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ABSTRACT 
 
The River Kennet in Southern England shows a clear diurnal signal in both 
temperature and dissolved oxygen concentrations through the summer months. The 
water quality model QUESTOR was applied in a stepwise manner (adding modelled 
processes or additional data) in order to simulate the flow, temperature and dissolved 
oxygen concentrations along a 14 km reach. The aim of the stepwise model building 
was to find the simplest process-based model which simulated the observed behaviour 
accurately. The upstream boundary used was a diurnal signal of hourly measurements 
of temperature and dissolved oxygen. In the initial simulations, the amplitude of the 
signal quickly reduced to zero as it was routed through the model; a behaviour not 
seen in the observed data. In order to keep the correct timing and amplitude of 
temperature a heating term had to be introduced into the model. For dissolved oxygen, 
primary production from macrophytes was introduced to better simulate the oxygen 
pattern. Following the modifications an excellent simulation of both temperature and 
dissolved oxygen was possible at an hourly resolution. It is interesting to note that it 
was not necessary to include nutrient limitation to the primary production model. The 
resulting model is not sufficiently proven to support river management but suggests 
that the approach has some validity and merits further development. 
 
Keywords: Modelling, QUESTOR, Dissolved Oxygen, Temperature, Kennet. 
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1. INTRODUCTION 

 

Temperature and dissolved oxygen (DO) are both fundamentally important to the 

biological health of rivers, and therefore to the delivery of the Water Framework 

Directive objectives to enhance and maintain the quality of European waters. Many 

species are tolerant only of specific temperature ranges (Coutant, 1977) and the River 

Continuum Concept (Vannote et al., 1980) states that variations in daily and seasonal 

water temperatures are important factors in determining the distribution of aquatic 

organisms. Detailed reviews of the current state of research into river temperatures 

has been published elsewhere (Webb et al., 2008). The specific topic of thermal 

regimes of rivers has also been recently reviewed (Caissie, 2006).  In this latter 

publication, the main drivers of the thermal regime were grouped into in four classes; 

atmospheric conditions, topography, stream discharge and stream bed. This review 

also described attempts to model water temperature using regression, stochastic or 

deterministic approaches. Briefly, regression models usually establish a relationship 

with air temperature, although they sometimes also include stream flow. These 

models work well for monthly and weekly data, but much less well for daily data and 

are unsuitable for sub-daily data (Webb et al., 2008). Stochastic models usually split 

the modelling into two components; one for the seasonal changes and the other for 

short term changes, again air temperature is the usual explanatory variable. They are 

generally applied to predict weekly or daily temperature variations. Deterministic 

models are based on considerations of the energy fluxes which contribute to the heat 

balance of the river. They are more able than the other methods to simulating sub-

daily data and can also be applied to multiple sites along river systems when 

incorporated into river flow models (Cox and Bolte, 2007).  
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Dissolved Oxygen is an important indicator of river health and used by regulators as 

part of the classifications for good chemical status (e.g.UK Technical Advisory Group 

on the Water Framework Directive, 2008). The overall level of oxygen in a river is a 

balance between reaeration at the water surface and loss of oxygen in satisfying 

chemical and microbial oxygen demands in the water column or from the river bed. 

Superimposed on this is a diurnal pattern due to primary production and respiration of 

green plants either fixed to the bed or floating in the river (Edwards and Owens, 1965; 

O'Connor and Di Toro, 1970; Odum, 1956). This pattern can be enhanced by the 

temperature dependence of some of the processes involved in the DO cycle 

(Loperfido et al., 2009). All these processes have been included in models (reviewed 

in Cox, 2003b) and many models have been developed based on these methods 

(reviewed in Cox, 2003a).  

 

Despite this long-standing theoretical understanding of the diurnal DO curve, there 

have been relatively few published papers describing modelling of short term DO 

variations. Studies have looked at using models to derive rates of photosynthesis, 

respiration and reaeration by fitting models to diurnal DO curves (Chapra and Ditoro, 

1991; Hornberger and Kelly, 1975; Williams et al., 2000). A later modelling study 

using QUAL2E found that a dynamic simulation of DO diurnal variation in the River 

Oona in Northern  Ireland gave good agreement on pattern and timing but over 

predicted the amplitude of the signal (Shi et al., 2003). A study of the South Umpqua 

River, Oregon, USA used the QUAL2Kw model to set nutrient limits necessary to 

manage diurnal variations in pH and DO (Turner et al., 2009). Another recent study 

used a modification of the model of Butcher and Covington (1995) to investigate the 
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controls on reaeration and net primary production by examination of diurnal DO 

signals combined with diurnal temperature patterns (Loperfido et al., 2009). 

 

In this paper the model QUESTOR (Boorman, 2003b) is applied in a stepwise manner 

(process complexity and additional data were added sequentially to the model) to 

simulate the flow, temperature and DO concentrations along a stretch of a chalk 

stream in Southern England. As will be seen, a clear diurnal pattern was observed at 

both ends of the model reach; the aim of this study was to test whether this signal was 

propagated through the study reach, or whether in-stream processes were required to 

maintain this variability.  

 

2. METHODS 

 

2.1 Study Site 

 

The Kennet is a tributary of the River Thames that flows for 40 km from Avebury in 

the west to its confluence with the Thames at Reading in the east. The catchment area 

above the confluence with the Thames is 1200 km2  (Neal et al., 2000), comprising 

permeable Chalk (80%) with rural headwaters, but with some urban development 

along the valley. The mean daily flow at the lowest downstream site (catchment area 

1033 km2) is 9.65 m3/s and on an annual basis river flow accounts about 38% of the 

catchment rainfall (Marsh and Hannaford, 2008). 

 

This study focuses on the upper Kennet from Clatford just north of Marlborough to 

the Environment Agency gauging station at Knighton some 14 km downstream 
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(Figure 1). This section of the river has received extensive study related to monitoring 

the effects of fitting phosphorus removal technology to the sewage treatment plant 

(STP) at Marlborough (Jarvie et al., 2004; Neal et al., 2000; Wade et al., 2002). This 

is the only STP that discharges to the study river section over which  mean flow 

increases from 0.87 m3/s at Malborough to 2.56 m3/s at Knighton with two significant 

tributaries, the River Og and the River Aldbourne with mean flows of 0.31 m3/s and 

0.21 m3/s respectively (Marsh and Hannaford, 2008). 

 

Figure 1  

 

The general water quality of the River Kennet has been discussed in detail elsewhere 

(Jarvie et al., 2002; Neal et al., 2000; Neal et al., 2002a) and only a brief overview is 

given here. The river water quality is of a typical calcium bicarbonate type because of 

the high base flow contribution from the calcite rich Chalk. The soluble reactive 

phosphorus is typically 80 μg P/l rising slightly below the Marlborough STP to about 

100 μg/l (this value was about 500 μg/l before the start of P removal from the effluent 

(Neal et al., 2010)). Nitrate values decline along the study reach from about 28 mg 

NO3/l to 18 mg NO3/l. Dissolved oxygen values are on average around saturation but 

there is a considerable daily fluctuation from around 50% saturated in the morning to 

140% saturated in the evening (Neal et al., 2002a; Williams et al., 2000). This 

variation is particularly noticeable during the summer when biological activity is high. 

Daily temperatures show a similar variability and values are between 10 and 19 ºC 

during the summer and between 5 and 10 ºC in the winter. 
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Flynn et al. (2002) describe the macrophyte and periphyton characteristics of a 50m 

reach of the River Kennet within the study area. They note that macrophytes, mainly 

Ranunculus, dominate during the spring and summer months in terms of biomass, 

with periphitic communities becoming relatively more abundant in the autumn. This 

is explained by the Ranunculus being able to re-grow early in the season from its 

perennial root system, whereas periphytes take longer to re-establish.  

 

It should be noted that the Kennet is a highly managed river with river levels 

maintained by a series of weirs and sluice gates and in-stream and bank-side 

vegetation cut, with the primary aim of providing a recreational fishery.  

 

 

2.2 Water Quality Data used for modelling 

 

For the purpose of this study the important data were DO and temperature data 

collected at 15 minute intervals. These data were electronically logged using a 

“Hydrolab” multiparameter water quality monitoring system (Omnidata Systems Ltd, 

UK). Dissolved oxygen was determined by a Clark-type sensor with a highly sensitive 

gas transfer membrane. Temperature was measured using a thermistor. Two systems 

were used alternately in the field. These were interchanged at weekly intervals after 

cleaning and recalibration. Full details of the procedures used are given by Neal et al 

(2002b).  

 

2.3 Description of Model 
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The modelling software used for this study was QUESTOR (Eatherall et al., 1998) 

which provides the modelling framework for a one dimensional in-stream water 

quality model. The model can be tailored or developed to suit the application, for 

example, by changing the modelled variables or the algorithms by which processes 

are represented. The basic version models flow, ammonium, ammonia, nitrate, pH, 

DO, biochemical oxygen demand and any additional conservative determinands 

(Boorman, 2003b). Because of the need within this study to model within-day 

changes of DO and temperature, an enhanced version of the QUESTOR model was 

used that was developed for an European Commission funded project CHESS 

(Boorman, 2003a). The principle additions were the inclusion of primary production 

and heat transfer sub-models (Boorman, 2003a).  

 

The algorithms used to represent the modelled determinands are similar to those used 

in a number of in-stream water quality models. They represent the dominant processes 

affecting the determinands modelled but include empirical terms and coefficients that 

must be set by calibration. The full set of equations used within the basic QUESTOR 

model is given elsewhere (Boorman, 2003b; Eatherall et al., 1998), so only those 

pertinent to the modelling of DO and temperature will be given here. 

 

Within QUESTOR the river is divided into a number of reaches from the upstream 

boundary to the end of the modelled section. The initial selection of reaches is based on 

the location of  confluences, diffuse (catchment) sources, discharge points, abstraction 

points, monitoring sites, and weirs. Once this has been done, long reaches, say those 

greater than 10km, can be sub-divided. The flow out of a reach is calculated based on a 
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mass balance of river flows into the head of the reach plus contributions from point 

sources and diffuse sources minus abstractions (equation 1). 

 

c) - (1 
Q - Q = 

dt
dQ

τ
i          Equation 1 

        

 

where, Q is the flow out of the reach (m3/s), Qi is total flow into the reach (m3/s), t is 

the time (days) and τ is a time constant representing the average retention time in the 

reach given by L/(bQc), L is length of reach (m), b and c are constants. For chemical 

determinands a mass balance is also performed for a reach, but there are additional 

terms to allow for removal or generation of the chemical species within the reach and 

its interactions with other determinands. 

 

The heat model used within QUESTOR is driven by measured incoming solar 

radiation and an outgoing radiation flux based on water body temperature.  
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where T is the temperature of the out flowing water (oC), Ti is the temperature of the 

water inputs (oC), ki is an incoming radiation factor, Rs is the incoming solar radiation 

( W/m2) and ko is an outgoing radiation factor.  
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For DO equation 3 was used in which DO is the DO concentration leaving the reach 

(mg/l), DOi is the input DO concentrations (mg/l), W is the aerating effect of a weir 

(calculated from an empirical relation based on weir type and drop), P is the increase 

in DO from photosynthetic processes (mg/l), R is the loss of DO due to respiration 

(mg/l), kben is the benthic respiration rate (1/day), d is the mean depth of the reach (m), 

krea is the aeration coefficient at the water surface, dependent on flow velocity, depth 

and temperature, OCS is the DO concentration at saturation, dependent on 

temperature (mg/l), NH4 is the concentration of ammonium in the water column, knit is 

the rate parameter for complete nitrification (1/day) which is multiplied by a factor to 

account for the stoichiometry of the reaction, BOD is the biochemical oxygen demand 

of the water column (mg/l) and kbod is the rate parameter determining the loss of DO 

as biochemical oxygen demand decays. 

 

BOD  todue lossBOD - 

zero) > (DOion nitrificat  4.57- 

surfaceat  reaerationDO)(OCS- + 

demandoxygen  benthicDO/d - 

 productionprimary  mfroon contributinet RP-+ 

transport W)+ DO - (DO 1 = 
dt
DO d

4

bod

nit

rea

ben

i

k

NHk

k

k

τ

Equation 3 

 

 

 

Rates of respiration and photosynthesis are based on equations in the form 

 

iiii ctorLimitingFawthRateMaximumGroBiomassP   =    Equation 4 
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and 

iiii FactornRespiratiowthRateMaximumGroBiomassR  =    Equation 5 

in which the subscript i refers to the different primary production communities. The 

model can represent three such communities, i.e. macrophytes, benthic algae and 

phytoplankton, and each of these differs in the way in interacts with its environment 

(Table 1). Examples of these differences are: macrophytes and benthic algae are not 

transported through the channel, whereas phytoplankton are; benthic algae and 

phytoplankton obtain nutrients from the water, whereas macrophytes can also use 

nutrients in the river bed; and the light conditions relate to different parts of the water 

column, and the air above it. 

 

Limiting factors in the photosynthesis equation are based on the assumption that the 

maximum growth rate can only be achieved under optimal conditions of nutrient 

availability and lighting. For nutrients, i.e. nitrogen and phosphorus, it is assumed that 

as the nutrient concentration decreases so does the growth rate, whereas for light it is 

assumed that both more and less than an optimal value will limit growth. Of course 

primary production can itself change the light regime: for example, emergent 

macrophytes can shade the whole water body, while phytoplankton can limit light 

penetration through the water column.  Temperature also influences both 

photosynthesis and respiration. 

 

The other quantities required in equations 4 and 5 are the biomasses of each 

community. Accounting for biomass requires not only estimates of photosynthesis, 

respiration, and where appropriate transportation, but also an estimate of the death 
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rate for each community. The model assumes that the death rate is also represented by 

the limiting factors, i.e. as the limiting factors approach zero the death rate increases. 

 

Of course modelling primary production processes and communities is not just a 

question of representing the effects on DO. The growth requires nutrients which must 

be taken up and returned to the water column or bed, as appropriate, and death of 

organic plant matter contributes to the BOD. 

 

It should be clear that to include primary production in a realistic way introduces a 

great deal of complexity to the basic water quality used within QUESTOR. Because 

of this complexity some in-stream water quality models, such as QUASAR 

(Whitehead et al., 1997), which was the starting point for the development of 

QUESTOR, estimate photosynthesis and respiration based on pre-defined values of 

biomass, as represented by Chlorophyll-a concentration.  

 

Problems of complexity also meant that in developing a biomass growth model for the 

CHESS project as referenced above, it was not possible to make a realistic 

implementation of the complete primary production model outlined above because 

insufficient data were available to attempt calibration and validation. Instead the 

model was used in an indicative way to show how algal blooms may change under 

possible future climatic conditions (Boorman, 2003c). However, the CHESS 

implementation of the QUESTOR model has recently been tested and applied to 

investigate methods to suppress phytoplankton blooms in the River Ouse and this has 

increased confidence in the model equations (Hutchins et al., 2010). 

 



U:\quality\questor\kennet\kennet DO paper v7  
 

25 January 2012 12

The sub-daily data available for the River Kennet allows some testing of the model 

formulated within the CHESS project, although as will been seen this is limited to 

supporting the general approach rather than an attempt at validation. The approach 

adopted was to simulate in turn flow, temperature and DO. At each stage the 

questions to address by comparing model simulations with observed data are: 

 Are model inputs adequately described? 

 Are errors in the simulation random effects or systematic? 

 Are model simulations improved by adding additional processes? 

 

2.4 Boundary Conditions, Inputs and Model Parameter Values 

The model was run for the period 1 July 1998 to 31 December 1999 for the stretch of 

river from Clatford to Knighton. Hourly flow data were available for the gauging 

station at Marlborough just downstream of Clatford (Figure 1) and this was used as 

the input to the upstream end of the model. Hourly data were also available for the 

River Og, River Aldbourne and the Marlborough STP. Flow data for the same time 

period were also available close to the end of the modelled section (Knighton, Figure 

1), which allowed the flow balance to be checked, and a check to be made on the 

dynamic response of the simulations. 

 

Hourly average data for DO and temperature were obtained from the 15-minute 

Hydrolab data at Clatford and these was used as the model input data. Water quality 

data for all the other inputs along the modelled reach were also interpolated to give 

data at hourly intervals. The DO and temperature output from the model could be 

compared with observed Hydrolab data at Mildenhall just downstream of 
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Marlborough STP and at Ramsbury upstream of Knighton. Solar radiation data were 

available from a solarimeter placed adjacent to the Hydrolab at Mildenhall. 

 

3. MODEL APPLICATION AND RESULTS 

 

3.1 Flow 

 

The first stage in the model application was to represent flow. An initial model used 

measured flows from the tributaries and discharges as inputs; there were no 

significant abstractions to include. The three tributaries represent the Rivers Kennet, 

Og, and Aldbourne. The last of these enters the Kennet just above the flow gauging 

station at Knighton, which was used to assess model performance. The success of a 

model of this type depends both on the calibration of the flow routing parameters, and 

on the proportion of the total inflow to the river that is represented by the measured 

inflows. The resulting simulation indicated that there was a significant 

underestimation of the flow at Knighton. 

 

Examination of the catchment areas contributing to the measured tributary inflows 

suggested five additional surface water tributaries should be added. The flows from 

these were scaled from the closest gauged tributary using the ratio of the topographic 

catchment areas. Including these tributaries improved the flow simulations but there 

remained an underestimation throughout the modelled period of approximately 1m3/s. 

The difference was ascribed to a direct groundwater contribution along the length of 

the modelled river stretch. Ten identical groundwater elements were added along the 

modelled river, each making a flow contribution that has an annually variation from 
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0.08 m3/s in October and November to 0.15 m3/s in February. The inclusion of these 

additional flow elements and calibration of the flow routing parameters resulted, in an 

excellent flow simulation at Knighton (Nash-Sutcliffe efficiency of 0.99). 

 

3.2 Temperature 

 

For those tributaries with observed flow data, temperature data were also available. 

These data were also used to represent the temperature of the ungauged tributaries. 

The groundwater flow elements were assumed to be at a constant temperature of 

10oC, the approximate average of shallow groundwater in temperate regions such as 

the South of England (Hellawell, 1988; Schurch and Buckley, 2002). With the inputs 

described in this way the model was run assuming that heat was conservative. 

 

The resulting model simulations showed that the diurnal variations present in the 

input at the top of the river had been reduced as the simulation progressed 

downstream, and by the end of the modelled stretch had gone. This is in contrast to 

the clear diurnal signal seen in the observed data at Ramsbury, the lowest site on the 

river for which hourly temperature data were available (Figure 2). The observed data 

revealed that the amplitude of diurnal variation was not constant, and also that there 

was some variation of the baseline temperature. 

Figure 2 

 

These problems were resolved by including the heat model described above. This 

required radiation data, which were available from a site adjacent to the river at 

Mildenhall for the periods July 1998 to March 1999 and May 1999 to September 
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1999. The model required the calibration of the incoming radiation factor, kin and the 

outgoing radiation factor ko (Equation 2) that control the gain and loss of heat. The 

simulation achieved by this model was remarkably good, with the variability of 

diurnal variation and change in baseline being very well represented (Nash-Sutcliffe 

efficiency = 0.85). This is illustrated for July 1999, shown in Figure 2, which shows 

the clear signal of the radiation, and its variation on an hourly and daily basis, in both 

the simulated temperature and the observed data.  

 

3.3 Dissolved Oxygen 

 

In the initial model of the River Kennet in which no primary production and 

consequent respiration is included, DO is only affected by the exchange of oxygen 

across the water surface. This process drives DO towards 100% saturation. As with 

temperature, the boundary conditions at the top of the modelled reach led to a 

simulation in which the initial diurnal variation in dissolved oxygen was reduced as 

the simulation progressed downstream, and aeration introduced only minor changes in 

DO. The observed data revealed that diurnal variations occurred throughout the 

network, and again implied an inadequacy in the model. 

 

Primary production is an obvious process that could cause the type of observed 

variation in DO. It is known to occur within the real river, yet is not included in the 

model. The above description of the primary production model in QUESTOR noted 

that to include a realistic model introduces a great deal of complexity. The simplest 

form was to introduce a submerged macrophyte model with no transport, no nutrient 

limitation (i.e. the supply of nutrients from the bed is taken to be plentiful), and 
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dependent on mean temperature and light conditions. Phytoplankton and algae 

continued to be excluded from the model. Macrophyte growth is known to occur 

throughout the modelled river stretch (Flynn et al., 2002) and this group drives the 

diurnal DO pattern for the River Kennet (Williams et al., 2000). Introducing even this 

simple model required many parameters to be set, but after some trial and error, a 

parameter set was found that gave excellent DO simulations. This is illustrated in 

Figure 3 for July 1999 which also shows that the observed DO appeared to drift from 

July 8th until it was reset on July 15th. During July, the model suggested that there was 

an increase in macrophytes of about 10%. The growth rate is seen to be driven by the 

radiation, with days of high and low productivity corresponding to high and low 

radiation inputs.  

Figure 3 

Because of the form of the equations 4 and 5 which control the primary production, 

the maximum growth rates, respiration factors and light factors values calibrated will 

depend on the biomass in the system, which in this case it not known. The biomass 

was set to an arbitrary figure and therefore, the model parameters, which were 

calibrated only against the DO concentrations, are themselves arbitrary. But the 

modelling demonstrates that primary production is an important process in 

maintaining the diurnal oxygen cycle along the river reaches, and that a set of model 

parameters can be found to match the inputs required to maintain the observed 

pattern. Given a set of observed macrophyte data along the river reach, this model 

could be parameterised to reproduce firstly macrophyte growth and then secondly the 

DO diurnal concentrations and these parameters would be better constrained and 

perhaps open to physical interpretation. 
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4. DISCUSSION 

 

A model has been implemented on the River Kennet that reproduced the flow, 

temperature and DO during a short period for which hourly data were available to 

drive the model and to assess its simulations. Certain components of this model have 

been widely used in previous applications and have been found to be reliable and 

robust in application (e.g. flow routing and aeration). This prior use may give some 

confidence in the further use of the model. However, as noted previously (Anderson 

and Bates, 2001; Boorman et al., 2007; Oreskes et al., 1994)  such model applications 

should not be considered as validation of the model, but as a failure to invalidate it. 

 

Other aspects of the model have been used, tentatively, in previously model 

applications but without data to support their formulation or outputs. The data for the 

River Kennet provided some opportunity to explore the usefulness of the model to 

reproduce observed variations in temperature and DO. The step-wise approach to 

model building was based on a progression through the three variables, flow, 

temperature and DO, with complexity only being introduced to address shortcomings 

in the model simulations. However, the particular ways in which these problems were 

addressed were not the only available options and reviewing the alternatives is 

necessary. 

 

The initial flow simulations were found to underestimate the observed flow 

throughout the year. This points to a problem with the data, rather than model, since 

there is no possibility to create water within the model. The underestimate was 

corrected by adding additional surface and groundwater contributions. The 
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assumption in doing so is that all of the measured data are generally correct, and that 

the difference is the result of unmeasured contributions. While it is always wise to 

consider if the data used as model inputs are correct or not, it is more sensible to 

assume that, in the absence of other indications, all data are generally correct, rather 

than that any one data set contains all of the errors. 

 

However, it is easy to explore the alternative explanation, i.e. that one or more of the 

flow data sets are incorrect by progressing to the temperature and DO modelling 

without the extra surface and groundwater elements. This assumes that the input data 

are good but that the data from the downstream site at Knighton are wrong, and 

reduces the flow throughout the entire river. In such a model there remains the same 

problem with the temperature simulation (i.e. no diurnal variation after the first few 

reaches). A reasonable conclusion is that introducing the additional flow elements has 

not in itself led to the requirement to improve the simulation of temperature. So 

regardless of the action taken in response to the flow underestimation, there is the 

same need to improve the model’s simulation of temperature. 

 

To improve the temperature simulation a solar heating module was included that 

estimated heat gain from a local measurement of incoming solar radiation. This model 

proved very effective in estimating the diurnal temperature variation, and the longer 

term variability. An alternative method of introducing this sub-daily variability would 

have been to change the temperature of the flow inputs on an hourly basis. As noted 

above, to effect a correction throughout the whole network this would have to be 

made to the groundwater inputs, yet evidence suggests they should be reasonably 

uniform throughout the year (Hellawell, 1988) 
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Once the temperature simulation was improved attention turned to DO. A realistic 

simulation of diurnal variation of DO was achieved through the introduction of 

primary production. Without the primary production model the only sub-daily 

variability comes from the aeration at the river’s surface, which drives the DO content 

towards 100% saturation. The DO concentration corresponding to saturation is 

temperature dependent, with, over the normal range of temperatures found in UK 

rivers, higher saturation concentrations occurring at lower temperatures. Thus as the 

water temperature varies so does the DO concentration, with lower DO corresponding 

with higher temperature. Parameters in the model limit the rate at which this 

progresses and in fact the simulated variation in percentage saturation is from 89% to 

103%. 

 

It is interesting to compare the macrophyte growth model approach developed in this 

paper with the regression modelling of Flynn et al (2002). In the latter, regression 

equations were developed using a number of environmental variables (flow, radiation, 

sediment and phosphorus concentration) to predict the variability in different 

measures of the macrophyte and periphyton communities. The best regressions, in 

terms of highest R2, linked biomass to flow rate (inversely) and Ranunculus growth to 

net solar radiation. Including measured soluble reactive phosphorus and suspended 

sediment did not add to the predictive ability of the regression models. Both of these 

independent variables (flow and radiation) are very much seasonal indicators, and 

highly correlated. In developing the macrophyte growth model in this application, 

radiation was also found to be essential, and the assumption of a plentiful nutrient 
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supply, i.e. there was no need to include a nutrient limitation term in the model, is 

supported by the regression modelling. 

 

It is interesting that nutrient limitation was not required in the simulation model. As 

described earlier the model code included nutrient limitation, but it wasn’t necessary 

to enable this addition complexity. This could be because the assumption that the 

primary production is mainly by macrophytes and that they have access to limitless, 

or renewed, nutrient resources is valid. but it may be the case that nutrient limitation 

was not important, but that this is the case only for the limited period of this 

simulation. Understanding this is crucial for river management since there is a 

widespread assumption that primary production is highly dependent on nutrient 

availability, and can be controlled by managing nutrient input to rivers, from both 

point and diffuse sources. 

 

While the above discussion makes the case that better process representation is the 

most reasonable way of explaining and improving the model’s representation of the 

real system it does not justify the exact form of the final model, or provide model 

parameters, that might be used elsewhere. The final form of the model as used in this 

study was the form that was just complicated enough to represent the available 

observed data. Considerable investigative fieldwork prior to an additional monitoring 

campaign would be required to justify it. For example, what evidence can be found to 

justify the added groundwater flows and their temperature regime; what programme 

of biomass sampling could be instigated to inform the macrophyte growth modelling 

(e.g. extending the sampling approach of Flynn et al (2002) from one site to the entire 

reach); and what data would help explore the issue of nutrient limitation.  



U:\quality\questor\kennet\kennet DO paper v7  
 

25 January 2012 21

 

Some  of these issues have been investigated in recent work with the QUESTOR 

model which suggests that the algal growth model can reproduce observations in the 

River Humber, UK (Hutchins et al., 2010); this supports (or at least does not 

invalidate) a different part of the primary production system of equations proposed. 

However, the work on the Humber, like that on the Kennet, uses available data 

opportunistically, and again highlights the need for purpose-specific data gathering. 

 

It is useful for water quality models to be able to simulate the diurnal pattern of 

oxygen and temperature variations in rivers, because biological systems are sensitive 

to these two factors. Concentrations of DO can go from levels that would qualify them 

has high quality water to levels that would be low quality waters within the space of 

one day (Neal et al., 1998; Williams et al., 2000). In the future it is possible that 

climate change will increase river temperatures, decrease the general levels of DO in 

rivers (Cox and Whitehead, 2009; Johnson et al., 2009; Whitehead et al., 2009) and 

increase phytoplankton levels (Hutchins et al., 2010) thus making the diurnal DO 

minima and the temperature maximums potentially even more important to 

understand. These diurnal changes could be controlled by light (Loperfido et al., 

2009) or by nutrient levels (Turner et al., 2009), appropriate use of models can 

provide information for river basin managers on which is appropriate in any given 

situation. 

 

5. CONCLUSIONS 
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The QUESTOR model has been applied to the a 14 km stretch of the River Kennet in 

a stepwise manner in order to achieve good quality simulation of the observed diurnal 

patterns of temperature and dissolved oxygen. These patterns were reproduced by 

introducing processes known to occur in the real world, i.e. a heating term for 

temperature and primary production and respiration terms for DO.  The need for 

addition model complexity has been based on a series of step-wise model experiments 

and a consideration, and dismissal, of alternative mechanisms to explain the observed 

variability.  

 

The resulting model is still very much a prototype that needs to be tested against other 

data sets and in other conditions. However the results obtained show promise in 

giving an insight into how flow, nutrient and radiation regimes combine to influence 

the growth of macrophytes. Such an insight can inform the future management of 

rivers, e.g. whether increased shading could be a local method of controlling 

macrophyte growth, and whether nutrient reduction will be effective in controlling in-

stream primary productivity. Understanding controls on primary production can make 

a significant contribution to the informed management of river systems and the 

objective of improving, or maintaining, healthy river ecosystems. 
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Figure Captions 
 
 
Figure 1 Location and main features of the modelled section of the River 

Kennet – Clatford to Knighton. GS = gauging station, STP = sewage 
treatment plant. 

  
 
Figure 2 Simulation of river water temperatures in the river Kennet during July 

1999 showing the temperature at the topmost modelled reach and the 
bottom modelled reach (Ramsbury) with and without the heating 
model. Observed data are shown for Ramsbury. The flat line from 21st 
to 29th is a period of missing input data. 

 
 
Figure 3  Simulated and observed dissolved oxygen concentrations at Ramsbury 

for on the River Kennet July 1999 with and without the macrophyte 
model implemented. The observed values from the 9th to the 15th show 
sensor drift. Data are missing from 21st to the 29th. 
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Table 1 Summary of the differences in the ways in which the three river 

primary production communities represented in QUESTOR interact 

with their environment. 

 

Interaction Macrophytes Benthic Algae Phytoplankton

Transport through river 

network 

No – only in extreme 

events. 

No – only in 

extreme events. 

Yes 

Temperature Air, water and bed. Water and possibly 

bed 

Water 

Light Above surface to bed. Bed Water column 

DO exchange Air and water Water Water 

Nutrient exchange Bed and water Water Water 

BOD on death Bed and possibly 

water 

Bed and possibly 

water 

Water 
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