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[1] In the open ocean, sea level variability is primarily steric in origin. Steric sea level is
given by the depth integral of the density field, raising the question of how tide gauges,
which are situated in very shallow water, feel deep ocean variability. Here this question is
examined in a high-resolution global ocean model. By considering a series of assumptions
we show that if we wish to reconstruct coastal sea level using only local density
information, then the best assumption we can make is one of no horizontal pressure
gradient, and therefore no geostrophic flow, at the seafloor. Coastal sea level can then be
determined using density at the ocean’s floor. When attempting to discriminate between
mass and volume components of sea level measured by tide gauges, the conventional
approach is to take steric height at deep-ocean sites close to the tide gauges as an estimate
of the steric component. We find that with steric height computed at 3000 m this approach
only works well in the equatorial band of the Atlantic and Pacific eastern boundaries.
In most cases the steric correction can be improved by calculating steric height closer to
shore, with the best results obtained in the depth range 500–1000 m. Yet, for western
boundaries, large discrepancies remain. Our results therefore suggest that on time scales up
to about 5 years, and perhaps longer, the presence of boundary currents means that the
conventional steric correction to tide gauges may not be valid in many places.
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1. Introduction

[2] With some records extending back over more than a
century, tide gauges are a valuable tool in the study of long-
term ocean and climate variability. They have, for example,
been used in many studies to estimate 20th century variations
in global mean sea level [e.g., Holgate and Woodworth,
2004; Miller and Douglas, 2004; Church and White, 2006;
Wöppelmann et al., 2009] as well as regional patterns of
long-term sea level change [e.g.,Marcos et al., 2007;Wenzel
and Schröter, 2010; Church et al., 2011]. Tide gauges
have also been used extensively to study interannual ocean
dynamics [e.g., Enfield and Harris, 1995; Hong et al., 2000;
Sturges and Hong, 2001; Firing et al., 2004; Frankcombe
and Dijkstra, 2009], and as a means of validating ocean
models [Enfield and Harris, 1995; Tokmakian and McClean,
2003].
[3] It is well established that in the deep ocean much of

the observed variability in sea level, particularly at long
periods, can be accounted for by variations in density (steric
sea level), effectively assuming no variability in ocean bot-
tom pressure [Qiu, 2002; Volkov and van Aken, 2003;

Cabanes et al., 2006; Kohl and Stammer, 2008]. In contrast,
at the coast, where tide gauges are situated, the ocean’s
depth decreases to (effectively) zero. Hence, the steric height
component of sea level, being the depth integral of density,
must also vanish. In the absence of further adjustment, such
a situation would create a pressure field that would lead to a
depth average, along-slope geostrophic flow. Moreover, it
would blind tide gauges to deep ocean variability. However,
while there is evidence from satellite altimetry of a decou-
pling of deep and shallow water sea level variations at per-
iods shorter than about 6 months in many regions [Hughes
and Williams, 2010], at longer time scales deep ocean vari-
ability is evidently felt at the coast.
[4] The issue of the relationship between deep ocean steric

variability and coastal sea level is material to the interpre-
tation of tide gauge measurements. An important concern,
relevant to projections of sea level rise through this century,
are the relative contributions of steric expansion on the one
hand, and ice sheet and glacier melting on the other. When
attempting to separate out global sea level variations into
their mass and density-related components, it is common to
make a steric “correction” to the measurements [Cabanes
et al., 2001; Miller and Douglas, 2004]. As discussed by
Miller and Douglas [2006], the results of this procedure can
be very sensitive to where the density used in the steric
correction is measured. Clearly, it cannot be a vertical sec-
tion too close to the tide gauge as the water depth here will
be too small to produce a significant steric signal. However,
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too far away and it risks being on the wrong side of a
boundary current and therefore not being relevant to sea
level measured at the tide gauge. This is an issue which is
still being discussed in the sea level community; our aim
here is to use simple local diagnostics to clarify the issue of
how deep ocean steric signals appear at the coast and to
quantify the errors of a number of feasible approaches to
estimating the steric driven component of coastal sea level.
[5] Consideration of these questions lead us to the more

general problem of how the ocean adjusts to density changes
across sloping topography; a problem which, in fact, has
a long history in the context of determining velocities
from density data. As recounted by Helland-Hansen [1934],
Fridtjof Nansen, just before he died, proposed a method for
determining geostrophic currents from density measurements
above sloping topography. The essence of the method is to
determine the dynamic height gradient between a point A
lying in deep water and point B in shallower water by verti-
cally integrating the specific volume in the usual way from an
assumed zero level to the surface for point A, but for point B,
integrating the density field up the sloping topography from
the zero level to the point on the topography lying directly
below B and then vertically to the surface. The method
assumes zero velocity at the bottom.
[6] One limitation of this bottom density approach is that

it neglects dynamical adjustments due to along-isobath den-
sity variations. To address this, nonlocal methods exist, in
which three-dimensional density data, assumed known, is
combined with the vorticity equation (neglecting nonlinear
terms and adding an approximation for bottom friction) to
calculate a self-consistent sea level field over some region.
These methods come in two kinds: local f plane models [e.g.,
Csanady, 1979; Sheng and Thompson, 1996] which rely on
sea level being provided as a boundary condition to a small
region by some alternative method such as the purely local
calculation, and global methods in which f can vary [e.g.,
Greatbatch et al., 1991; Myers et al., 1996]. These latter
methods produce solutions which are sensitive to the details
of the topography and require filtering or restriction to a
smoother subdomain to avoid excessive noise. Interesting
though these methods are, given this sensitivity and the need
to integrate along convoluted contours over large distances, it
is not clear how important the neglected and approximated
terms are. Indeed, it may be more straightforward simply to
relax a full ocean model to the observations.
[7] It would be possible, in theory at least, to pursue the

approaches above to give a complete account of the factors
driving coastal sea level at any particular location including
the effects of local (across-isobath) and nonlocal (along-
isobath) density variations. It is our intention here, however,
to use local diagnostics (geostrophy and hydrostatic balance)
to understand the impact topography has on the relationship
between total and steric sea level variability. Our aim is to
illustrate what can practically be achieved with simple, local
calculations as opposed to what is effectively an inverse
model of the global ocean circulation. This more realistically
reflects the circumstances faced when attempting to correct
a tide gauge for steric variability with limited historical
observations in the vicinity of the gauge.
[8] Our analysis of the relationship between total and

steric sea level in the presence of topography is based on
diagnostics from a high-resolution (1/12 of a degree) global

ocean model. This is sufficient resolution to produce a
realistic eddy variability as well as to have multiple grid
points across the steep continental slope. We demonstrate
how the relationship between horizontal gradients of sea
level and density is modified by the presence of topography,
leading to substantial regional variations in the relationship
between total and steric sea level. We show that with suffi-
cient density information, it is possible to improve upon the
current standard practice of using deep ocean steric height
to correct tide gauges when estimating the mass component
of sea level change.
[9] In section 2, the problem is given a mathematical for-

mulation. Following this, in section 3, the model, and how
the relevant quantities are diagnosed from it, are described.
In section 4, the relationships between the gradients of these
quantities are analyzed globally. The ability to reconstruct
coastal sea level from density information alone is consid-
ered in section 5. The results are discussed in section 6, and
conclusions are provided in section 7.

2. Mathematical Formulation

[10] We are interested in the relationship between the
gradient of sea level, density and bottom pressure, so we will
consider the balance of pressures

p0 ¼ pb þ ps; ð1Þ

where p0 is subsurface pressure, which is the pressure at a
constant depth z = 0 just below the surface (and is therefore
the pressure equivalent of inverse barometer–corrected sea
level h′, where p0 ≈ r0gh′, with r0 the mean seawater density
and g acceleration due to gravity). The other two terms are
bottom pressure pb and the steric pressure term:

ps ¼ �
Z 0

�H
rg dz; ð2Þ

given by an integral of the density from the seafloor
(z = �H) to z = 0. Taking the horizontal gradient (r) of (1),
gives

rp0 ¼ rps þrpb ¼ rps þ rpð Þb þ rbgrH ; ð3Þ

where rb is density at the bottom, and (rp)b is the horizontal
component of the three-dimensional pressure gradient,
evaluated at the bottom (proportional to the geostrophic
current at the bottom, rotated through 90°), in contrast to
rpb which is the horizontal gradient of the two-dimensional
field of bottom pressure.
[11] The question we wish to address is, given density

information but no bottom pressure, what is the best assump-
tion to make in order to reconstruct the gradient of p0 (and
hence sea level) as accurately as possible. We will consider
four possible assumptions, each of which makes sense in a
particular context.
[12] In assumption A, rp0 = 0. This clearly explains none

of the sea level gradient, but it is effectively the assumption
being made when using an offshore steric signal to correct
a tide gauge time series.
[13] For assumption B, rpb = 0. This is the assumption

that is made when it is assumed that sea level is dominated
by steric variability. In the case of a flat-bottomed ocean, it is
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equivalent to assuming that the geostrophic flow is zero at
the bottom, in which case it is a bottom-referenced thermal
wind equation. With topography it has the effect that there
can be no sea level gradient along the coast, and hence no
steric effect at tide gauges.
[14] In assumption C, (rp)b = 0. This represents the result

of a bottom-referenced thermal wind equation in the case
with topography. It is the assumption that would be consis-
tent with the presence of a node in the vertical modal current
structure at the bottom of the ocean (zero geostrophic
velocity at the seafloor).
[15] For assumption D, rp

z
= 0. This assumes that the

depth-averaged horizontal pressure gradient (and hence
depth-averaged geostrophic current) is zero. This is equiva-
lent to the assumption that the flow is dominated by a sum of
the linear, flat-bottom baroclinic modes (modes in which the
depth-integrated current is zero), with negligible contribu-
tion from the barotropic mode.
[16] In the case of assumption D, we can use hydrostatic

balance (as in equations (3) and (4) of Hughes [2008], for
example), to show that this implies that

rpb ¼ �rE

H
; ð4Þ

where

E ¼
Z 0

�H
rgz dz; ð5Þ

or, by taking the derivative inside the integral, we can
alternatively write assumption D as

rpð Þb ¼ � 1

H

Z 0

�H
gzrr dz: ð6Þ

Substituting each of these assumptions into (3) then gives
the following sequence of approximations for the subsurface
pressure gradient for assumptions A–D, respectively:

rp0 ≈ 0;
rp0 ≈ rps;

rp0 ≈ rps þ rbgrH ;

rp0 ≈ rps þ rbgrH � 1

H

Z 0

�H
gzrr dz ¼ rps �rE

H
;

so we can consider each of the terms, rps, rbgrH, and
� 1

H

R 0
�H gzrrdz as successive corrections to an initially

estimated subsurface pressure gradient of zero. Each cor-
rection will only improve the estimate if the corresponding
assumption is closer to reality than the previous assumption.
By taking rps to the left-hand side, approximations B, C
and D can also be seen as successive approximations torpb.
The final term, added in D, represents minus the depth average
of the pressure gradient which would be calculated by inte-
grating horizontal density gradients up from the bottom, and
can be thought of as the addition of a depth-independent cur-
rent to ensure that the depth-averaged current (rather than
bottom current) is zero.
[17] In fact, C is simply understood as a generalization

of the hydrostatic calculation of steric sea level above some
seafloor position H0 at which bottom pressure variability is

assumed to be negligible (later we choose the 3000 m depth
contour as our reference). The generalization, rather than
integrating along a vertical line, takes a slanting path along
the seafloor from the H0 contour to the coast. The prediction
at the tide gauge is then given by

p0 ¼ �
Z coast

H0

rbg dz: ð7Þ

This is precisely the bottom integral method as employed by
Helland-Hansen [1934] in the context of determining slope
currents, and is equivalent to a thermal wind calculation
referenced to the seafloor.
[18] Note that we are considering these approximations to

rp0 as local. If we take the curl of each of the approximate
balances, we can see that assumptions C and D can only be
valid globally if bottom density (in the case of C), or E (in
the case of D) is a function of ocean depth only. Otherwise,
estimates of sea level differences between two points, based
on an integral of the corresponding equation, will be path
dependent. This observation is the motivation behind the
nonlocal methods described earlier [Csanady, 1979; Sheng
and Thompson, 1996; Greatbatch et al., 1991; Myers et al.,
1996], which effectively add an assumed geostrophic bot-
tom velocity chosen to make the integral path independent.

3. Model Diagnostics

[19] The main results of this paper are based on an analysis
of the Ocean Circulation and Climate Advanced Modeling
project model (OCCAM) run at the National Oceanography
Centre, Southampton. OCCAM is a global, z-level, free
surface model with a rotated grid over the North Atlantic,
and is forced with NCEP reanalysis products. Freshwater
fluxes, including evaporation minus precipitation and river
runoff, are explicitly represented in the model and included
in the free surface computation. The model includes a cou-
pled sea ice component and employs a partial bottom cell
scheme for a more faithful representation of bottom topog-
raphy. The run we are considering (run 401) is at 1/12 of a
degree horizontal resolution, with 66 vertical levels, and
covers the 20 year period 1985–2004, following an initial
4 years of spin-up. Monthly mean fields for the 19 year
period 1986–2004 were used for the analysis presented
here. Further details of the model formulation are given by
Marsh et al. [2009].
[20] Sea level is obtained directly from the model. Since

the model has a free surface, the sea level includes variations
due to atmospheric loading. These are removed, to give
dynamic sea level, by making the inverted barometer cor-
rection. Dynamically irrelevant (because no horizontal pres-
sure gradients arise) global mean sea level changes due
to mass fluxes in to or out of the ocean are also removed
by subtracting the global mean sea level at each time step.
Steric height is determined by the vertical integration of
density, which is computed from the potential temperature
and salinity fields output by the model. Because OCCAM is a
Boussinesq model that conserves volume rather than mass,
following Greatbatch [1994], the global mean sea level is set
equal to the global mean steric sea level (calculated from an
integral of density over the entire ocean volume), by adding a
spatially constant value at each time step. This ensures that
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the total ocean mass is conserved (global mean sea level
changes are purely steric). Bottom pressure (as equivalent
water thickness) is then given by subtracting steric height
from the sea level. The time mean is removed from all fields,
and the time series are detrended, leaving time series of
anomalous sea level, etc. These three height fields are then
scaled by gr0 to obtain the subsurface pressure p0, the steric
pressure ps, and the bottom pressure pb. Horizontal gradients
of these quantities are then calculated using a first-order for-
ward difference scheme.
[21] The bottom density term rbgrH, appearing first in

approximation C, is determined by computing the density on
the vertical wall of a step (or the average density, if a step
extends over more than one model layer) and multiplying
this by the gradient of the step. Steps are defined by the
model topography according to the first-order forward dif-
ference scheme. Since, in the discrete model domain, the
height of a step, and therefore what constitutes the bottom
density, may be different in the zonal and meridional direc-
tions, we compute the x and y components of this field
separately. Obviously, rbgrH is zero where the seafloor is
flat.
[22] To calculate the depth average density term � 1

H

R 0
�H

gzrrdz appearing in approximation D we first calculate
the full-depth potential energy from the model density, and
the potential energy gradient is computed using the first-
order forward difference scheme. The potential energy E is
then scaled by the total depth as in approximation D, and
the bottom density defined above is subtracted to give the
required depth average density term. Finally, for both den-
sity terms the long-term time mean and trend are removed.

4. Gradient Analysis

[23] Following the formalism developed in section 2, we
now consider the relationship between the horizontal gra-
dients of subsurface pressure rp0 (sea level) and its steric
rps and bottom pressure rpb components. Of particular
interest, is how the relationship between these quantities
depends on topography (this is crucial for understanding
the dynamics of coastal sea level). To examine the vari-
ability of these vector quantities we define the metric K,
which is analogous to the square root of time mean eddy
kinetic energy:

K að Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1h i þ a2h i

2

r
; ð8Þ

where a = (a1,a2) denotes a vector field and 〈a*〉 represents
the temporal variance of each vector component. To quantify
the skill with which a vector b approximates another a, we
define vector skill as

S a∥bð Þ ¼ 1� a1 � b1h i þ a2 � b2h i
a1h i þ a2h i : ð9Þ

This is a measure of the fraction of the variance in vector a
that is accounted for by vector b.
[24] Figure 1a shows elevated rp0 variability in regions

of strong, unstable currents such as the western boundary
currents and the Antarctic Circumpolar Current. It is also
clear that rp0 variability is frequently much weaker where

the ocean is shallow, meaning assumption A may be rea-
sonable in these regions. However, the strong variability
seen immediately off the continental shelf demonstrates,
unsurprisingly, that assumption A is not generally tenable. It
therefore raises questions as to the validity of the steric
correction that is commonly applied to tide gauges.
[25] Turning to the map of K(rps) (Figure 1b) we find

there is little to distinguish it from the corresponding map for
rp0, indicating that steric variability is the dominant driver
of rp0 for the time scales considered (i.e., monthly to
interannual). This is confirmed by Figure 1c which shows
the skill of rps in accounting for the variance of rp0. Close
inspection of Figure 1c, however, reveals that this close link
tends to break down in coastal regions around both conti-
nental landmasses and small mid-ocean islands. Nonethe-
less, in relation to our approximations given above, we can
say with confidence that approximation B is reasonable over
the vast majority of the global ocean’s extent.
[26] The veracity of assumption B, which states that rpb

is zero, is directly examined in Figure 2a. As expected from
Figure 1, the variability of rpb is generally much weaker
than is the case for rp0 or rps. In the open ocean, height-
ened rpb variability is found in the regions of the strongest
currents where barotropic eddy variability is generated, most
notably in the Gulf Stream and Antarctic Circumpolar Cur-
rent. Yet, as Figure 1c shows, the magnitude of this vari-
ability is too small to significantly degrade the close link
betweenrp0 andrps (at the time scales considered). At this
point the reader is encouraged to inspect the electronic form
of Figure 2a at large zoom (400% if possible). Viewed in this
way, a close relationship between rpb and topography is
revealed: The magnitude of rpb variability is elevated
where the topography is steepest. In fact, over steep topog-
raphy the magnitude of rpb generally exceeds that of rp0.
Since, by equation (3), rp0 is the sum of rps and rpb, the
corollary of this is that the magnitude of rps over steep
topography will also exceed that of rp0 but the variations
will be of opposite sign to rpb.
[27] By taking the steric term to the left hand side,

approximation C implies that rpb can be approximated by
the topographic density term rbgrH. The validity of this
approximation is tested in Figure 2b (again, best viewed in
electronic form) where K is mapped for the residual
rpb � rbgrH = (rp)b. (We shall refer to this as the first-
order residual of rpb.) While the regions of elevated rpb
variability (Figure 2a) in the open ocean are undiminished in
(rp)b, nearly all of the variability over steep topography has
been removed. The fact that at the time scales considered,
the topographic density term is the primary determinant of
rpb over steep topography, is further confirmed by the
vector skill mapped in Figure 2c. Almost anywhere that
steeply sloping topography is found, the bottom density term
accounts for nearly all of the rpb variability. This topo-
graphic influence is not only confined to the continental
slopes, but is also seen in the interior, where the seafloor
relief, including such features as the Mid Atlantic Ridge and
associated fractures, leave their imprint in rpb.
[28] Finally, we consider approximation D in the sequence,

which adds a final depth average pressure gradient term
to the approximation of the sea level gradient. The usefulness
of this additional term is tested in Figure 3a whereK is mapped
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for the second-order residualrpb� rbgrH� (� 1
H

R 0
�H gzrr

dz) =rp
z
. Over quiet regions of the ocean, this final correction

does account for some of the residual (rp)b variability, as
indicated by the somewhat smoother map of K for rp

z
. This

“tidying up” effect is made clearer in Figure 3b, which shows
the skill of the depth average pressure gradient term in
accounting for the variance in (rp)b. In particular, we see that
depth-averaged pressure gradient term dominates rpb vari-
ability in the tropics. It also seems to be important around
Antarctica, to the south of the ACC, and also in some parts
of the Arctic ocean. Returning to Figure 3a, we see that for
regions of high rpb variability in the deep ocean, removal
of the depth average pressure gradient term actually adds to,

rather the reduces, the total variability. For these regions,
approximation C is superior to approximation D.
[29] Figure 4 summarizes of the quality of each successive

approximation to the subsurface pressure gradient as a
function of depth (Figure 4a) and topographic gradient
(Figure 4b). The depth averaged K for rp0 (blue) again
confirms that assumption A is not generally tenable, even
though K does decrease by more than a factor of two between
its maximum in the 2500–3000 m depth range and its mini-
mum in the shallowest 500 m. In contrast, the steepness of the
topography has little influence on rp0 (Figure 4b).
[30] If approximation B is valid, then the depth average

of K(rpb) (red) should be close to zero, or at least much
smaller than the depth average of K(rp0) (blue). Yet, while
this is certainly true of the deep ocean, where K(rpb) is a

Figure 1. (a) The square root of the mean vector variance (K as defined in the text) of the subsurface
pressure gradient rp0. (b) The square root of the mean vector variance of steric pressure gradient rps.
(c) The vector skill (S as defined in the text) of the steric pressure gradient in accounting for the total sub-
surface pressure gradient. A skill score of 1 corresponds to perfect agreement.
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factor of 5 smaller than K(rp0), the fidelity of the approxi-
mation exponentially declines as we move to shallower
waters, such that in the upper 500 m interval the average
rpb variability is in fact more than twice that ofrp0. Where
this is the case, it means that variations in both rps and rpb
are greater than the variations in rp0. They are, however,
out of phase, such that, to a large extent, they negate each
other in the sum. This out-of-phase, compensatory nature of
the steric and bottom pressure gradients is even clearer when
we compute averages of K over topographic gradient inter-
vals (Figure 4b). As the steepness of the topography
increases, so too does the amplitude of rpb, and therefore,
since rp0 does not change, so to must the compensatory

rps amplitude increase. It is because of this strong com-
pensation between the steric and bottom pressure compo-
nents of the subsurface pressure gradient, that the steepness
of the topography does not leave its imprint inrp0. To put it
another way, density changes with no horizontal gradient
produce no sea level gradient. But the intersection of such
density changes with topography produces compensating
steric sea level and bottom pressure gradients.
[31] For approximation C to hold, the first-order residual

(rp)b (green) must be close to zero. Figure 4a we see that
the fraction of rpb variability accounted for by the topo-
graphic term depends strongly on depth, accounting for
more than 60% of the rpb variability in the upper 500 m,

Figure 2. The square root of the mean vector variance (K as defined in the text) of the two successive
reductions of the subsurface pressure gradient, corresponding to the terms assumed to be zero in assump-
tions B and C in the text: (a) The steric pressure term removed to give the bottom pressure gradient. (b) As
in Figure 2a, but with the topographic density term also removed to give the horizontal pressure gradient at
the ocean floor. (c) The vector skill (S as defined in the text) of the topographic term in accounting for the
bottom pressure gradient.
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but very little below 2500 m. An even stronger relationship
is found when considered in terms of topographic gradient,
with the topographic density term accounting for most of
the rpb variance for all but the lowest topographic gradient
ranges.
[32] Finally, approximation D effectively states that the

second-order residual rp
z
(yellow) is close to zero. For all

depth intervals, except the upper 500 m interval, and for all
topographic gradient intervals, we see that subtraction of the
depth average density term actual increases the variability of
the second-order residual. So although, as Figure 3 showed,
the depth average density term does account for some of the
remaining rpb variability, this is outweighed by the other,
more energetic regions where subtraction of the depth average
density term adds to the total variability.

5. Reconstructing Coastal Sea Level

[33] So far we have considered the relationship between
total and steric sea level in the presence of topography
wherever it occurs, but our primary motivation is to under-
stand how open ocean and coastal sea level are related. The
analysis of section 4 was framed in terms of the gradients
of (essentially) sea level and its components, but here our
interest lies in the actual sea level variability at the coast,
and, in particular, how well coastal sea level can be recon-
structed under the assumptions given above. That is, using
local diagnostics, rather than a globally consistent approach
that includes along-isobath density variations.

[34] Coastal sea level obtained from any of the approx-
imations A–D given above has the very general form

h xCð Þ ≈ F xD; r;Hð Þ þ r0gð Þ�1pb xDð Þ; ð10Þ

where xC is the coastal position and xD is some deep ocean
position. On the right hand side of this approximation the
first term can be determined entirely from density shoreward
of xD, while the second term represents an external boundary
condition, which can be minimized by taking xD sufficiently
far offshore. On the basis of a number of studies [e.g.,
Vinogradova et al., 2007; Bingham and Hughes, 2008], here
we take this to correspond to a depth of 3000 m.
[35] To reconstruct coastal sea level we would ideally

wish to choose xD such that the path between xC and xD
intersected the continental slope and shelf perpendicularly.
To approximate this in the model domain we take xD to be
the closest model grid point with a depth of least 3000 m that
can be connected to xC by a great circle path that does not
intersect land grid points. (As a result of this last condition,
for a small number of coastal grid points, semienclosed by
land, a deep ocean partner cannot be found.) The gradient
field is then integrated along the (discretized) straight line
joining xD and xC. This procedure is, in fact, only necessary
for approximations C and D. In (10), F = (r0g)

�1ps(xD) for
assumption A, and so, assuming that pb(xD) = 0 we simply
take steric sea level at xD as the approximation to coastal sea
level. This is equivalent to the steric correction usually used
to correct tide gauges. We do not consider approximation B

Figure 3. (a) As in Figure 2b, but with the depth averaged density gradient term also removed. (b) The
vector skill (S as defined in the text) of the depth average density term in accounting for the bottom pres-
sure gradient less the topographic term.
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further because we already know that at the coast, where the
depth is zero, steric height alone cannot account for coastal
sea level variability.
[36] As the characteristics of the sea level variability on

the eastern and western boundaries are rather different, we
first consider the eastern boundaries of the Atlantic and
Pacific before progressing to consider their western bound-
aries. These boundaries are marked in Figure 5, with anno-
tated latitudes in subsequent along-shore plots marked.

5.1. Eastern Boundaries

[37] The coastal sea level anomaly for the Atlantic eastern
boundary from 35°S to 50°N is shown in Figure 6a (and
in Figure 7a for the Pacific eastern boundary). Because the
seasonal cycle dominates the coastal sea level variability, it
is removed and displayed separately in Figure 6 (left). The
remaining signal is low-pass filtered with a 7 month boxcar
filter to remove high-frequency variability and the results are
shown in Figure 6 (right). While certainly interesting, it is

not our intention here to give a full account of the temporal
and latitudinal form of the sea level variability itself.
[38] Figure 6b shows that the deep ocean steric height does

account for much of the seasonal cycle in coastal sea level
along the Atlantic eastern boundary. For the lower-frequency
variability, however, the steric approach only works well
for latitudes from about 5°S to 12°N. Beyond this equatorial
band, coastal sea level becomes progressively decoupled
from the deep ocean steric signal, with a narrow band of
especially poor correspondence between 33°N–38°N near to
the Strait of Gibraltar. Comparing this with the reconstruction
based on approximation C (Figure 6c), shows that the bottom
density approach is generally more successful than the steric
method in accounting for coastal sea level variability, both
seasonal and interannual.
[39] For the interannual component, the skill (given by the

scalar analog of (9)) of the steric and bottom density meth-
ods in accounting for coastal sea level is quantified in
Figure 8. With the exception of a few isolated latitudes, the

Figure 4. (a) The square root of the mean vector variance (K as defined in the text) of the subsurface
pressure (sea level) gradient averaged over 500 m depth intervals (blue). Subsequent bars represent aver-
aged K of the subsurface pressure gradient residual upon cumulative subtraction of the steric pressure
gradient (red; assumption B), the topographic density term (green; assumption C), and the depth average
density gradient term (yellow; assumption D). (b) As in Figure 4a, but with averages computed over
intervals of the topographic gradient. Averages are computed over the ranges that bracket the vertical
bars.
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bottom density method accounts for more of the variance
than does the steric method, with the difference becoming
more pronounced at higher latitudes. This is especially true
of the Southern Hemisphere, where the skill of the steric
method drops rapidly south of about 15°S, while the skill of
the bottom density method remains high. In the Northern
Hemisphere, the skill of both methods diminishes toward the

pole, but for the bottom density method it does so less rap-
idly than for the steric method. The hemispheric asymmetry
most likely reflects somewhat different dynamical regimes
of the North and South Atlantic.
[40] If we limit ourselves to considering only basin scale

fluctuations in sea level by forming along-shore means for
southern (35°S–5°S), equatorial (5°S–10°N), northern (10°N–

Figure 5. A map showing the coastlines along which sea level and related quantities are plotted in
Figures 6, 7, 10, and 11. Squares correspond to the latitudes annotated in Figures 6, 7, 10, and 11.

Figure 6. (a) Modeled coastal sea level variability along the eastern boundary of the Atlantic. (b–d) Resi-
duals upon subtraction from the sea level shown in Figure 6a of the reconstructions of coastal sea level
under approximations A, C, and D, respectively.
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50°N) domains of the Atlantic eastern boundary (Figure 9a),
then we find that the differences between the steric and bottom
density methods for the eastern Atlantic boundary are less
marked. This suggests that the differences between the two
methods tend to arise from localized variability. For the
equatorial domain, the skill of the steric method is 91%, while
for the bottom density method it is 95%. For the southern
domain the advantage of the bottom density method (skill
96%) over the steric method (skill 76%) is more noticeable.
Here the steric method gets the timing of the fluctuations
correct but underestimates their amplitude, leading to a peak-
to-peak error of more than 1 cm for the large 1997/1998
fluctuation. The same is true of the northern domain, but
because the bottom density method also tends to underesti-
mate the amplitude of the fluctuations, here the difference
between the two methods is less pronounced (the steric
method has skill 81%, while for the bottom density method
it is 92%).
[41] A similar picture emerges for the eastern boundary

of the Pacific. The steric method (Figure 7b) is successful
in the equatorial band (5°S to 18°N), but becomes progres-
sively poorer with increasing latitude. This in spite of the fact
some of the variability at high latitudes is clearly part of a
meridionally coherent mode; for example, the sea level high
associated with the 1997/1998 El Niño. The steric approach
is better at accounting for the seasonal cycle, apart from
latitudes above 50°N where the residual is of a similar mag-
nitude to the original signal. For all latitudes outside of the

equatorial band, the bottom density method (Figure 7c) is
more successful than the steric method at recovering the
coastal sea level signal, with the improvement increasing with
latitude. The seasonal sea level cycle is also reconstructed
more faithfully. Again, apart from a few isolated latitudes, the
skill of the bottom density method is greater than that of
the steric method (Figure 8b). In the Southern Hemisphere, the
skill of the steric method begins to drop off rapidly south
of about 32°S, while for the bottom density method the drop-
off begins at 42°S. Forming along-shore mean time series
(Figure 9b) for the South Pacific between 57–40°S, we find
that this difference in dropoff latitude translates into a
somewhat closer match between the actual and bottom
density mean time series (skill 78%), as compared with the
steric method (skill 49%) which tends to underestimate the
amplitude of the fluctuations. In contrast, for a wide band
straddling the equator (40°S–32°N), the along-shore mean
time series are, as they were in the Atlantic (but in that case
over a smaller latitude range), almost indistinguishable (a
skill of 98% for the steric method and 99% for the bottom
density method). In the Northern Hemisphere, the skill of the
steric method begins to fall off at 30°N and fluctuates
around zero north of 48°N. The skill of the bottom density
method also decreases toward higher latitudes, but much less
so, and is still above 60% at 60°N. Eliminating local effects
by forming an along-shore mean between 32°N–61°N, we
find that of all the eastern boundary time series considered,
here the superiority of the bottom density method is most

Figure 7. (a) Modeled coastal sea level variability along the eastern boundary of the Pacific. (b–d) Resi-
duals upon subtraction from the sea level shown in Figure 7a of the reconstructions of coastal sea level
under approximations A, C, and D, respectively.
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pronounced. The bottom density time series (skill 93%)
closely follows the sea level time series, whereas the steric
method reconstruction (skill 38%) follows it only approxi-
mately, and perhaps with a few months lag.
[42] Finally, for the eastern boundaries, we consider the

difference the additional depth average pressure gradient
term in approximation D makes to our ability to reconstruct
coastal sea level. From earlier results we can expect this
difference to be negligible, an expectation confirmed for the
eastern boundaries of the Atlantic and Pacific in Figures 6d
and 7d. This shows that for the ocean eastern boundaries
the depth averaged, bottom referenced pressure gradient is
small in comparison to the topographic density term.

5.2. Western Boundaries

[43] The dynamical regimes of western boundaries are
generally more complicated. Therefore, we can expect the
reconstruction of coastal sea level using only density infor-
mation to be more challenging here. Focusing first on the

Atlantic western boundary from 55°S to 60°N (Figure 10;
Figure 11 shows the Indian and Pacific western boundaries),
this is indeed what we find. While on the Atlantic eastern
boundary, the steric method accounts for at least some of the
sea level variability, on the Atlantic western boundary it is
clear that with the exception of a few small stretches of
coastline at low latitudes, the deep ocean steric height is
a poor approximation to coastal sea level (Figures 10a and
10b). Overall, the deep steric signal tends to be much larger
than the coastal sea level and so its subtraction adds to,
rather than reduces, the coastal sea level variance. This is
true of both the seasonal and lower-frequency variability.
For this reason, the skill of the steric method along most of
the Atlantic western boundary is negative. Only for some
isolated latitudes near the equator does the skill exceed 50%
(see Figure 12a).
[44] The bottom density approach generally results in a

more accurate reconstruction of coastal sea level along the
Atlantic western boundary, both for the seasonal and

Figure 8. (a) The skill of approximations A (cyan) and C (green) in accounting for the modeled coastal
sea level variability along the Atlantic eastern boundary. (b) The same as Figure 8a for the Pacific eastern
boundary. The grey line gives an indication of how latitude varies along the coast between the latitudes
marked on the x axis.
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interannual components (Figure 10c). Along nearly the
entire length of this coastline, unlike the steric method
reconstruction, the residual upon subtracting the bottom
density reconstruction from the actual sea level is smaller
than the sea level itself. Two conclusions can be drawn from
this: First, the bottom density method does a much better job
than the steric approach in reconstructing the density-related
component of coastal sea level. Second, there are other
processes, however, that contribute to the coastal sea level
variability, which, for some stretches of coasts, are much
greater than the density related signal. The superiority of the
bottom density method is demonstrated by the much higher
skill scores obtained by this approach compared with the
scores obtained by the steric method (Figure 12a). Within
about 35° of the equator, with the exception of on the
equator itself, the bottom density method generally accounts
for more than half of the interannual variance. At higher
latitudes, the skill of the bottom density method is lower, and
for some latitudes even negative. Note, the skill of both the
steric and bottom density methods on the western boundary
is not as good as for the eastern boundary, but the superiority

of the bottom density method over the steric method is
generally much greater on the western boundary.
[45] As we did for the eastern boundaries, we look at the

reconstructions on the basin scale by forming along-shore
averages for the South Atlantic domain (55°S–10°S), the
equatorial domain (10°S–20°N) and the North Atlantic
domain (37°N–50°N) (Figure 13a). Even at these scales, and
for all domains, the bottom density reconstructions come
much closer than the steric method estimates to the actual
sea level time series. For the South Atlantic domain, the
bottom density method gets most of the long-term variability
correct, but underestimates the amplitude of some of the
interannual fluctuations (skill 66%). In contrast, the steric
method bears little resemblance to the actual coastal sea
level (negative skill). A similar picture is found for the North
Atlantic domain, but with even greater errors in the steric
approach (negative skill compared with 52% for the bottom
density method). For the equatorial bands of the eastern
boundaries, the two approaches are almost identical, both
capturing nearly all of the coastal sea level signal. However,
on the Atlantic western boundary, while the bottom density
method clearly recovers most of the equatorial coastal sea

Figure 9. (a) Averages along the Atlantic eastern boundary of coastal sea level (blue) and sea level
reconstructions based on assumption A (cyan) and assumption C (green). Averages are computed over
35°S–5°S (bottom), 5°S–10°N (middle), and 10°N–50°N (top). (b) The same as Figure 9a for the Pacific
eastern boundary, with averages computed over 57°S–40°S (bottom), 40°S–32°N (middle), and 32°N–
61°N (top). The skill scores for the two reconstructions are shown to the right of each along-shore
mean time series in corresponding colors.
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level variability (skill 91%), the steric method does not
(skill 12%).
[46] As was the case for the eastern boundaries, the addi-

tional refinement of assumption D, makes little difference
to the sea level reconstruction (Figure 10d). In fact, between
22°N and 45°N, the reconstruction is poorer than that for
the bottom density method, consistent with a significant
depth-average flow above the continental slope at these
latitudes.
[47] Along the western boundaries of the Indian and

Pacific oceans a similar picture emerges (Figure 11). In most
places the deep steric signal is larger than the coastal sea
level and so errors in the steric reconstruction often exceed
the coastal sea level signal itself. In contrast, the bottom
density reconstruction gives a much more accurate estimate
of the coastal sea level. Again, the additional refinement
of approximation D does little to improve upon the bottom
density method, and, in fact, decreases the fidelity of the
reconstruction somewhat. Figure 12b, confirms that the
bottom density method reconstruction captures much more
of the interannual coastal sea level variability than does the
steric method.
[48] Forming along-shore mean time series (Figures 13b),

we find that along the western boundary of the Indian Ocean
(35°S–5°S) there is good agreement between the actual sea
level and the bottom density reconstruction (skill 93%). In
contrast, the agreement with the steric reconstruction is poor
(negative skill). While there is some agreement in the timing

of the steric method fluctuations, their amplitudes are too
large. Moving to the Pacific, the first time series encom-
passes the coastline from Singapore to 30°N. Here the bot-
tom density method follows closely the actual sea level time
series (skill 89%), while the steric method time series bears
little resemblance to the actual sea level (negative skill). The
second interval extends from 30°N–53°N. Here, again, the
bottom density reconstruction is in much better agreement
with the actual sea level (skill 54%) than is the steric
reconstruction (negative skill), with the fluctuations in the
steric sea level much larger than the coastal sea level vari-
ability. Finally, for the most northerly interval (53°N–63°N)
the bottom density reconstruction (skill 89%) is much closer
to the truth than the steric method (negative skill).

5.3. The Effect of Reference Depth on the Steric
Correction

[49] In the preceding analysis we have taken 3000 m as
the common reference depth for both the steric and bottom
density methods. This is because, as described above, it can
safely be assumed that the bottom pressure component of
sea level is small at 3000 m. Also, taking a common refer-
ence is useful in the comparison of local dynamic balances
on the slope. Furthermore, from an observational perspective
3000 m is an optimistic depth for available steric height
estimates for correcting tide gauges. (Argo floats, for
instance, do not operate in depths less than 2000 m.) Of
course, it is equally true that obtaining steric height

Figure 10. (a) Modeled coastal sea level variability along the western boundary of the Atlantic.
(b–d) Residuals upon subtraction from the sea level shown in Figure 10a of the reconstructions of coastal
sea level under approximations A, C, and D, respectively.
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information closer to shore is more feasible than measuring
bottom density up the continental slope, and there may be a
compromise to be made between larger bottom pressure
signals in shallow water, and smaller introduced errors
resulting from currents on the continental slope, shoreward
of the measurement depth. Finally, therefore, we examine
the impact of choice of reference level on the steric
correction.
[50] As Figure 14 reveals, in most cases the steric cor-

rection can be improved by using steric height closer to the
coast, with the best results obtained at 500 or 1000 m. On
eastern boundaries the steric method at 500 m gives skill
scores which are only marginally poorer than those obtained
by the bottom density method referenced to 3000 m. The
greatest difference being 13% for the southeast Pacific time
series, where, compared with the northeast Pacific time series,
skill increases more slowly as we move up the continental
slope. The largest improvements in skill with decreasing
distance from shore are found along the western boundaries.
However, with the exception of the equatorial western
Atlantic time series, the skill of the steric reconstructions
are still substantially poorer than the bottom density
reconstructions.

6. Discussion

[51] In this paper we have considered the relationship
between dynamical changes in sea level and steric height

in the presence of topography. A primary motivation for this
has been to understand how tide gauges “see” the steric
variability that dominates sea level in the ocean’s interior.
Since steric height is given by the depth integral of the
density field, there should be very little steric height vari-
ability at tide gauge stations because they sit in very shallow
water. This apparent contradiction is resolved, as students
of coastal dynamics have long known, by recognizing that
there is an indirect steric effect on bottom pressure.
[52] The simplest relationship between deep ocean and

coastal sea level occurs in the case when there are no inter-
vening boundary currents. In this case, it can be assumed
that bottom pressure in the deep ocean is constant (we take
the 3000 m contour as the starting point for the deep ocean;
addition of mass to the ocean will produce a bottom pressure
signal in addition to the dynamical signals considered here),
so sea level changes above the 3000 m contour can be cal-
culated simply from the variations in steric sea level at that
point and, with no boundary currents, these same variations
will be reflected at nearby tide gauges. This is the steric
method resulting from approximation A. In this case, a
warming of the ocean (for example) would result in an
increase in coastal sea level and an associated increase in
bottom pressure at all warmed depths. As the water is lifted
when its density decreases, so the mass of water above a
given depth increases (here we neglect a small decrease in
deep ocean bottom pressure required to conserve mass, as
the area of the deep ocean is large compared to the coastal

Figure 11. (a) Modeled coastal sea level variability tracing the Indian and Pacific Ocean coasts north
from the southern tip of Africa. (b–d) Residuals upon subtraction from the sea level shown in Figure 11a
of the reconstructions of coastal sea level under approximations A, C, and D, respectively.
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region). This is essentially the picture described by Landerer
et al. [2007] but applied locally rather than globally.
[53] For interannual variability, we find that this simple

steric approximation only works well in eastern boundary
regions close to the equator (Figures 6, 7, 8, 10, and 12).
Elsewhere, the decoupling between sea level changes in
deep and shallow water, noted by Hughes and Williams
[2010] to occur at high frequencies, also extends to inter-
annual variability. However, with some spatial smoothing,
the steric approach also gives fairly good results at higher
latitudes, particularly in the Atlantic, but again only on the
eastern boundary (Figures 9 and 13).
[54] The clearest illustration of the failure of the simple

assumption A, underlying the steric approach, is given in
Figure 7, which shows that sea level changes on the Pacific
eastern boundary are highly coherent across almost the
entire latitude range (Figure 7a). While these variations are
well captured by the steric method within the tropics, pro-
gressively less of the signal is captured as latitude increases,

showing that the sea level signal is progressively more
boundary-trapped at higher latitudes. This is suggestive of
the geometry of Rossby waves which travel faster at lower
latitudes, leading to smaller phase lag between coast and
deep ocean, and cannot propagate poleward of a certain
(frequency dependent) latitude, leading to boundary trapping
of signals beyond that latitude. If this is the explanation, then
we should expect the simple method to work better at lower
frequencies. On western boundaries, no such argument can
be made and the neglect of boundary currents is clearly
inappropriate.
[55] The simple approximation A effectively assumes that

there are no surface currents between the deep ocean and the
tide gauge. If we accept that there will be boundary currents,
we can investigate the possibility of using density informa-
tion on the continental slope in other ways to (at least par-
tially) account for these currents. This is essentially the
standard hydrographer’s reference level problem, and we
have investigated two plausible assumptions: no geostrophic

Figure 12. (a) The skill of approximations A (cyan) and C (green) in accounting for the modeled coastal
sea level variability along the Atlantic western boundary. (b) The same as Figure 12a for the Indian and
Pacific Ocean coasts, north from the southern tip of Africa. The grey line gives an indication of how lat-
itude varies along the coast between the latitudes marked on the x axis.
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current at the bottom (approximation C), and no depth-
averaged geostrophic flow (approximation D). Either of
these seems more likely than the assumption of no surface
current, with C matching the idea of wave modes, which
tend to have near nodes in bottom current over topography,
and D matching the idea of linear, flat-bottom baroclinic
wave modes with no depth-integrated transport. Globally,
we find approximation C to be slightly, but systematically,
better (Figure 4), although D is better in an equatorial band
where the bottom pressure signal being modeled is typically
weak (Figure 3b). Approximation C results in a correction to
the simple, local steric prediction of sea level slopes, which
involves the bottom density and topographic slope (making
it most important in regions of steep topography such as the
continental slope). It is this correction term which accounts
for the influence of steric signals in the shallow water where
tide gauges are located.
[56] For the purpose of providing an estimate of the steric

effect at tide gauges, either of approximations C or D is sig-
nificantly better than approximation A, with very little

difference between C and D (Figures 6, 7, 10, and 11). On
eastern boundaries, the use of approximation C improves the
predictions based onA from reasonable to good (Figures 8 and
9), and on western boundaries the prediction is transformed
from useless to reasonable in many places (especially with
spatial averaging) and sometimes good (Figures 12 and 13).
[57] These differences illustrate the importance in many

regions of obtaining density information in the small triangle
of the ocean between a vertical line above the 3000 m depth
contour, and the continental slope. While approximation D
requires densities throughout this triangle, approximation C
only requires bottom density.
[58] The residual signals which remain in Figures 6c, 6d,

7c, 7d, 10c, 10d, 11c, and 11d show that although approx-
imations C and D represent a significant improvement, there
remain signals which may be attributed to significant bottom
currents, residual bottom pressure variability at the 3000 m
contour, or shelf sea processes in which friction, rather than
bottom currents, may play an important role in balancing
pressure gradients at the seafloor. Explicit measurement of

Figure 13. (a) Averages along the Atlantic western boundary of coastal sea level (blue) and sea level
reconstructions based on assumption A (cyan) and assumption C (green), with averages computed over
55°S–10°S (bottom), 10°S–30°N (middle), and 37°N–50°N (top). (b) The same as Figure 13a for the
Indian and Pacific western boundaries, with averages computed over 35°S–5°S along the Indian Ocean
western boundary (fourth set of lines), the tip of Malaysia around the South China Sea and Yellow Sea
coasts to 30°N (third set), 30°N–53°N (second set) and 53°N–63°N (first set). The skill scores for the
two reconstructions are shown to the right of each along-shore mean time series in corresponding colors.
Dashes represent negative skills.
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the bottom currents, in addition to bottom density, would
help resolve this missed variability, particularly in western
boundary regions. It is notable that the regions of least skill
tend to be those with the strongest western boundary cur-
rents and/or weak stratification, which could be expected to
lead to strong bottom currents.
[59] As pointed out by Miller and Douglas [2004], the

precise position at which density measurements are made in
order to provide a prediction of the steric effect at tide gau-
ges can make a large difference to the prediction. Our results
(Figure 14) confirm this for interannual variability. We find
that for both eastern and western boundaries the best steric
method estimates of coastal sea level are obtained within the
500–1000 m depth range. On the eastern boundaries, within
this range the steric estimates are only marginally poorer
than the bottom density estimates referenced to 3000 m. On
the western boundaries, the bottom density method is still
substantially better, with the exception of the equatorial
Atlantic. While one might expect the errors in the steric
method to be reduced by performing the depth integral in
shallower depths, thus reducing both the size of the steric
correction and the amount of boundary current between the
reference location and coast, that the best steric estimates of

sea level are obtained in such shallow water is, nonetheless,
surprising. It illustrates how surface currents over the con-
tinental slope, especially along western boundaries and at
higher latitudes on eastern boundaries, act to decouple the
deep ocean and coastal sea level, such that interannual
coastal sea level fluctuations are largely driven by steric
variability over the upper slope. The extent to which this
behavior applies at longer time scales requires further study.

7. Practical Implications

[60] We end by summarizing the findings of this paper in
terms of their practical implications for interpreting tide
gauge records.
[61] 1. The apparent paradox that steric corrections to tide

gauges should be zero because tide gauges sit in very shal-
low water is resolved by recognizing, as Fritjof Nansen did
in 1930 [Helland-Hansen, 1934], that there is an indirect
steric effect on bottom pressure. This occurs even in the
absence of any currents between the shelf and the deep
regions where the steric signal is significant, in which case
the bottom density at each depth is equal to the open ocean
density at the same depth.

Figure 14. Testing the impact of depth (distance to shore) on the skill of the steric method (assumption A)
for the along-shore average time series as defined previously: (a) The Atlantic eastern boundary, with
averages computed over 35°S–5°S (red), 5°S–10°N (green), and 10°N–50°N (blue). (b) The Pacific east-
ern boundary, with averages over 57°S–40°S (red), 40°S–32°N (green), and 32°N–61°N (blue). (c) The
Atlantic western boundary, with averages computed over 55°S–10°S (red) and 10°S–30°N (green). The
skill for the interval 37°N–50°N (which would have been blue) is negative for all depths and so does
not appear. (d) The Indian and Pacific western boundaries, with averages computed over 35°S–5°S along
the Indian Ocean western boundary (red), the tip of Malaysia around the South China Sea and Yellow Sea
coasts to 30°N (green), 30°N–53°N (blue), and 53°N–63°N (cyan). The solid circles represent the corre-
sponding skill of the bottom density method referenced to 3000 m.
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[62] 2. The question of how to use density information
therefore revolves around how best to reconstruct these
bottom pressure signals. In the absence of any information
about currents, the best tactic is to assume negligible bottom
current, in which case bottom density at the seafloor is the
required information. Assuming a baroclinic mode structure
with zero depth integral is better only in deep ocean regions
near the equator.
[63] 3. In some regions, the topographic density correction

is close to the conventional steric correction using a deep
ocean cast, as long as that cast is onshore of any major
currents. This means we can use historical measurements to
produce a meaningful steric correction in these regions.
Elsewhere, and particularly on western boundaries, the dif-
ference between a deep ocean cast and bottom densities on
the continental slope is crucial, and bottom currents may also
be important in some regions. However, in all cases inter-
annual noise can be reduced by calculating the steric cor-
rection as close as possible to the shelf edge.
[64] 4. The importance of boundary currents in most

regions shows that significant differences remain between
sea level signals at the coast and those in the ocean interior,
even at interannual time scales. The exception to this is on
eastern boundaries in the tropics, where the decoupling is
relatively small. We might expect that deep ocean to coast
coupling would increase at longer time scales, but decou-
pling remains significant at the 3–5 year time scales which
typically dominate the time series investigated here.
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