Data fusion for reconstruction of a DTM, under a woodland canopy, from airborne L-band InSAR
Rowland, Clare S. ORCID: https://orcid.org/0000-0002-0459-506X; Balzter, Heiko. 2007 Data fusion for reconstruction of a DTM, under a woodland canopy, from airborne L-band InSAR. IEEE Transactions on Geosciences & Remote Sensing, 45 (5). 1154-1163. https://doi.org/10.1109/TGRS.2007.893565
Before downloading, please read NORA policies.
|
Text
IEEE_2007_paper_for_NORA.pdf Download (966kB) |
Abstract/Summary
This paper investigates the utility of different parameters from polarimetric interferometric synthetic aperture radar (InSAR) data for the identification of ground pixels in a woodland area to enable accurate digital terrain model (DTM) generation from the InSAR height of the selected ground hit pixels. The parameters assessed include radar backscatter, interferometric coherence, surface scattering proportion (based on Freeman–Durden decomposition), and standard deviation of the interferometric height. The method is applied to Monks Wood, a small seminatural deciduous woodland in Cambridgeshire, U.K., using airborne E-SAR data collected in June 2000. The 1428 variations of SAR-derived terrain models are validated with theodolite data and a light detection and ranging-derived DTM. The results show that increasing the amount of data used in the DTM creation does not necessarily increase the accuracy of the final DTM. The most accurate method, for the whole wood, was a fixed-window minimum-filtering algorithm, followed by a mean filter. However, for a spatial subset of the area using the $upsilon_{3}$ backscattering coefficient to identify ground pixels outperforms the minimum filtering method. The findings suggest that backscatter information may often be undervalued in estimating terrain height under forest canopies.
Item Type: | Publication - Article |
---|---|
Digital Object Identifier (DOI): | https://doi.org/10.1109/TGRS.2007.893565 |
Programmes: | CEH Programmes pre-2009 publications > Biogeochemistry > CC01B Land-surface Feedbacks in the Climate System > CC01.5 Datasets for land-surface science |
UKCEH and CEH Sections/Science Areas: | Harding (to July 2011) |
ISSN: | 0196-2892 |
Additional Keywords: | polarimetric interferometric synthetic aperture radar (PolInSAR), vegetation, digital terrain model (DTM), ancillary data, interferometry, polarimetry |
NORA Subject Terms: | Ecology and Environment Earth Sciences Data and Information Electronics, Engineering and Technology |
Date made live: | 09 Jan 2008 12:03 +0 (UTC) |
URI: | https://nora.nerc.ac.uk/id/eprint/1754 |
Actions (login required)
View Item |
Document Downloads
Downloads for past 30 days
Downloads per month over past year