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Abstract 17 

The perennial herb Meconopsis cambrica, a western European endemic, is the only 18 

European species of the otherwise Himalayan genus Meconopsis and has been 19 

interpreted as a Tertiary relict species. Using rbcL and ITS sequence variation, we date 20 

the split between M. cambrica and its sister clade Papaver s.str. to the Middle to Upper 21 

Miocene (12.8 My, 6.4-19.2 My HPD). Within M. cambrica, cpDNA sequence 22 

variation reveals the existence of two groups of populations with a comparable level of 23 

genetic variation: a northern group from Great Britain, the Massif Central, the western 24 

Pyrenees and the Iberian System, and a southern group from the central and eastern 25 

Pyrenees. Populations from the Cantabrian Mountains were found in both groups. Based 26 

on ITS sequence variation, the divergence between these two groups can be dated to 1.5 27 

My (0.4-2.8 My HPD), and the age of the British populations is estimated as 0.37 My 28 

(0.0-0.9 My HPD). AFLP results confirm the distinctive nature of the populations from 29 

Britain, the Massif Central and the central and eastern Pyrenees. These patterns of 30 

latitudinal variation of M. cambrica differ from patterns of longitudinal differentiation 31 

found in many other temperate species and imply glacial survival of the northern 32 

populations in northerly refugia. The primary differentiation into northern and southern 33 

cpDNA groups dates to near the onset of the Quaternary and suggests that an ancient 34 

phylogeographic pattern has survived through several glacial periods. Our data provide 35 

evidence that the species has persisted for a long period with a highly fragmented and 36 

probably very localized distribution. 37 

38 
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Introduction 39 

The phylogeographic analysis of widespread plant and animal species in the temperate 40 

regions of western Eurasia has resulted in the recognition of a pattern in which species 41 

generally have more genetic variation in the more southerly temperate regions than in 42 

the colder latitudes into which they expanded after the last Ice Age. Populations in the 43 

warmer parts of the temperate zone also tend to possess greater phylogeographic 44 

subdivision, arguing for the survival and divergence of taxa here through many Ice 45 

Ages and, in many species, for the presence of refugial sources for postglacial 46 

colonization (Hewitt 2004). Although the recognition of this pattern is based on a 47 

multitude of studies, important modifications have been suggested. It has been 48 

recognised that genetic structure at both the leading edge and the rear edge of 49 

populations is likely to have been shaped not only by Quaternary range shifts but also 50 

by other forces such as natural selection or hybridization (e.g. Eckert et al. 2008; Nieto 51 

Feliner 2011). In addition, the likely existence of ‘cryptic’ or ‘northerly’ refugia, mainly 52 

in Central and Eastern Europe, has recently been much discussed (Stewart & Lister 53 

2001; Bhagwat & Willis 2008; Birks & Willis 2008; Provan & Bennett 2008; Stewart et 54 

al. 2010). Despite the discovery of evidence for northern refugia, patterns observed in 55 

Europe are generally of longitudinal rather than latitudinal differentiation, and genetic 56 

differentiation in the north has most commonly been explained in the time-frame of Last 57 

Glacial Maximum (LGM) and subsequent range expansion from the south. Where 58 

substantial genetic differentiation between populations has been detected in regions 59 

north of hypothetical refugia, it has been interpreted as resulting from the existence of 60 

different phylogroups with a long history of isolation (Abbott et al. 2000; Brochmann et 61 

al. 2003).  62 
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Meconopsis cambrica (L.) Vig. is traditionally regarded as the only European 63 

species of an otherwise Himalayan genus. Although molecular analyses had shown that 64 

M. cambrica is sister to Papaver s.str. (excl. Papaver sects. Argemonidium, 65 

Californicum, Horrida and Meconella; see Kadereit et al. 1997) and not to Asian 66 

Meconopsis (Kadereit et al. 1997; Carolan et al. 2006), Kadereit et al. (1997) 67 

interpreted Meconopsis as paraphyletic in relation to a polyphyletic Papaver, and 68 

accordingly considered the European M. cambrica as a relict species of Tertiary times 69 

descended from a postulated widespread Eurasian Meconopsis. Their study made no 70 

attempt to estimate the age of M. cambrica. The natural distribution of M. cambrica 71 

comprises montane areas in Spain and France, and both lowland and upland areas in 72 

Great Britain and Ireland (Fig. 1; Tutin et al. 1993), but the species has become 73 

naturalized in parts of Central and Northern Europe (Jalas & Suominen 1991; Valtueña 74 

et al. 2011). The presence of M. cambrica in western Europe as a putative Tertiary relic 75 

is notable; the Tertiary relics of western Eurasia are concentrated in the Black Sea area 76 

(Milne & Abbott 2002) although there are other western European examples such as 77 

Borderea pyrenaica (Picó & Riba 2002), Ramonda myconi (Segarra-Moragues et al. 78 

2007) and Prunus lusitanica (Pulido et al. 2008; Calleja et al. 2009). Within Europe M. 79 

cambrica has an unusual distribution. It was classified by Finnie et al. (2007) in the 80 

Erysimum duriaei element of species which are concentrated in northern Spain, the 81 

Pyrenees, south-eastern France and the south-western Alps, but of the 140 species 82 

allocated to this element in their study only two (Arabis scabra, Meconopsis cambrica) 83 

extent north to Britain although another three are members of the small group of species 84 

which occur in Ireland but not in Britain.  85 

We chose M. cambrica to investigate whether a species of presumably great and 86 

pre-Quaternary age shows patterns of geographical differentiation that predate the LGM 87 
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and Holocene or even the onset of the Quaternary. In recent years some studies of 88 

Mediterranean tree species have suggested the existence of ancient patterns of 89 

differentiation (Petit et al. 2005; Grivet et al. 2006; Hampe & Petit 2007; Magri et al. 90 

2007). The persistence of traces of ancient differentiation was explained by three 91 

factors: 1) low rates of evolution as a consequence of long generation times in long-92 

lived species, 2) genetic stability without speciation maintaining species as relatively 93 

uniform, and 3) habitat stability because these species are distributed in the 94 

Mediterranean area where the climatic oscillations of the Quaternary were less severe 95 

than in higher latitudes of Europe (Hampe & Petit 2007). There have been very few 96 

studies which have examined the possibility that similar differentiation might be present 97 

in herbaceous perennials. In this paper we use different molecular markers (ITS, 98 

cpDNA, AFLP) and methodologies (maximum parsimony, Bayesian analysis) to (1) 99 

date the origin of M. cambrica and its diversification to test the hypothesis (Kadereit et 100 

al. 1997) of its Tertiary origin, and (2) reconstruct and date the phylogeographic history 101 

of the species in order to test whether ancient patterns of differentiation can be 102 

recognized or whether the species conforms to a pattern of southern survival and more 103 

or less recent northward expansion.  104 

Material and methods 105 

Species studied 106 

The winter-green perennial herb Meconopsis cambrica is classified by Preston & Hill 107 

(1997) as a species with an Oceanic Boreo-temperate range, but it might equally well be 108 

interpreted as an Oceanic Temperate species which extends into the boreal-montane 109 

zone, and the latter interpretation is followed here. Temperate species are those of the 110 

broad-leaved forest zone whereas boreal-montane species are those of the coniferous 111 
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forest zone. In continental Europe M. cambrica is most frequent in shady and humid or 112 

wet places, often close to streams and rivers, in beech (Fagus sylvatica) forests at 113 

altitudes between 700 and 1500 m (for details of the habitats in which the material for 114 

this study were obtained see Valtueña et al. 2011, Table 1). It may extend above the 115 

upper limit of beech woodland into the Pinus sylvestris zone and it is recorded at 116 

altitudes up to 2000 m in the western Pyrenees, reaching its upper limit on montane cliff 117 

ledges (Villar 1982, 1986). In Great Britain its occurrences lie outside the probable 118 

native range of beech, but the habitats are otherwise essentially similar. It is found in 119 

moist, mildly base-rich woodland on stream and valley sides at low altitudes (<250 m), 120 

and at higher altitudes (up to 600 m) on rocky ground by upland streams and in tall-herb 121 

communities on base-rich rock ledges. Most of the associates at the montane sites we 122 

sampled were species with boreo-temperate and temperate ranges, although the sites are 123 

known for their arctic-montane flora. The deciduous woodland habitats are those of a 124 

temperate species but the extension above this zone indicates boreo-temperate affinities; 125 

clearly these categories are in any case continua and some species do not fit neatly into 126 

them. The problem of assessing the phytogeographical affinities of the species are 127 

compounded by its relict distribution, the total disafforestation of the upland landscapes 128 

in which it grows in Britain and the blurring of vegetation zones in highly oceanic 129 

climates (Tuhkanen 1987). In cultivation in Britain the species can be a “persistent and 130 

troublesome weed” and naturalized populations are well established, especially by roads 131 

and streams, although Halliday (1997) suggested that they are “seldom far from 132 

houses”. This suggests that its native range is not limited solely by climatic factors, and 133 

this will hamper any attempt to model its climatic requirements. 134 

Sample sites 135 
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We sampled (6-) 9-15 individuals from 17 populations (206 individuals) of M. cambrica 136 

across its entire native range except Ireland (Fig. 1; Table 1). In Great Britain, we 137 

included only samples from populations which in an earlier analysis (Valtueña et al. 138 

2011) had been identified as comprising native plants without introgression from 139 

introduced genotypes. Papaver atlanticum and P. bracteatum cultivated in the Botanic 140 

Garden of Mainz University were used as outgroup species in the analyses based on 141 

DNA sequences (see below). These two species were chosen to represent Papaver s.str. 142 

which is sister group to M. cambrica (Kadereit et al. 1997; Carolan et al. 2006). 143 

DNA extraction and sequencing 144 

Genomic DNA was extracted using the NucleoSpin Plant DNA extraction kit 145 

(Macherey-Nagel, Düren, Germany) following the manufacturer’s protocol. The nuclear 146 

ribosomal Internal Transcriber Spacer region (including ITS1, 5.8S and ITS2) was 147 

amplified using primers ITS-A and ITS-4 (White et al. 1990), the chloroplast psbJ-petA 148 

region was amplified using primers psbJ and petA (Shaw et al. 2007), and the 149 

chloroplast trnQ-5’rps16 region was amplified using primers trnQ
(UUG)

 and rps16x1 150 

(Shaw et al. 2007). Amplification and sequencing was carried out as described in Zhang 151 

et al. (2007). The number of samples per population is given in Table 1. Sequences 152 

were edited and manually aligned using the program SEQUENCHER vs. 4.8 153 

(GENECODES Corp., Ann Arbor, Michigan, USA). All sequences were submitted to 154 

GenBank (see supplementary material, Table S1). 155 

AFLPs 156 

AFLP products were obtained following the methodology described in Valtueña et al. 157 

(2011). The number of samples per population is given in Table 1. Error rates were 158 

calculated using replicated extractions of 14 samples. 159 
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Molecular Dating  160 

In order to obtain calibration points in the Old World clade (OWC) of Papaveraceae 161 

subf. Papaveroideae (containing Papaver, Meconopsis, Stylomecon and Roemeria; 162 

Kadereit et al. 1997), the split between this clade and the New World clade of the 163 

subfamily (containing Argemone, Romneya, Canbya, Platystemon, Meconella and 164 

Hesperomecon) had to be dated in a first step. To do this, rbcL sequences of 87 taxa 165 

representing all families of Ranunculales, major clades of the Eudicots (selected from 166 

Savolainen et al. 2000) as sister to Ranunculales, and 19 species belonging to 14 genera 167 

of subf. Papaveroideae (supplementary material, Table S2) were obtained from 168 

GenBank, except the M. cambrica sequence that was obtained following the protocol 169 

described in Zhang et al. (2007). For the estimation of divergence times, a clock-170 

enforced tree was calculated with the appropriate model of DNA substitution for the 171 

inference of phylogenetic relationships under ML estimated using Modeltest 3.06 172 

(Posada & Crandall 1998). The GRT+I+G model selected by the Akaike Information 173 

Criterion (AIC; Posada & Buckley 2004) was chosen [settings: Lset Base=(0.2725 174 

0.1846 0.2239) Nst=6 Rmat=(1.6329 3.3564 0.4514 1.2378 4.4616) Rates=gamma 175 

Shape=0.7817 Pinvar=0.4847]. Maximum Likelihood heuristic searches and bootstrap 176 

analyses were performed in PAUP* 4.0b10 (Swofford 2003) with 100 replicated 177 

heuristic searches, 10 random addition sequences, tree-bisection-reconnection (TBR) 178 

branch swapping, best only and MULTREES on. The program Modeltest 3.06 (Posada 179 

& Crandall 1998) was used to perform a likelihood ratio test (Felsenstein 1988) 180 

comparing the log-likelihood scores of trees with and without enforcing a molecular 181 

clock. There was a significant difference between the two scores at the 0.01 level 182 

indicating that a molecular clock was rejected. 183 



9 
 

Bayesian Evolutionary Analysis by Sampling Trees BEAST v1.6 by Drummond 184 

& Rambaut (2007) was used to estimate the age of the OWC, using a fossil assigned to 185 

Papaveroideae and published group ages of eudicots for calibration. Appropriate taxon 186 

groups to define calibration nodes and to set prior distributions for these nodes were 187 

defined in Bayesian Evolutionary Analysis Utility BEAUti v1.6 (implemented in 188 

BEAST, Drummond & Rambaut 2007). Two points of calibration were selected, the 189 

root of Eudicots and the root of subf. Papaveroideae. Age estimates obtained from 190 

molecular studies indicate that Eudicots are 123-139 million years (My) old (Bell et al. 191 

2010), so the root of this clade was set to a normally distributed prior with a mean of 192 

130 My and a standard deviation of 3 My. The oldest known fossil of Papaveroideae, 193 

Palaeoaster, has been assigned to the Latest Cretaceous (74.5-64.5 My, Smith 2001). 194 

Accordingly, subf. Papaveroideae was defined as monophyletic and its root was set with 195 

a log normal prior distribution and a zero offset of 74.5 My. The zero offset sets a strict 196 

minimum age of a clade. The substitution model parameters were the same as used in 197 

the ML analyses, and the gamma distribution was modeled with six categories. A 198 

relaxed uncorrelated lognormal clock was used and a birth and death prior was set for 199 

branch lengths. Other priors were in default settings and the Markov Chain Monte Carlo 200 

(MCMC; Drummond et al. 2002) was initiated on a random starting tree. Runs were 201 

performed with 20,000,000 iterations and a sample frequency of 1,000. The first runs 202 

were used to examine the MCMC performance, and operators were adjusted as 203 

suggested by the output analysis. Finally, four BEAST runs of 10,000,000 generations 204 

and a sample frequency of 1000 were performed. After assessing convergence in Tracer 205 

v1.5 (Rambaut & Drummond 2007) as described in the BEAST manual (Drummond et 206 

al. 2007) the four tree files were combined with LogCombiner v1.6 (Drummond & 207 

Rambaut 2007) with a burnin of 10% to reach satisfactory Effective Sample Sizes (ESS) 208 
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and the maximum clade credibility tree was summarized in TreeAnnotator v1.6 209 

(Drummond & Rambaut 2007) with a posterior probability (PP) limit of 0.8 and 210 

summarizing mean node heights. The split between the two clades of subf. 211 

Papaveroideae was estimated to 52 My (73-31 My), and the crown group age of the 212 

OWC to 26 My (44-10 My; supplementary material, Fig. S1). 213 

For estimating the age of different nodes in the M. cambrica lineage, an ITS data 214 

set of 68 samples of subf. Papaveroideae (including the eight different sequences of M. 215 

cambrica, see Table 1) and three outgroup taxa (supplementary material, Table S3) was 216 

analyzed with BEAST (Drummond & Rambaut 2007). The OWC was defined as 217 

monophyletic, its stem group age was set to a normally distributed prior with a mean of 218 

52 My and a standard deviation of 10 My, and its crown group age was set to a 219 

normally distributed prior with a mean of 26 My and a standard deviation of 8 My. The 220 

remaining settings and the calculation procedure were the same as in the rbcL data set 221 

described above. 222 

Phylogenetic analysis, network construction and phylogeography 223 

Phylogenetic relationships were analyzed using Maximum Parsimony for the ITS data 224 

set and a combined matrix of the ITS, psbJ-petA and trnQ-5´rps16 data. An inversion of 225 

11bp in position 242-252 of psbJ-petA was coded as a single character and gaps were 226 

considered as a fifth state. Searches for the most parsimonious trees were executed in 227 

PAUP* v4.0b10 by a heuristic search with tree-bisection-reconnection (TBR) branch 228 

swapping on best only and MULTREES on. Papaver atlanticum and P. bracteatum 229 

were used as outgroup species. Branch support was assessed with 1000 bootstrap (BS) 230 

replicates with 10 random taxon additions each and TBR and MULTREES on. 231 

Consistency and retention indices were calculated to assess the amount of homoplasy 232 
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present in the data set. Additionally, a Bayesian analysis of both datasets was carried 233 

out using BEAST. The settings and the calculation procedure were the same as 234 

described above. 235 

The cpDNA data set (psbJ-petA, trnQ-5´rps16) was analyzed under statistical 236 

parsimony as implemented in the program TCS 1.21 (Clement et al. 2000) to estimate 237 

relationships among chloroplast haplotypes. The connection limit was 200 steps to 238 

include the outgroup taxa and gaps were coded as a fifth state. 239 

AFLP products were scored manually with GeneMarker 1.5 (GeneMarker, 240 

SoftGenetics, LLC) for the presence/absence of fragments between 70 and 450 bp in 241 

size. Fragments that could not be scored unambiguously were excluded. The resulting 242 

presence/absence (i.e. 1/0) matrix was used for further analysis. A mismatch error rate 243 

was calculated as the ‘number of genotype mismatches’ divided by the ‘number of 244 

replicate pairs’ and the ‘number of loci’ (Paun et al. 2008). 245 

Population genetic structure was analyzed using ‘Bayesian Analysis of 246 

Population Structure’ (BAPS, vers. 5.1; Corander et al. 2008). The procedure was run 247 

10 times for each value of K = 2-17 with 17 as the assumed maximum number of 248 

populations present in the sample. Admixture analyses (Corander & Marttinen 2006) 249 

were run with 100 iterations to estimate admixture coefficients for individuals, 200 250 

reference individuals from each population and 20 iterations to estimate admixture 251 

coefficients for reference individuals. To confirm groups found in the BAPS analysis, a 252 

Principal Coordinates Analysis (PCA), a non-hierarchical grouping technique without 253 

prior knowledge of the source location of the sampled individuals, was made with 254 

GenAlEx v.6.4 (Peakall & Smouse 2006). 255 
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GenAlEx v.6.4 (Peakall & Smouse 2006) was used to calculate different 256 

diversity parameters (number of fragments, number of private alleles, percentage of 257 

polymorphic loci and HE) at the population and group levels. Two groups levels were 258 

used in the analysis, the first using the six groups defined by the BAPS analysis and the 259 

second using the two main groups defined by the haplotypes (see below). POPGENE 260 

v.1.32 (Yeh & Boyle 1997) was used to calculate gene diversity (HS and HT) and 261 

genetic differentiation (FST, Weir & Cockerham 1984) at species and group level.  262 

Results 263 

Age of the Meconopsis cambrica lineage 264 

As mentioned above, the split between the two clades of subf. Papaveroideae was 265 

estimated to 52 My (73-31 My), and the crown group age of the Old World clade 266 

(Papaver, Meconopsis, Stylomecon and Roemeria; Kadereit et al. 1997) to 26 My (44-267 

10 My; supplementary material, Fig. S1). The BEAST chronogram of the ITS data set is 268 

shown in Fig. 2. The lineage of M. cambrica has maximum support (1.00 PP), and the 269 

stem group age of M. cambrica (node 1 in Fig. 2) was found to be 12.8 million years 270 

(My; 6.4-19.2 My 95% Highest Posterior Density confidence interval, HPD). In Fig. 2, 271 

the individuals from Great Britain were sister to the remaining individuals of the species 272 

(0.93 PP), and the age of this node (node 2) was determined as 1.5 My (0.4-2.8 My 273 

HPD). The crown group age of M. cambrica in Great Britain (node 3) was dated to 0.37 274 

My (0.0-0.9 My HPD). Considering that in the larger sample of M. cambrica for the ITS 275 

and cpDNA analyses the sister group relationship between British M. cambrica and the 276 

remainder of the species sampled was not identified (Fig. 3), we prefer to interpret the 277 

results cautiously and to accept the crown group age of M. cambrica in Great Britain 278 

(i.e. 0.37 My; 0.0-0.9 My HPD) as the estimated age of the British clade of the species.  279 
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Phylogeography and statistical parsimony 280 

The ITS region of M. cambrica was 649 to 650 bp long. The ITS alignment including 281 

the two outgroup species was 660bp long and contained 75 variable and 28 282 

phylogenetically informative positions. The length of the combined ITS, psbJ-petA and 283 

trnQ-5´rps16 sequences was between 1583 and 1585bp. The alignment including the 284 

outgroup species was 1607bp long and contained 124 variable and 44 phylogenetically 285 

informative positions.  286 

In the ITS analysis, the two individuals analyzed had the same ITS sequence in 287 

all populations except CA3 (with sequences B and C). Seven populations had identical 288 

sequences (A), one sequence (G) was shared by three populations, two sequences (B, F) 289 

were shared by two populations, and four sequences (C, D, E, H) were found in only 290 

one population (see Table 1). The topology of the MP tree and the BEAST tree (Fig. 291 

3A) was identical, and only three clades with high Bayesian support were identified and 292 

formed part of a large polytomy. Two of these clades comprised only two populations 293 

(IB2 and PY1; CA1 and one plant of CA3) and the third clade contained all four British 294 

populations. 295 

The topology of the trees obtained in the MP and the Bayesian analyses of the 296 

combined ITS-cpDNA dataset was essentially the same (Fig. 3B). In both analyses, the 297 

two clades defined by the two main haplotypes (see below) are weakly supported. In the 298 

Bayesian analysis (Fig. 3B, dotted line) the British clade is sister (PP 1.00) to a clade 299 

containing the Massif Central (MC1, MC2) and western Pyrenees (PY1, PY2) 300 

populations plus one Cantabrian population (CA2). These two clades together are sister 301 

to the Iberian System (IB1-3) populations. In the MP analysis, the clade containing the 302 
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British, Massif Central, western Pyrenees and Cantabrian populations was not resolved 303 

(Fig. 3B). 304 

The statistical parsimony analysis of the cpDNA data set yielded a single 305 

network with seven different haplotypes clustering in two main groups, henceforth 306 

called haplotype A and haplotype B (Table 1, Fig. 4). In addition to sequence variation, 307 

the two groups are defined by an inversion of 11 bp length in position 242-252 of psbJ-308 

petA. Haplotype A is present in the British Isles, Massif Central, western Pyrenees, 309 

Iberian System and one Cantabrian population, whereas haplotype B is found in the 310 

Cantabrian and central and eastern Pyrenean populations (Fig. 1). Haplotype A 311 

comprises three different haplotypes: A1, A2 and A3 (Fig. 4). A1 is most frequent and 312 

was found in British, Massif Central, one western Pyrenean and one Cantabrian 313 

population. A2 differs by two mutational steps from A1 and is limited to the Iberian 314 

System populations. A3 was only found in one western Pyrenean population. Haplotype 315 

B comprises four different haplotypes which differed by one to three mutational steps. 316 

The distribution of these haplotypes among populations is shown in Fig. 4. 317 

AFLP analysis 318 

The six AFLP primers generated 319 fragments with a percentage mismatch error rate 319 

of 1.17 ± 0.63. The mean number of fragments per individual was 201.4 ± 3.1 (range: 320 

195-213). The individual clustering BAPS analysis resulted in a best partition of K = 6 321 

(probability of the number of clusters 0.99, Fig. 5). These six clusters represent (1) two 322 

populations from the Cantabrian Mountains (CA1, CA2), (2) the remaining population 323 

from this area (CA3), (3) the western Pyrenees plus the Iberian System (PY1-2; IB1-3), 324 

(4) the central and eastern Pyrenees (PY3-5), (5) the Massif Central (MC1-2), and (6) 325 

Great Britain (GB1-4). In the admixture analysis all individuals were unambiguously 326 
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assigned to their respective group without any probability of being misplaced. The PCA 327 

analysis produced results largely congruent with the BAPS analysis. The first two axes 328 

(Fig. 6) provide a separation of populations which most closely resembles the BAPS 329 

analysis with K = 4; it shows a central and somewhat overlapping group of Cantabrian, 330 

Iberian and western Pyrenean populations which clearly differ from the distinctive 331 

populations in the central and eastern Pyrenees, Massif Central and Britain. The two 332 

Massif Central populations, although distinct from all others, do not appear to be closely 333 

allied. CA3 is separated from CA1-2 on the third axis, as in the BAPS analysis (K=6), 334 

but unlike that analysis the PCA splits the western Pyrenean plants (PY1-2) from 335 

remaining Cantabrian and Iberian populations (CA1-2, IB1-3).  336 

The results from the AFLP analyses at population level and cluster level are 337 

shown in Table 2. At population level, the number of fragments varied from 205 (MC2) 338 

to 227 (PY3). Five populations did not have any private alleles, and the maximum 339 

number of private alleles (four) was found in population GB4. The lowest percentage of 340 

polymorphic loci was 3.76 (GB2, IB1), and only three populations showed values >10 341 

(CA3, PY2, PY3). Expected heterozygosity varied from 0.012 (GB2) to 0.047 (PY3). 342 

The two Cantabrian clusters did not have any private alleles, and the largest number of 343 

private alleles (12) was found in the British cluster. The Iberian plus western Pyrenees 344 

and central and eastern Pyrenees clusters had similar values for the different parameters 345 

calculated and had the highest values for percentage of polymorphic loci and expected 346 

heterozygosity. In contrast to this, the Massif Central cluster had the lowest values for 347 

number of alleles, percentage of polymorphic loci and expected heterozygosity. The 348 

group including all populations with haplotype A had higher values in the number of 349 

alleles, number of private alleles and percentage of polymorphic loci than the group of 350 



16 
 

populations with haplotype B. However, expected heterozygosity was higher in the 351 

group of populations with haplotype B. 352 

Gene diversity and differentiation indices are shown in Table 3. The HT index 353 

varied between 0.044 (central and eastern Pyrenees cluster) and 0.027 (British cluster), 354 

and the HS index varied between 0.028 (Cantabrian and central and eastern Pyrenees 355 

clusters) and 0.017 (Massif Central cluster). The highest differentiation among 356 

populations within clusters was found in the Massif Central cluster (FST = 0.553) and 357 

the lowest in the British cluster (FST = 0.245). The group of populations with haplotype 358 

B had greater gene diversity and lower differentiation among populations than the group 359 

of populations with haplotype A (Table 3). 360 

Discussion 361 

Relationships and age of Meconopsis cambrica 362 

The sistergroup relationship between M. cambrica and Papaver s.str. found here (Fig. 363 

2) confirms earlier results by Kadereit et al. (1997) and Carolan et al. (2006). The split 364 

between M. cambrica and Papaver s.str. was dated to the Middle to Upper Miocene 365 

(12.8 My, 6.4-19.2 My HPD), confirming the Tertiary origin of M. cambrica suspected 366 

by Kadereit et al. (1997). Whereas Kadereit et al. (1997) assumed that the genus 367 

Meconopsis represented a paraphyletic base group which gave rise to a polyphyletic 368 

Papaver, recent ontogenetic studies (Kadereit & Erbar 2011) have shown that the style 369 

of M. cambrica is most likely to have originated from a stigmatic disc as found in 370 

Papaver and thus in parallel to the style found in the two other lineages of Meconopsis. 371 

We have discussed the taxonomic implications of these results elsewhere (Kadereit et 372 

al., in press). Within M. cambrica, the ITS analysis (Fig. 2) resolved only the British 373 

individuals as a clade with moderate support (PP 0.93). The crown group diversification 374 
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of the species was dated to 1.5 My (0.4-2.8 My HPD), and the diversification of the 375 

British populations to 0.37 My (0.0-0.9 My HPD). These dates indicate that the 376 

diversification of extant M. cambrica may have started near the onset (1.8 - 2.6 mya) of 377 

the Quaternary, and that the diversification of the British populations may have taken 378 

place in the second half of the Quaternary. However, the wide confidence intervals of 379 

our dates suggest that they should be interpreted very cautiously and they preclude us 380 

from explaining any cladogenetic event in terms of any particular palaeoclimatic or 381 

palaeogeographic scenario.  382 

Phylogeography of Meconopsis cambrica 383 

The analysis of cpDNA sequence variation revealed the existence of two major groups 384 

additionally supported by an 11bp inversion in the psbJ-petA region (Fig. 4). The first 385 

group, hereafter referred to as the northern group, includes all material from Great 386 

Britain, the Massif Central and the Iberian System together with two populations from 387 

the western Pyrenees and one population (CA2) from the Cantabrian Mountains. The 388 

second group, hereafter referred to as the southern group, is formed by three populations 389 

from the central and eastern Pyrenees and two populations (CA1, CA3) from the 390 

Cantabrian Mountains. This grouping is neither supported nor contradicted by the ITS 391 

data, which resulted in an essentially unresolved polytomy (Fig. 3A). When the split 392 

into the northern and southern groups is accepted as the primary split in the species, the 393 

age of this split is equivalent to the age of the crown group diversification of the species 394 

calculated on the basis of ITS sequence variation (Fig. 2), i.e. 1.5 My (0.4-2.8 My 395 

HPD). This age range, located around the onset of the Quaternary, falls into the same 396 

range as that estimated for Primula sect. Auricula (Zhang et al. 2004; Comes & 397 

Kadereit 2003). The primary split of M. cambrica into the northern and southern groups 398 

implies an identical age for these two groups. Considering that the two groups contain 399 
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broadly comparable levels of genetic variation (Northern group: 6 ITS sequences, 3 400 

haplotypes, 277 fragments and 44.83% PPL in 12 populations; Southern group: 4 ITS 401 

sequences, 4 haplotypes, 256 fragments and 34.48% PPL in 5 populations), this seems 402 

plausible. 403 

The latitudinal subdivision of M. cambrica into a northern and southern group, 404 

which probably originated near the onset of the Quaternary, with a northern group 405 

which is likely to have persisted the Quaternary glacials in northern latitudes (see 406 

below), represents an unusual phylogeographic pattern for a (more or less) temperate 407 

plant species. However, a similar pattern has been identified in Meum athamanticum 408 

(Huck et al. 2009), a species which, like M. cambrica, is found in the mountains of 409 

Europe rather than the Boreal zonobiome and also reaches its northern native limit in 410 

the British Isles.  411 

Bhagwat & Willis (2008) reviewed the traits of tree species with northerly 412 

refugia and concluded that they are cold-tolerant and have a present-day northerly 413 

distribution beyond 60˚ N, can reproduce vegetatively, are small-seeded and wind-414 

dispersed and are habitat generalists. Some of these characteristics fit some of the 415 

species for which evidence for northern refugia was first detected, such as Pinus 416 

sylvestris (Sinclair et al. 1999) and Picea abies (Lagercrantz & Ryman 1990). Apart 417 

from their possible cold-tolerance, neither Meconopsis cambrica nor Meum 418 

athamanticum have any of the ecological characteristics identified by Bhagwat & Willis 419 

(2008) for tree species with 'northerly' refugia. 420 

Northern group 421 

The northern group comprises 12 populations from essentially four different 422 

geographical regions. These are four populations from Great Britain, two populations 423 
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from the Massif Central, two populations from the western Pyrenees, and three 424 

populations from the Iberian System. The unexpected placement of one population from 425 

the Cantabrian Mountains in the northern group will be discussed further below. In the 426 

BAPS analysis of AFLP variation, Great Britain and the Massif Central were identified 427 

as separate groups, and the populations from the western Pyrenees and the Iberian 428 

System grouped together (Fig. 5).  429 

Apart from the fact that no admixture among these three groups could be 430 

detected in the AFLP data, there is evidence that the extant M. cambrica populations in 431 

the three areas are the result of a long history of independent evolution. Private AFLP 432 

fragments were found in all three regions (Great Britain: 12; western Pyrenees and 433 

Iberian System: 9; Massif Central: 4), the western Pyrenees and Iberian system 434 

populations are variable for cpDNA haplotypes (three) and ITS sequences (four), and 435 

the populations from Great Britain are variable for ITS sequences (two). These results 436 

are most surprising for the populations from Britain. Considering the presence of 12 437 

private AFLP fragments and two different ITS sequences in this group, and considering 438 

that the diversification of the British populations was dated to 0.37 My (0.0-0.9 My 439 

HPD), it seems likely that the ancestor(s) of the British populations survived one or 440 

several glacial cycles without any gene exchange with other groups of populations 441 

identified by us. Genetic variation in the native British populations as a result of 442 

hybridization with introduced material can be excluded on the basis of earlier findings 443 

by Valtueña et al. (2011) who found no evidence of hybridization in the four 444 

populations analyzed here.  445 

In situ survival of the ancestors of the extant British populations can be ruled 446 

out, as the sites in North Wales were north of the glacial limit at the LGM and M. 447 

cambrica is not a species which can have been expected to survive on the immediate 448 
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periphery of a glacial area. We therefore suggest that the British populations must have 449 

migrated in response to climate change to areas where no other populations of the 450 

species occurred. As Britain was contiguous with mainland Europe in glacial periods of 451 

low sea-levels, the refugial areas may have been located in areas which are now outside 452 

the current island of Britain. The northerly cryptic tree refugia postulated by recent 453 

authors (Stewart & Lister 2001; Bhagwat & Willis 2008, Provan & Bennett 2008), 454 

described by Birks & Willis (2008) as providing “adequate soil moisture, temperatures 455 

warm enough to permit tree growth, shelter from strong winds and an absence of 456 

permafrost and periglacial activity”, would also appear to offer potential refugia for the 457 

Tertiary relic M. cambrica. In the absence of any fossil evidence of M. cambrica it is 458 

impossible to identify the exact locations of such refugia, although Birks & Willis 459 

(2008) map possible sites for LGM tree refugia in Central and Eastern Europe in a 460 

broad latitudinal band centered on 50° N. The distinctness of the British populations in 461 

combination with their likely glacial history implies that the species has persisted for a 462 

long period with a highly fragmented and probably very localized distribution. Refugial 463 

areas around 50° N would still be considerably to the north of the extant Massif Central 464 

populations of the species which today are the nearest neighbours of the British 465 

populations, and would thus fit the hypothesis that the species has had a fragmented and 466 

localized distribution in the past. However, it must be admitted that there are potential 467 

problems in assuming that the history of M. cambrica can be interpreted in terms of its 468 

current ecology, as it appears to have a relict native distribution; the expansion of 469 

introduced populations in Britain contrasts with the behaviour of the native populations, 470 

which may be in long-term decline, and emphasizes our imperfect understanding of the 471 

factors limiting the current range.  472 

Southern group 473 
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The southern group comprises five populations from two different geographical regions. 474 

These are two populations from the Cantabrian Mountains and three populations from 475 

the central and eastern Pyrenees. In the BAPS analysis of AFLP variation (Fig. 5), the 476 

Pyrenean populations were identified as one cluster, but the material from the 477 

Cantabrian Mountains fell into two groups. In that analysis CA1 and CA2 grouped 478 

together, but CA3 formed a separate cluster. Interestingly, CA2 grouped with the 479 

northern group rather than with its near neighbours CA1 and CA3 in the southern group 480 

in the cpDNA analysis (Fig. 4). The lack of genetic homogeneity in the populations 481 

from the Cantabrian Mountains may imply episodes of dispersal and probably 482 

hybridization with Pyrenean plants. The three populations from the central and western 483 

Pyrenees contain seven private AFLP fragments, three different cpDNA haplotypes and 484 

one ITS sequence, and the populations from the Cantabrian Mountains contain two 485 

different cpDNA haplotypes (not considering CA2), three different ITS sequences but 486 

no private alleles. The differences between the Cantabrian and the western Pyrenean 487 

populations of M. cambrica supports the hypothesis, now generally accepted, that the 488 

Iberian peninsula provided multiple glacial refugia (or refugia within refugia) instead of 489 

a single large refugium (Gómez & Lunt 2007; Dubreuil et al. 2008). There is also 490 

growing evidence from phylogenetic studies that the Pyrenees did provide glacial 491 

refugia for temperate species, including Myodes glareolus (see below), the bushcricket 492 

Ephippiger ephippiger and humans (Deffontaine et al. 2009).   493 

Heterogeneity of the Pyrenean populations  494 

The grouping of the western Pyrenean populations and the populations from the Iberian 495 

System with the northern group and of the central and eastern Pyrenean populations 496 

with the southern group is a striking feature of the analysis (Figs 3B, 4). Differences 497 

between the western as opposed to the central and eastern parts of the Pyrenees are also 498 
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evident from other sources. First, present-day vegetation in the central and eastern 499 

Pyrenees is mainly coniferous forest whereas it is deciduous broad-leaved forest in the 500 

western Pyrenees (Lang 1994). Second, several taxa are known to grow either in the 501 

western (e.g., Soldanella villosa: Zhang et al. 2001) or in the central and eastern 502 

Pyrenees (e.g., Gentiana alpina: Hagen & Kadereit 2000; Primula hirsuta: Zhang et al. 503 

2004). This pattern is partially supported by the pattern of genetic differentiation in the 504 

widespread temperate forest mammal Myodes glareolus, in which Deffontaine et al. 505 

(2009) identified a Basque lineage in the NW Pyrenees (rather than the SW Pyrenees in 506 

which we sampled Meconopsis) as well as a more widespread Spanish lineage. 507 

However, other phylogenetic or phylogeographic analyses of multiple populations/taxa 508 

from across the Pyrenees (Reseda sect. Glaucoreseda: Martin-Bravo et al. 2010; 509 

Androsace halleri complex: Dixon et al. 2007) did not reveal the west vs. central/east 510 

pattern of relationships which we found, nor is it apparent in an analysis of plant 511 

species’ distributions at the European scale (Finnie et al. 2007). It seems possible that 512 

differences between these parts of the Pyrenees are the result of differences in their 513 

Quaternary history. Thus, the central and eastern Pyrenees probably were glaciated at 514 

least during the Last Glacial Maximum (LGM), but the western Pyrenees (and Iberian 515 

System) probably were not (Lang 1994). However, in view of the age estimate for the 516 

primary split within M. cambrica, the LGM may be irrelevant in explaining patterns of 517 

differentiation in Meconopsis.  518 

Conclusions 519 

The phylogeographic pattern found in M. cambrica – a latitudinal subdivision into a 520 

northern and a southern group – deviates strongly from patterns of longitudinal 521 

differentiation found in other widespread temperate species from western Eurasia. 522 

These latter patterns imply southern survival and northward expansion, although 523 
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'southern' has been pushed increasingly north by the detection of cryptic northerly 524 

refugia. Our data indicate the glacial or multiple-glacial survival of M. cambrica in 525 

area(s) north of the southern European refugia. They also indicate that the extant M. 526 

cambrica populations in these northern areas are the result of a long history of 527 

independent evolution probably through several glacial-interglacial oscillations. The 528 

differentiation of M. cambrica within the Iberian peninsula provides further evidence 529 

for multiple refugia in this area. Taken together, our results suggest that this Tertiary 530 

relict species has a long history as a localized plant with a fragmented distribution. 531 

Studies of other herbaceous perennials with disjunct distributions which span a wide 532 

latitudinal range are needed to establish whether this pattern is more widespread than is 533 

currently realised.  534 
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Figure Legends 698 

Fig 1 Native distribution (shaded area) and sampled populations of Meconopsis cambrica (abbreviations 699 

as in Table 1). The dotted line indicates the boundary between the northern and southern groups as 700 

defined by cpDNA sequences (squares: haplotype A, circles: haplotype B; see text for explanation). 701 

Populations belonging to the same group as defined in the AFLP analysis have the same colour. 702 

Fig 2 BEAST chronogram of subf. Papaveroideae based on ITS sequence variation. Posterior 703 

probabilities of clades are indicated above branches (only PP > 0.8). The 95% posterior density 704 

distribution of node ages is given in the node bars. Node bars are only given for branches with a PP > 0.8. 705 

The scale is in million years. Numbered nodes (1 - 3) are discussed in the text. 706 

Fig 3 MP tree of the ITS data set (A) and strict consensus MP tree of the ITS/cpDNA data set (B). Dotted 707 

lines show results obtained with BEAST. Bootstrap branch support >50% is indicated above and BEAST 708 

posterior probabilities >80% below branches. Abbreviations of samples as in Table 1. 709 

Fig 4 TCS statistical parsimony network of cpDNA haplotypes found in Meconopsis cambrica. Lines 710 

connecting haplotypes represent a single mutation with squares representing inferred mutational steps not 711 

observed in this study. Names of haplotypes and abbreviations of samples as in Table 1. The black arrow 712 

indicates the position of the 11 bp inversion (for explanation see text), circles sizes are equivalent to the 713 

number of populations where the haplotypes were found and the broken line indicates the connection to 714 

the outgroup species (Papaver atlanticum and P. bracteatum). 715 

Fig 5 Results of the BAPS analysis of the AFLP data set of Meconopsis cambrica from K= 3 to K = 6, 716 

admixture analysis for K=6 and best probability for clustering (below). Abbreviation of samples as in 717 

Table 1 and colours as in Figure 1. 718 

Fig 6 PCA analysis of the AFLP data set based on genetic distances. Percentage of total variance 719 

explained by the first two coordinates is shown on the respective axes. Sample abbreviations as in Table 720 

1. Different colours indicate the different geographical regions studied. 721 
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Table 1 Populations of Meconopsis cambrica studied. Population abbreviation (Pop), location, number of 

individuals used (N) in the ITS, petA/trnQ and AFLP analyses, ITS sequence type (seq.), cpDNA 

haplotype (hap.) and BAPS group (group) are indicated.  

Pop Location ITS  petA / trnQ  AFLP 

  N seq.  N hap.  N group 

CA1 Spain, Tejedo del Sil, Fontaninas River  2 B  1 B2  13 1 

CA2 Spain, Fresnedo, narrow mountain pass between 

Fresnedo and Paramo 2 A  1 A1  12 1 

CA3 Spain, Valle de Lago, beech forest 2 B,C  2 B1  15 2 

IB1 Spain, Valdezcaray, bank of mountain stream 2 A  1 A2  13 3 

IB2 Spain, Posadas, beech forest close to Oja River 2 F  1 A2  12 3 

IB3 Spain, Lugar del Río, Cardenas River 2 E  1 A2  11 3 

PY1 Spain, Urbasa, beech forest 2 F  1 A1  12 3 

PY2 Spain, Lizárraga, close to Lizárraga Port 2 D  1 A3  9 3 

PY3 Spain, Isaba, between Isaba and Zuriza 2 A  1 B4  12 4 

PY4 Spain, Bausen, beech forest in path to Serralonga 2 A  1 B1  14 4 

PY5 France, Le Rebenty River 2 A  1 B3  11 4 

MC1 France, D’Aubrac, beech forest close to Le Merdason 

River  2 A  1 A1  15 5 

MC2 France, Valle de Jordanne, road to Puy Mary 2 A  1 A1  12 5 

GB1 Great Britain, Coed Rheidol 2 G  1 A1  6 6 

GB2 Great Britain, Devil's Kitchen, Cwm Idwal 2 G  1 A1  14 6 

GB3 Great Britain, Cadair Idris, above Llyn Gafr 2 H  1 A1  12 6 

GB4 Great Britain, Aberedw woods 2 G  1 A1  13 6 
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Table 2 Number of alleles (NA), number of private alleles (NPA), percentage of polymorphic loci (PPL) 

and expected heterozygosity (HE) for all populations, the six groups obtained in the BAPS analysis and 

the two groups obtained in the analysis of cpDNA sequence data; population means in parenthesis.  

Population NA NPA PPL HE 

CA1 211 0 6.90 0.023 

CA2 212 0 8.15 0.032 

CA3 222 0 14.42 0.044 

IB1 206 1 3.76 0.013 

IB2 214 3 7.84 0.025 

IB3 216 1 6.58 0.015 

PY1 214 0 5.33 0.018 

PY2 225 2 12.85 0.042 

PY3 227 2 15.99 0.047 

PY4 218 1 8.46 0.021 

PY5 216 1 7.21 0.015 

MC1 207 0 5.64 0.020 

MC2 205 2 4.70 0.015 

GB1 221 2 9.09 0.029 

GB2 208 2 3.76 0.012 

GB3 213 1 6.58 0.019 

GB4 216 4 8.15 0.020 

BAPS cluster     

1 [Cantabrian 1] 216 (211.5) 0 (0.0) 11.91 (7.52) 0.040 (0.028) 

2 [Cantabrian 2] 222 (-) 0 (-) 14.42 (-) 0.044 (-) 

3 [Iberian + W Pyrenees] 240 (215.0) 9 (1.4) 23.20 (7.27) 0.049 (0.025) 

4 [Pyrenees] 240 (220.3) 7 (1.3) 22.26 (10.55) 0.050 (0.028) 

5 [Massif Central] 213 (206.0) 4 (1.0) 10.66 (5.17) 0.037 (0.017) 

6 [Great Britain] 242 (214.5) 12 (1.8) 21.63 (6.90) 0.034 (0.020) 

cpDNA groups     

Haplotype A 277 (213.1) 28 (1.5) 44.83 (6.87) 0.076 (0.022) 

Haplotype B 256 (218.8) 8 (0.8) 34.48 (10.60) 0.077 (0.030) 
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Table 3 AFLP gene diversity (HS, HT) and differentiation (FST) for the whole data set, the five BAPS 

groups with more than one population (numbered as in Table 1) and the two groups obtained in the 

analysis of cpDNA sequence data  

Data set HT HS FST 
Meconopsis cambrica 0.065 0.024 0.629 

BAPS cluster    

1 [Cantabrian group] 0.037 0.028 0.255 

3 [Iberian group] 0.041 0.025 0.390 

4 [Pyrenees group] 0.044 0.028 0.375 

5 [Massif Central group] 0.039 0.017 0.553 

6 [Great Britain group] 0.027 0.020 0.245 

cpDNA groups    

Haplotype A 0.054 0.022 0.602 

Haplotype B 0.061 0.030 0.512 
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Fig 1 732 
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Supplementary Material 

Table S1 Origin of material of Meconopsis cambrica and outgroup taxa studied, including population code 
(as in Table 1), source of plant material and GenBank accession numbers. 

Code Source 
GenBank accession number 

ITS psbJ-petA trnQ-rps16 
GB1 AOC, CDP, FJV JF774135 JF774097 JF774098 

GB2 CDP, FJV, TDD JF774136 JF774087 JF774088 

GB3 AOC, CDP, FJV, TDD JF774137 JF774081 JF774082 

GB4 CDP, FJV, RGW JF774138 JF774083 JF774084 

CA1 FJV JF774155 JF774113 JF774114 

CA2 FJV JF774156 JF774115 JF774116 

CA3 FJV JF774157 
JF774158 

JF774117 
JF774119 

JF774118 
JF774120 

IB1 FJV JF774150 JF774103 JF774104 

IB2 FJV JF774151 JF774105 JF774106 

IB3 FJV JF774152 JF774107 JF774108 

PY1 FJV JF774159 JF774121 JF774122 

PY2 FJV JF774160 JF774123 JF774124 

PY3 FJV JF774147 JF774125 JF774126 

PY4 FJV JF774148 JF774127 JF774128 

PY5 FJV JF774149 JF774129 JF774130 

MC1 FJV JF774153 JF774109 JF774110 

MC2 FJV JF774154 JF774111 JF774112 

Outgroup     

Papaver atlanticum JWK JF774161 JF774131 JF774132 

Papaver bracteatum JWK JF774162 JF774133 JF774134 

AOC, Arthur O Chater; CDP, Chris D Preston; FJV, Francisco J Valtueña; JWK, Joachim W Kadereit; RGW, Ray G Woods; TDD, 
Trevor D Dines. 
 

 

 

 

 

 

 

 

 

 



2 

 

Table S2 Taxa used in the rbcL data set for estimating the stem group age of Old World Papaveroideae, 
including GenBank accession numbers (GBN) 

Order Family Species GBN 
Aquifoliales Aquifoliaceae Ilex crenata THUNB. L01928 
Asterales Asteraceae Cichorium intybus L. L13640 
Berberidopsidales Berberidopsidaceae Berberidopsis corallina HOOK.F. AJ235773 
Brassicales Tropaeolaceae Tropaeolum majus L. L14706 
Buxales Buxaceae Buxus sempervirens L. AF093717 
Caryophyllales Caryophyllaceae Silene gallica L. M83544 
Caryophyllales Frankeniaceae Frankenia pulverulenta L. Z97638 
Celastrales Parnassiaceae Parnassia fimbriata BANKS L01939 
Chloranthales Chloranthaceae Chloranthus japonicus SIEBOLD L12640 
Cornales Cornaceae Cornus mas L. L11216 
Dilleniales Dilleniaceae Dillenia indica L. L01903 
Dipsacales Adoxaceae Viburnum acerifolia L. L01959 
Ericales Ericaceae Erica australis L. L12617 
Ericales Primulaceae Anagallis arvensis L. M88343 
Fabales Fabaceae Pisum sativum L. X03853 
Garryales Eucommiaceae Eucommia ulmoides OLIV. L01917 
Geraniales Geraniaceae Geranium cinereum CAV. L14695 
Gunnerales Gunneraceae Gunnera manicata LINDEN L11186 
Lamiales Lamiaceae Lavandula angustifolia MOENCH Z37404 
Lamiales Oleaceae Jasminum suavissimum LINDL. L01929 
Malpighiales Linaceae Linum perenne GUSS. Z75681 
Malvales Cistaceae Cistus revolii COSTE et SOULIE Y15140 
Myrtales Melastomataceae Clidemia petiolaris TRIANA AJ235777 
Oxalidales Oxalidaceae Averrhoa carambola L. L14692 
Proteales Nelumbonaceae Nelumbo lutea PERS. M77032 
Proteales Platanaceae Platanus occidentalis L. L01943 
Proteales Proteaceae Roupala macrophylla POHL AF093728 
Ranunculales Berberidaceae Achlys triphylla (SM) DC. L75868 
Ranunculales Berberidaceae Berberis thunbergii DC. AF139878 
Ranunculales Berberidaceae Bongardia chrysogonum (L.) SPACH L75870 
Ranunculales Berberidaceae Caulophyllum robustum MAXIM. AF190441 
Ranunculales Berberidaceae Caulophyllum thalictroides (L.) MICHX. AF190442 
Ranunculales Berberidaceae Diphylleia cymosa MICHX. L75866 
Ranunculales Berberidaceae Dysosma versipellis (HANCE) M.CHENG AF079454 
Ranunculales Berberidaceae Epimedium elatum DQ851436 
Ranunculales Berberidaceae Epimedium koreanum NAKAI L75869 
Ranunculales Berberidaceae Epimedium platypetalum DQ851412 
Ranunculales Berberidaceae Jeffersonia diphylla (L.) PERS. L75876 
Ranunculales Berberidaceae Mahonia bealei (FORT.) CARR. L75871 
Ranunculales Berberidaceae Nandina domestica THUNB. L75843 
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Table S2 Continued 

Order Family Species GBN 
Ranunculales Berberidaceae Podophyllum peltatum L. AF203488 
Ranunculales Berberidaceae Ranzania japonica ITO L75853 
Ranunculales Berberidaceae Sinopodophyllum hexandrum (ROYLE) YING AF079455 
Ranunculales Berberidaceae Vancouveria chrysantha GREENE DQ851445 
Ranunculales Eupteleaceae Euptelea polyandra SIEBOLD et ZUCC. L12645 
Ranunculales Lardizabalaceae Decaisnea fragesii FRANCH. L37916 
Ranunculales Menispermaceae Menispermum canadense L. AF093726 
Ranunculales Papaveraceae Argemone mexicana L. U86621 
Ranunculales Papaveraceae Chelidonium majus L. DQ912892 
Ranunculales Papaveraceae Corydalis ambigua CHAM. et SCHLTDL. DQ912902 
Ranunculales Papaveraceae Corydalis flavula (RAF.) DC. DQ006097 
Ranunculales Papaveraceae Corydalis incise (THUNB.) PERS. DQ912903 
Ranunculales Papaveraceae Corydalis nobilis (L.) PERS. AF093722 
Ranunculales Papaveraceae Dendromecon rigida BENTH. U86623 
Ranunculales Papaveraceae Dicranostigma franchetianum MAXIM. U86624 
Ranunculales Papaveraceae Eschscholzia californica CHAM. DQ912895 
Ranunculales Papaveraceae Glaucium flavum CRANTZ U86626 
Ranunculales Papaveraceae Hunnemannia fumariifolia SWEET U86627 
Ranunculales Papaveraceae Hypecoum imberbe SIBTH. et SM. U86628 
Ranunculales Papaveraceae Lamprocapnos spectabilis (L.) FUKUHARA L08761 
Ranunculales Papaveraceae Macleaya cordata (WILLD.) R.BR. U86629 
Ranunculales Papaveraceae Meconopsis cambrica (L.) VIG. JN634856 
Ranunculales Papaveraceae Papaver bracteatum LINDL. DQ912897 
Ranunculales Papaveraceae Papaver nudicaule L. DQ912898 
Ranunculales Papaveraceae Papaver orientale L. DQ912899 
Ranunculales Papaveraceae Papaver radicatum ROTTB. DQ912893 
Ranunculales Papaveraceae Papaver rhoeas L. DQ912900 
Ranunculales Papaveraceae Papaver somniferum L. DQ912894 
Ranunculales Papaveraceae Platystemon californicus BENTH. U86630 
Ranunculales Papaveraceae Pteridophyllum racemosum SIEBOLD et ZUCC. U86631 
Ranunculales Papaveraceae Romneya coulteri HARV. U86632 
Ranunculales Papaveraceae Sanguinaria canadensis L. L01951 
Ranunculales Papaveraceae Stylophorum diphyllum NUTT. U86633 
Ranunculales Ranunculaceae Caltha palustris L. L02431 
Ranunculales Ranunculaceae Hydrastis canadense L. L75849 
Ranunculales Ranunculaceae Xanthorhiza simplicissima MARSHALL L12669 
Rosales Rosaceae Dryas drummondi RICHARDS. U59818 
Sabiales Sabiaceae Sabia COLEBR. sp. L12662 
Santalales Olacaceae Heisteria parvifolia SM. AJ131771 
Sapindales Anacardiaceae Pistacia vera L. AJ235786 

http://www.ipni.org/ipni/plantsearch?id=995841-1&query_type=by_id&back_page=query_ipni.html&output_format=object_view
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Table S2 Continued 

Order Family Species GBN 
Saxifragales Altingiaceae Liquidambar formosana HANCE AJ131772 
Saxifragales Cercidiphyllaceae Cercidiphyllum japonicum SIEBOLD et ZUCC. L11673 
Saxifragales Crassulaceae Kalanchoe daigremontana HAMET et PERRIER L11189 
Saxifragales Hamamelidaceae Hamamelis mollis OLIV. L01922 
Saxifragales Saxifragaceae Saxifraga integrifolia HOOK. L01953 
Solanales Solanaceae Lycopersicon esculentum MILL. L14403 
Vitales Vitaceae Vitis aestivalis MICHX. L01960 
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Table S3 Taxa used in the ITS data set for dating Meconopsis cambrica, including GenBank accession 
numbers (GBN). Population code in Meconopsis cambrica material is indicated. 
Species GBN  Species GBN 

Argemone mexicana AY328303  Meconopsis speciosa AY328286 

Meconopsis aculeata AY328263  Meconopsis superba AY328274 

Meconopsis bella AY328279  Meconopsis taylorii AY328275 

Meconopsis betonicifolia DQ250323  Meconopsis torquata AY328378 

Meconopsis cambrica (GB1) JF774135  Meconopsis wumungensis AY328265 

Meconopsis cambrica (GB3) JF774137  Papaver aculeatum DQ250316 

Meconopsis cambrica (MC1) JF774153  Papaver alpinum DQ250261 

Meconopsis cambrica (CA2) JF774156  Papaver anomalum DQ250263 

Meconopsis cambrica (CA3) JF774158  Papaver apulum DQ250300 

Meconopsis cambrica (PY1) JF774159  Papaver argemone DQ250298 

Meconopsis cambrica (PY2) JF774160  Papaver armeniacum DQ250302 

Meconopsis cambrica (PY3) JF774147  Papaver atlanticum DQ250315 

Meconopsis delavayi AY328285  Papaver bracteatum DQ250286 

Meconopsis dhwojii AY328276  Papaver californicum DQ250318 

Meconopsis discigera AY328277  Papaver commutatum DQ250313 

Meconopsis forrestii AY328287  Papaver croceum DQ250257 

Meconopsis gracilipes AY328270  Papaver dubium DQ250319 

Meconopsis grandis AY328290  Papaver glaucum DQ250308 

Meconopsis henrici AY328281  Papaver hybridum DQ250301 

Meconopsis horridula AY328261  Papaver macrostomum DQ250275 

Meconopsis impedita AY328280  Papaver miyabeanum DQ250265 

Meconopsis integrifolia AY328288  Papaver nudicaule DQ250260 

Meconopsis lancifolia AY328282  Papaver orientale DQ250291 

Meconopsis latifolia AY328264  Papaver pavonium DQ250283 

Meconopsis lyrata AY328267  Papaver pilosum DQ250320 

Meconopsis nepaulensis AY328269  Papaver pseudo-orientale DQ250288 

Meconopsis paniculata AY328272  Papaver radicatum DQ250262 

Meconopsis primulina AY328266  Papaver rhoeas DQ250273 

Meconopsis punicea AY328293  Papaver rupifragum DQ250314 

Meconopsis quintuplinervia AY328295  Papaver somniferum DQ250306 

Meconopsis racemosa AY328257  Platystemon californicus AF305341 

Meconopsis regia AY328273  Roemeria refracta DQ250299 

Meconopsis simplicifolia AY328289  Romneya coulteri AF098922 

Meconopsis sinuata AY328268  Stylomecon heterophylla DQ250295 
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Fig. S1 BEAST chronogram of the Eudicots data set. Posterior probabilities of clades are indicated above 
branches (only PP. > 0.8). The 95% posterior density distribution of node ages is given in the node bars. 
Node bars are only given for branches with PP > 0.8. The scale is in million years. 
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