey and its RMS misfit error are shown in b) with the equivalent results of the dipole-
dipole survey shown in c) for comparison. The inferred boundaries between the Whitby 
(WMF), Staithes (SSF) and Redcar (RMF) formations are shown by dashed white lines. The 
main scarp and slipped Whitby material are indicated by black arrows. North is indicated by 
grey arrows. 
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Figure 9. a) Rr distribution for the 58-command multi-channel MCCR survey. b) Inverted resistivity 
image from 58-command MCCR data. c) Rr distribution for the 98-command multi-channel 
MCCR survey. d) Inverted resistivity image from 98-command MCCR data. Also shown 
are average resolution values S and correlation and structural similarity coefficients (P and 
Σ). 

 



 47 

 
 

Figure 10. Distribution of C-P separations for a) the 58-command and b) the 98-command MCCR 
surveys, before and after rearrangement using simulated annealing. 
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Figure 11. Distributions of reciprocal errors for the 58-command MCCR survey a) before and b) 
after rearrangement to avoid polarisation effects. The resulting resistivity images and 
RMS misfit errors are shown in c) and d) respectively. Equivalent results for the 98-
command MCCR survey are shown in e)-h). 
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Figure 12. a) Data-weighted relative model resolution distribution Rr for the dipole-dipole survey. b) 
Representative inverted resistivity image from noisy synthetic dipole-dipole data. c) Data-
weighted Rr distribution for the original CR survey. d) Representative inverted resistivity 
image from noisy CR data. e) Data-weighted Rr distribution for the data-weighted DWCR 
survey. f) Representative inverted resistivity image from noisy DWCR data. Also shown 
are average resolution values S and estimated correlation and structural similarity 
coefficients (P and Σ, averaged over ten images). 
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Figure 13. a)-c) Data-weighted relative model resolution distributions Rr for the dipole-dipole, 
original CR and data-weighted DWCR surveys. Also shown are average resolution S 
values. d)-f) Reciprocal error distributions for dipole-dipole, CR and DWCR data. g)-i) 
Inverted resistivity images and RMS misfit errors from dipole-dipole, CR and DWCR 
data. 

 


