nerc.ac.uk

The fate of N-15 added to high Arctic tundra to mimic increased inputs of atmospheric nitrogen released from a melting snowpack

Tye, A.M.; Young, S.D.; Crout, N.M.J.; West, H.M.; Stapleton, L.M.; Poulton, P.R; Laybourn-Parry, J.. 2005 The fate of N-15 added to high Arctic tundra to mimic increased inputs of atmospheric nitrogen released from a melting snowpack. Global Change Biology, 11 (10). 1640-1654. https://doi.org/10.1111/j.1365-2486.2005.01044.x

Full text not available from this repository. (Request a copy)

Abstract/Summary

Increases in the long-range aerial transport of reactive N species from low to high latitudes will lead to increased accumulation in the Arctic snowpack, followed by release during the early summer thaw. We followed the release of simulated snowpack N, and its subsequent fate over three growing seasons, on two contrasting high Arctic tundra types on Spitsbergen (79°N). Applications of 15N (99 atom%) at 0.1 and 0.5 g N m−2 were made immediately after snowmelt in 2001 as either Na15NO3 or 15NH4Cl. These applications are approximately 1 × and 5 × the yearly atmospheric deposition rates. The vegetation at the principal experimental site was dominated by bryophytes and Salix polaris while at the second site, vegetation included bryophytes, graminoids and lichens. Audits of the applied 15N were undertaken, over two or three growing seasons, by determining the amounts of labeled N in the soil (0–3 and 3–10 cm), soil microbial biomass and different vegetation fractions. Initial partitioning of the 15N at the first sampling time showed that ∼60% of the applied 15N was recovered in soil, litter and plants, regardless of N form or application rate, indicating that rapid immobilization into organic forms had occurred at both sites. Substantial incorporation of the 15N was found in the microbial biomass in the humus layer and in the bryophyte and lichen fractions. After initial partitioning there appeared to be little change in the total 15N recovered over the following two or three seasons in each of the sampled fractions, indicating highly conservative N retention. The most obvious transfer of 15N, following assimilation, was from the microbial biomass into stable forms of humus, with an apparent half-life of just over 1 year. At the principal site the microbial biomass and vascular plants were found to immobilize the greatest proportion of 15N compared with their total N concentration. In the more diverse tundra of the second site, lichen species and graminoids competed effectively for 15NH4-N and 15NO3-N, respectively. Results suggest that Arctic tundra habitats have a considerable capacity to immobilize additional inorganic N released from the snow pack. However, with 40% of the applied 15N apparently lost there is potential for N enrichment in the surrounding fjordal systems during the spring thaw.

Item Type: Publication - Article
Digital Object Identifier (DOI): https://doi.org/10.1111/j.1365-2486.2005.01044.x
Programmes: BGS Programmes > Sustainable Soils
ISSN: 1354-1013
Date made live: 01 May 2012 15:32 +0 (UTC)
URI: https://nora.nerc.ac.uk/id/eprint/17940

Actions (login required)

View Item View Item

Document Downloads

Downloads for past 30 days

Downloads per month over past year

More statistics for this item...